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ABSTRACT. In the present paper we study some algebraic and
physical inconsistencies inherent in the Hamilton and Liouville-von
Newmann equations with external terms, widely used for the dynam-
ics of open Classical and Quantal systems. The treatment of these
systems in the context of the Lie-admissible theory removes these
inconsistencies and allows the formulation of a consistent theory for
the open systems.

RESUME. Dans cet article nous étudions quelques incohérences
algébriques et physiques inhérentes aux équations de Hamilton et
de Liouville-von Neumann, avec termes externes, et qui sont large-
ment employées dans la dynamique des systèmes ouverts classiques
et quantiques. Le traitement de ces systèmes dans le cadre d’une
théorie Lie-admissible supprime ces incohérences et permet la for-
mulation d’une théorie cohérente des systèmes ouverts.

1. Introduction

It is well known that the dynamics of a closed isolated classical
system is described by the Hamilton equations while that of the corre-
sponding Quantum system is represented by a monoparametric group
of unitary transformations in Hilbert space. This formalism is however
insufficient for the description of irreversible phenomena characterizing
a direction in time, such as dissipation in the Classical case and the
quantum measurement, exponential decay in the Quantum case etc [1].

Various models have been proposed to include irreversibility and
dissipativity, i.e. for the treatment of the open (non-Hamiltonian) Clas-
sical and Quantum systems.
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In the classical case, we have the well known Hamilton equations
with external terms representing the non-Hamiltonian forces [2].

In the Quantum regime, the dynamical description is achieved by
the generalized master equations [3], or stochastic models, or the so-
called Brussels School Theory [4].

The simplest dynamics for an open quantum system is represented
by a semigroup of transformations. The most general form of the gen-
erators of these semigroups was identified by Lindblad [5], and applied
in various physical phenomena [6,7], such as the damping of collective
modes in deep inelastic collisions [8] and the unified dynamics of the
microscopic and macroscopic systems [9].

Lindblad’s approach leads to a linear equation of motion for the
density operator containing, in general, some external terms.

The introduction of external terms in the equations of motion, in
the Classical, as well as in the Quantum case, gives rise to some algebraic
inconsistencies, which are resolved in the context of a new theory for the
description of such systems, the so-called Lie-admissible theory.

Indeed, this theory provides the most general framework for the
description of the dynamics of open systems, essentially based on the
mathematical concept of Lie-admissible algebras.

The study of the algebraic and physical inconsistencies of equations
of motion with external terms in the Classical and Quantum level and
their resolutions via Lie-admissible formulation is the aim of this paper.

The paper is organized as follows: In section 2, the Hamilton equa-
tions with external terms are studied, i.e. the classical case. In section 3,
we consider the Liouville-von Neumann equations with external terms,
i.e. the Quantum case. Finally, the section 4 is devoted to concluding
remarks.

2. Lie-admissible structure of Hamilton equations with exter-
nal terms

At present, there are several well-established and interrelated formu-
lations of Classical mechanics for the description of Newtonian systems
with forces derivable from a potential, i.e.

mq̈ − f(t, q, q̇) = 0 (2.1)

f = −∂U
∂q

+
d

dt

∂U

∂q̇
(2.2)
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All these formulations are centrally dependent on the fundamental an-
alytical equations of the theory, which are the conventional Lagrange
equations:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (2.3)

L = T (q̇)− U(t, q, q̇) (2.4)

and the Hamilton equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(2.5)

H = T (p) + U(t, q, p) (2.6)

with the interconnecting Legendre transformation

p =
∂L

∂q̇
, H = pq̇ − L (2.7)

The time evolution law for a quantity A(q, p), in phase space, is governed
by the equation

Ȧ(q, p) = [A,H] (2.8)

where

[A,B] =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(2.9)

is the Poisson bracket.

The algebraic structure underlying all formulations of classical me-
chanics is a Lie-algebra. This is due to the fact that the Poisson brackets
satisfy the defining identities of a Lie algebra.

[A,B] + [B,A] = 0 (2.10)

[[A,B], C] + [[B,A], C] + [[C,A], B] = 0 (2.11)

In the case of existence of forces nonderivable from a potential, which
are of the form:

F (t, q, q̇) 6= −∂U
∂q

+
d

dt

∂U

∂q̇
, (2.12)

one of the methodological approaches is that which uses the following
equations, originally proposed by Lagrange and Hamilton [2]

d

dt

∂L

∂q̇
− ∂L

∂q
= F (t, q, q̇) (2.13)
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q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ F (t, q, p) (2.14)

p =
∂L

∂q̇
(2.15)

H = pq̇ − L (2.16)

In these equations the Hamiltonian can characterize the total energy, i.e.,
the sum of the kinetic and potential energies of all forces admitting a
potential function, while all forces that do not admit a potential function
are represented by the external terms. It must be noted here that we
consider the total energy of a nonconservative (open) system which by
definition is not conserved.

