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ABSTRACT. A model of field theory containing as its limits both
the Schrödinger wave mechanics and the Newton classical mechanics
is presented. All details are discussed explicitly on the example of the
harmonic oscillator. A new fundamental constant connected with
the distance of observation of physical phenomena is introduced. Its
experimental value may be determined from the spectra of quantum
mechanical systems.

RESUME. On présente un modèle de théorie des champs contenant
comme limites, à la fois la mécanique ondulatoire de Schrödinger
et la mécanique classique de Newton. Tous les détails sont discutés
explicitement sur l’exemple de l’oscillateur harmonique. Une nou-
velle constane fondamentale reliée à la distance d’observation d’un
phénomène physique est introduite. Sa valeur expérimentale peut
être déterminée à partir des spectres des systèmes quantiques.

According to a general belief [1], classical Newton’s mechanics may
be obtained as a ”limit” of two different theories: the relativistic classi-
cal mechanics and the non-relativistic quantum mechanics. In the first
case, the limit is reached when in all relativistic formulae the velocity
of light is going to infinity. The limiting procedure changes the shapes
of formulae but does not change either the number or the physical in-
terpretation of the corresponding quantities. In this sense we may say
that we understand satisfactorily the limiting procedure both from the
mathematical and physical point of view [2].

Unfortunately, it is far to be true for the second case. All known
ways of relating classical mechanics with ”limits” of quantum mechanics
suffer from the lack of precision [3,4]. In particular, it is not known,
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either from mathematical or physical points of view, what is the classical
limit of the most fundamental object of quantum mechanics - the wave
function - when the Planck constant is going to zero.

In the present paper we shall investigate the possibility of obtain-
ing a well - defined classical limit of quantum mechanical wave function.
We shall perform our investigation in a framework of a simple, mathe-
matically consistent field theory, which as particular cases incorporates
both the classical and the wave mechanics. The basic concepts of such a
field theoretical approach, not only to Newton’s and Schrödinger’s equa-
tions, but to all fundamental equations of physics, have been reported in
Ref. [5]. It has been shown there that the primary physical notions in
each theory can be described in terms of four collections of basic fields.
The first collection of fields ψα(x) = ψα(x0, x1, x2, x3)(α = 1, . . . , N)
contains all fields which in the case of mechanical theories describe the
localization of physical objects. The second collection consists of fields
φαµ(x)( µ = 0, 1, 2, 3 ) which determine the space - time evolution of
fields ψα(x). Altogether, these two collections describe the kinematical
aspects of each theory. The dynamical aspects are described by the third
collection of fields πα(x) which realize the dynamical quantities of the
theory and by the fourth collection of fields ρα(x) which describe all
external influences acting on the considered physical system.

From their definition the fields introduced above satisfy the set of
differential relations

∂ ψα(x)

∂ xµ
= φµα(x) (1.a)

∂ πµα(x)

∂ xµ
= ρα(x) (1.b)

which are universal and do not contain any physical constants. In order
to determine, in each case, the fields from these general relations we
have to close them with the aid of particular constitutive relations. These
relations distinguish various physical theories and introduce all necessary
physical constants into general scheme.

In particular, the equations of Newton’s classical mechanics of a
material point moving in one dimension are obtained from (1a-b) by
taking a single field ψ(t)(N = 1) depending on time variable only, and
by adopting the following constitutive relation

πµ(t) = m φµ(t) (2)
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where m is the mass of the material point. In this case we may interpret
the field ψ(t) as the trajectory of the point and the non - zero component
of the field φµ(t) as its velocity. The non - vanishing component of the
field πµ(t) is then equal to the momentum of the point and the field ρ
is the force acting on it.

The Schrödinger wave equation for the wave function ψ(x) of a
scalar particle is obtained from (1a-b) by taking the following constitu-
tive relations

π0(x) = ih̄ψ(x) (3.a)

πi(x) = − h̄2

2m
φi(x) (3.b)

ρ(x) = − V (x) ψ(x) (3.c)

where h̄ is the Planck universal constant, m - the mass of the particle
and V (x) is the usual potential acting on it.