The time evolution of the quantity A(q, p) is now given by the equa-
tion:

Ȧ(q, p) = (A,H) = A×H =
∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
+
∂A

∂p
F (t, q, p) (2.17)

It is easily proved that the brackets (, ) violate the conditions caracter-
izing any algebra [10].

Indeed, these brackets violate the right scalar and right distributive
laws, i.e.,

α× (A×B) = A× (α×B) = (α×A)×B (2.18a)

(A×B)× α 6= A× (B × α) 6= (A× α)×B (2.18b)

and
(A+B)× C = A× C +B × C (2.19a)

A× (B + C) 6= A×B +A× C (2.19b)

Therefore, the transition from the contemporary Hamilton equations to
their original form with external terms, implies not only the loss of Lie
algebras but the loss of all algebras.

The above loss of algebras has various mathematical and physical
implications in the Classical as well as in the Quantum theory. This will
be extensively discussed in section 3 of this paper.

However, a reformulation of Hamilton equations is possible in an
analytically identical way (in order to avoid alterations of the equations
of motion), which is admitting of a consistent algebraic structure.
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This algebraic structure must have two main characteristics. First,
it must permit the representation of the time rate of variation of energy:

Ḣ = (H,H) =
∂H

∂p
F 6= 0 (2.20)

Then, the bracket (, ) cannot be symmetric.

Second, one can recover the Lie algebras, as a partial case, when we
have not forces nonderivable from a potential, i.e.,

(A,B) = [A,B] , F = 0 (2.21)

It has been pointed out that the above conditions identify the so-called
Lie-admissible algebras which introduced in Mathematics by Albert [11].

In anticipation of section 3, where more information is given, we
give now a “preliminary” definition of Lie-admissible algebras.

An algebra U , with elements (abstract) a, b, c, · · · and (generally
nonassociative) product ab over a field F , is called a Lie-admissible al-
gebra, when the attached algebra U−, with the same vector space as U ,
but equipped with the product:

U− : [a, b]U = ab− ba (2.22)

is Lie.

The most general possible algebras of the type considered are called
general Lie-admissible algebras U when they verify no condition other
than the Lie-admissibility law which can be written:

(a, b, c) + (b, c, a) + (c, a, b) = (c, b, a) + (b, a, c) + (a, c, b) (2.23)

where
(a, b, c) = a(bc)− (ab)c (2.24)

is called associator.

Further discussion of this topic demands a more effective formula-
tion of the Hamilton equations [2].

Let us consider the 2n-component contravariant vector

aµ = qµ , µ = 1, 2, · · · , n
aµ = pµ−n , µ = n+ 1, n+ 2, · · · , 2n

(2.25)
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which spans a phase space, by assumption.

The Hamiltonian H can be written

H(t, q, p) = H(t, a) = H(t, aµ) (2.26)

and by use of the contravariant form:

(ωµν) =

(
0n×n 1n×n
−1n×n 0n×n

)
(2.27)

we can write: ( ∂H
∂p

−∂H∂q

)
= (ωµν

∂H

∂aν
) (2.28)

The Hamilton equations (2.5), take now the form:

ȧµ − ωµν ∂H
∂aν

= 0 , µ = 1, 2, · · · , 2n (2.29)

The Hamilton equations (2.14), with external terms, can be written in
the form:

ȧµ = Sµν
∂H

∂aν
= ωµν

∂H

∂aν
+ Tµν

∂H

∂aν
(2.30a)

Tµν =

(
0 0
0 −s

)
, s = diag(0, F/(p/m)) , F = −s∂H

∂p
(2.30b)

Formulas (2.30) are used instead of (2.14) for the Hamilton equations
with external terms because the equations (2.30) admit a consistent al-
gebraic structure. Indeed, they admit the time evolution bracket (, ) of
the equation

Ȧ(a)
def
= (A,H) =

∂A

∂aµ
Sµν

∂A

∂aν
=
∂A

∂q

∂H

∂p
− ∂A
∂p

∂H

∂q
+
∂A

∂pi
Sij

∂H

∂pj
(2.31)

which satisfies the right and left distributive and scalar laws. The brack-
ets (A,H) characterizes an algebra and this is the Lie-admissible gener-
alization of the Lie algebra.