In order to investigate the relation between the Newtonian and
Schrödinger mechanics let us consider the following more general consti-
tutive relations

π0(~x, t) = m l20 φ0(~x, t) + ih̄ψ(~x, t) (4.a)

πi(~x, t) = − h̄2

2m
φi(~x, t) (4.b)

ρ(~x, t) = − V (~x, t)ψ(~x, t) + l20F (ψ(~x, t), φµ(~x, t), ~x, t) (4.c)

where l0 is an arbitrary parameter with the dimension of length, and F
describes all external influences not taken into account by the quantum
mechanical potential V (~x, t). Substituting (4) into (1) we obtain the
following equation for the field ψ(~x, t):

ml20
∂2ψ

∂t2
+ ih̄

∂ψ

∂t
− h̄2

2m
∆ψ + V ψ = l20 F (5)

which is a generalization of the famous telegraphist’s equation. It is now
easy to see that in the limit h̄ → 0, V → 0 this equation takes the
form of the Newton’s equation

m
d2ψ

dt2
= F (ψ, ψ̇, t) (6)
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provided we are looking for the solutions which in this limit ”loose” their
x - dependence. In the limit l0 → 0 equation (5) goes to the Schrödinger
equation

ih̄
∂ψ

∂t
− h̄2

2m
∆ψ + V ψ = 0 (7)

Therefore equation (5) provides a two parameter family of fields
ψ(~x, t; h̄, l0) which, as limiting points, contains both the quantum me-
chanical wave function ψq(~x, t) and the classical trajectory ψcl(t). We
may therefore say that our approach is an alternative realization of the
de Broglie idea of Double Solution [6]. In order to make the analogy be-
tween classical and quantum cases more exact, we must ensure that the
force F in equation (6) and the potential V in equation (7) corresponds
to the same physical interaction. We must therefore restrict ourselves to
the field equation (5) in two dimensional space - time and put

F (ψ, ψ̇, t)
∣∣∣
ψ(t)=x(t)

= − ∂V (x, t)

∂x

∣∣∣∣
x = x(t)

(8)

where the interpretation of the field ψ(t) as the classical trajectory is
explicitly taken into account. To maintain the possibility of taking in
equation (5) the limit V → 0 with F 6= 0 we must introduce into it
one more dimensionless parameter, λ, which will multiply the potential
V .

To simplify the analysis let us now consider the simplest example
of the harmonic oscillator for which all the requirements can easily be
fulfilled. In this case we have the basic equation of the form

ml20
∂ψ2

∂t2
+ ih̄

∂ψ

∂t
− h̄2

2m

∂2ψ

∂x2
+

mω2
0

2
x2ψ + l20kψ = 0 (9)

where we have put

ω2
0 = λ

k

m
(10)

Note that the harmonic oscillator case, due to the relation (8), is the
only case in which the basic equation (5) is linear. Therefore the full
discussion of classical limits of quantum mechanics may be performed
only in the framework of non - linear field equations which considerably
complicates the problem.
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In order to see some details of our limiting procedures, it is con-
venient to pass in equation (9) to dimensionless variables. The general
form of such a change of variables is

t → τ = ω0 t A
α Bβ (11.a)

x → ξ = x l−10 Aγ Bδ (11.b)

where

A =
h̄

mω0l20
(12.a)

and

B =
k

mω2
0

(12.b)

are two independent dimensionless constants constructed from our pa-
rameters. In the quantum limit the change of variables has to be inde-
pendent of l0 and therefore we must choose α = 0 and γ = −1/2.
Since in this case λ = 1, we have B = 1 and the powers β and δ are
irrelevant. On the other hand, in the classical limit ω0 → 0 and there-
fore β = 1/2. After the change of variables any solution of equation
(9) depends on ξ, τ and in order to ”loose” in it the x - dependence the
remaining parameter δ must satisfy the inequality

δ ≤ 1

4
(13)

This is the only way of passing from the general solution of equation (9)
to a function which depends only on the time variable, as is required for
solutions of the classical equations of motion. The traditional classical
limit of quantum mechanics implemented by the limit h̄ → 0 must
therefore be performed after the limit ω0 → 0 in order to keep meaning
of the field ψ(x, t). This fact is not seen from the equation (5), where
both limits can be taken simultaneously.

More generally, the limit λ → 0 has to be taken always before
the limit h̄ → 0. Therefore, in the classical limit all effects due to a
”classical trace” of the quantum mechanical potentials disappear and in
order to have a non - trivial classical limit of the quantum mechanical
wave function we should in the usual approach start from the non -
linear Schrödinger equation without any potential term. Otherwise, in
the usual approach it is meaningless to speak about the classical limit
of quantum mechanical wave equations and wave functions.
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Since we are treating our basic equation (9) as a field equation
and we adopt the usual quantum mechanical interpretation only for the
limiting wave function ψq(x, t) we do not impose the usual square -
integrability condition on the field ψ(x, t; h̄, l0).Instead of that we shall
consider only those solutions of (9) which are bounded in the whole
space - time. The general such solution may be written as

ψ(x, t; h̄, l0) =
∑
n

(
cne

iω+
n t + dne

iω−
n t
)
Hn

(
x

√
mω0

h̄

)
e−

mω2
0

2h̄ x2

(14)
where Hn(ξ) are the usual Hermite polynomials and

ω±n ==
1

2ml20

[
h̄±

√
h̄2 + 4h̄ω0ml20(n+

1

2
) + 4mkl40

]
(15)

In the quantum limit ω
(−)
n → ∞ and hence dn = 0, while

ω(+)
n → ω0

(
n +

1

2

)
(16)

Thus, the solution (14) is going to the usual quantum mechanical oscil-
lator wave function.

In the classical limit

ω(±)
n → ±

√
k

m
(17)

and taking the limit ω0 → 0 before the limit h̄ → 0 we get from (14)
the classical solution

A exp

(
i

√
k

m
t

)
+ B exp

(
i

√
k

m
t

)
(18)

where

A =

∞∑
n=0

cnHn(0) (19.a)

and

B =

∞∑
n=0

dnHn(0) (19.b)
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The formula (15) for small but non - zero l20 gives a simple formula for
the deviations of frequencies from usual quantum mechanical frequencies

∆ωn ≈
2l20
h̄

[
k − mω2

0 (n +
1

2
)

]
(20)

If such deviations really are observed, (20) will determine the experi-
mental value of l0.

Up to now in our discussion we have notoriously manipulated the
dimensional parameters. In order to make such manipulations more
precise let us consider the Fourier transform of the field ψ(x, t; h̄, l0) in
the case when ω0 = 0. Then the field equation (9) takes the form[

l20m
(
ω2 − ω2

cl

)
+ h̄

(
ω − h̄κ2

2m

)]
ψ(ω, κ; h̄, l20) = 0 (21)

For a classical particle

ω ≈ ωcl =

√
k

m
(22)

and ω differs considerably from
h̄κ2

2m
. Therefore the only way to satisfy

the field equation is to put h̄ = 0. On the contrary, in the quantum
case the frequency ω significantly differs from ωcl while according to the
basic de Broglie idea

ω ≈ h̄κ2

2m
(23)

Hence the only way to satisfy the field equation is to put l0 = 0. More
exactly, we are close to the classical case when

l20m

∣∣∣∣∣∣∣
ω2 − ω2

cl

ω − h̄

2m
κ2

∣∣∣∣∣∣∣� h̄ (24)

while we approach the quantum case when

l20 �

∣∣∣∣∣∣∣
ω − h̄

2m
κ2

ω2 − ω2
cl

∣∣∣∣∣∣∣ (25)
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As we have seen, the parameter l0 plays a crucial role in our approach
and we need to give it a clear physical interpretation. To do this we
would like to remind ,[8], that for any macroscopic theory it is necessary
to define a finite length or resolution which is not explicitly present in the
theory, but which determines the domain of applicability of the theory.
Such a parameter should, however, appear explicitly in a theory which
generalizes the given macroscopic theory. This is required in order to
have the possibility to determine on the domain of applicability of the
coarser initial theory. Our theory generalizes both the classical and the
wave mechanics, and should therefore contain lengths which determine
the domains of applicability of both these particular theories. For the
classical mechanics we should forget about all effects connected with
the Compton length proportional to h̄. Therefore in the classical limit
h̄ → 0. The theory remains classical independently of the distance at
which we are looking on the physical phenomena. In the quantum case
we will be able to see the details of order of the Compton length only
when we are looking at them from sufficiently small distances. Therefore
we connect the length l0 with the minimal distance of observation of
phenomena and it is now clear that in order to see all quantum effects
we must go with l0 to zero just as our formalism requires.

The considerations presented above open a new way for a suffi-
ciently precise discussion of the interrelations between the classical and
the wave mechanics. As we have already mentioned, more insight into
this problem can be obtained only when the basic field equation (5) be-
comes non-linear. This circumstance crucially complicates the problem
however even if it cannot be solved it can at least be defined by our
formalism.
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