In fact, the brackets (A,B) when written in the form:

(A,B) =
∂A

∂aµ
Sµν(t, a)

∂B

∂aν
(2.32)
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with the S-tensor given by the symmetric form

Sµν = ωµν + Tµν(t, a) (2.33)

verify firstly both right and left scalar and distributive laws and secondly
they characterize a Lie-admissible algebra, because the attached brackets
are Lie.

(A,B)− (B,A) = 2[A,B] , Sµν − Sνµ = 2ωµν (2.34)

The equations (2.30a) can be written in the form:

ȧµ = Sµν
∂H

∂aν
= (aµ, H) (2.35)

and we call them Hamilton-admissible equations.

From the above it seems that the introduction of Lie-admissible
algebras permits the regaining of a consistent mathematical structure
for the description of the open Classical systems.

3. Lie-admissible structure of the Liouville-von Neumann equa-
tions with external terms

The Lie-admissible structure of Statistical mechanics has been ini-
tially investigated by Fronteau et al [12]. In the context of this theory
we can define the Lie-admissible Liouville-von Neumann equation for the
density matrix ρ, i.e. :

iρ̇ = (H, ρ) = HSρ− ρS+H , h̄ = 1 (3.1)

where H the usual Hamilton operator of the system and S 6= S+, is the
operator describing, in general, nonconservative interactions.

The study and the applications of eq.(3.1) will be the subject of
a forthcoming paper. The aim of this section is to identify the main
mathematical and physical reasons supporting our assumption for the
consistence of this equation.

First, let us review the case of the density matrix evolution without
collisions, i.e.

−iρ̇ = [ρ,H] = ρH −Hρ , H = H+ , h̄ = 1 (3.2)
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As well known, this case is fully consistent at all mathematical as well as
corresponding physical levels. The fundamental mathematical structure
is the enveloping associative algebras ξ of operators A,B, · · · and trivial
associative product “AB” with fundamental unit I characterized by

ξ : IA = AI = A , ∀A ∈ ξ , I = diag(1, 1, 1, · · · , 1) (3.3)

The existence of a consistent enveloping associative algebra has numer-
ous mathematical and physical implications. On mathematical grounds,
it implies the existence of a consistent Lie algebra as the algebra ξ−

attached to ξ with brackets

ξ− : [A,B] = AB −BA = LIE (3.4)

The envelope ξ allow a consistent exponentiation to the group structure

U = eiθA , U+ = U−1 , A+ = A (3.5)

which, as well known, characterizes a unitary transformation. Finally,
the existence of a consistent envelope ξ allow the construction of the
representation theory, as well as numerous additional methodological
procedures such as symplectic or naive quantization, etc.

The implications from a physical profile are far reaching. First,
the existence of a consistent envelope with a consistent unit for all op-
erators (i.e., for all physical quantities) allows the very formulation of
fundamental physical quantities, such as that of spin, or of parity, or of
“elementary particle” at large (which is exactly a representation of the
enveloping associative algebra of a given space-time Lie algebra).

Last but not least, all mathematical algorithms of Eq.(3.2) have a
clear physical meaning in the sense that the operator “~p” is the linear
momentum, “H” is the total energy, “ ~M”=“~r × ~p” is the angular mo-
mentum, etc. Finally, formulation (3.2) is form-invariant under unitary
transformations, that is, physical laws can be formulated in an invariant
way valid throughout the universe. All these aspects are well treated
in any sound textbook on the foundations of quantum mechanics or of
quantum statistical mechanics.

We pass now to the examination of the modification of the case (3.2)
caused by collision or other external terms

−iρ̇ = [ρ,H] + Γ , h̄ = 1 (3.6)
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with specific reference to the Lindblad equations [5], i.e.,

−iρ̇ = [ρ,H] +
1

2
i
∑
j

({V ∗j Vj , ρ} − 2VjρVj) , h̄ = 1 (3.7)

The following series of breakdowns of the mathematical and physical
foundations of the case (3.2) were identified by Santilli (see ref. 13) al-
ready in his original proposal of Eqs.(3.1), and then elaborated in more
details in the subsequent literature [14-20]. When applied to the Lind-
blad equations, these problematic aspects can be summarized as follows.

1 Lindblad equations (3.7) imply the breakdown of the universal en-
veloping associative algebra ξ of Eq.(3.2). This is evidently due to
the fact that the trivial associative products as used, say, in the
terms Hρ or V ρ or V ∗V are indeed defined in the theory, but the
algebra looses its “universal” and independently, its “enveloping”
character. In particular, this implies the loss of the existence of the
ordered infinite-dimensional basis of the consistent envelope ξ, the
loss of the Poincaré-Birkhoff-Witt theorem, etc.

2 Lindblad equations (3.7) imply the loss of the unit as an element
of the center of the associative envelope. In fact, the trivial unit
element I can be introduced as in Eqs.(3.7) but, since there is no
consistent associative envelope (Problematic Aspect 1), it loses its
meaning as an element of the center of the algebra. In turn, this
has profound physical implications (see below).

3 The brackets of Lindblad equations (3.7) do not characterize a con-
sistent algebra. In the pure case (3.2), the brackets are given by the

familiar form A×B def
= [A,B] = AB−BA which, first of all, verifies

all conditions to characterize an algebra (scalar law, left and right
distributive law, etc.), and, second, that algebra turns out to be
Lie. To study the corresponding situation for Lindblad equations,
one can introduce the “product”

A×B def
= [A,B] +

1

2
i
∑
j

({V ∗j Vj , A} − 2VjAVj) (3.8)

which is defined for fixed Vj and V ∗j . It is easy to see that product
(3.2) violates the condition to characterize any algebra.

The physical implications of the above mathematical problematic
aspects are very deep indeed, and they were also identified by Santilli



146 A. Janussis, D. Skaltsas

beginning with the original proposal [13] of his Lie-admissible equations
(3.1). In fact, by specializing again the latter analysis to Eqs.(3.7), we
have the following consequences:

4 There exist serious problematic aspects for the consistent defini-
tion of the measurement theory for Lindblad equations (3.7). This
is, clearly, a direct physical consequence of Problematic Aspect 2
(loss of the unit of the theory). In fact, predictions can be cor-
rectly formulated for the case (3.2) and the experimental measure-
ments consistently associated to such theoretical predictions, be-
cause Eq.(3.2) possess a consistent unit I as per Eqs.(3.3). The
expectation value of an observable A is obtained from the formula:
< A >= Tr(ρAI), while the probability of finding the eigenvalue
n, where A|n >= n|n >, from the formula pn = Tr(ΛnρI), where
Λn the projector in the one dimensional subspace spanned by the
eigenfunction |n > and I the fundamental unit of equation (3.3). In
Lindblad equations (3.7), there is the loss of the notion of unit from
various counts (loss of the enveloping algebra, loss of the center of
such algebra, etc). As a result, the measurement theory cannot be
consistently defined for Eqs.(3.7), let alone treated.

5 Lindblad equations (3.7) imply the loss of a form-invariant formu-
lation of the Laws of Nature. As also well known, the case (3.2)
allows a form invariant formulation of the Laws of Nature because
the brackets [A,B] are form invariant under unitary transforma-
tions, i.e.

U [A,B]U+ = [A′, B′] , U+ = U−1 (3.9)

In particular, the brackets are invariant under the time evolution
characterized by themselves (which is precisely unitary). In the case
of Lindblad equations (3.7), this additional fundamental property
of quantum mechanics is lost. In fact, the equations characterize,
this time, a nonunitary time evolution. It is then a matter of simple
calculations to see that the transformed product (3.2) under nonuni-
tary transformations is not algebraically equivalent to the original
product, i.e.

U(A×B)U+ 6= A′ ×B′ , U+ 6= U−1 (3.10)

Thus, Lindblad equations (3.7) are not form invariant under the
time evolution characterized by themselves and, consequently, there
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is no known possibility of formulating Laws of Nature in a form
invariant way.

6 Lindblad equations (3.7) imply the loss of the contemporary notion
of particle. In fact, by “particle” we mean a certain representation
of a given space-time symmetry which, mathematically, means a
representation of the universal enveloping associative algebra of the
given space-time Lie algebra. In Lindblad equations (3.7) we have,
not only the loss of any consistent algebra in the product of the time
evolution (Problematic Aspect 3), but actually the more fundamen-
tal loss of the underlying associative envelope. The contemporary
notion of “particle” is then irreconcilably lost. The statistics consid-
ered must be referred to an ensemble of unidentifyable or otherwise
unknown objects.

7 Lindblad equations (3.7) imply the loss of the notion of spin and
any other physical characteristics centrally dependent on the exis-
tence of a consistent algebra in the brackets of the time evolution.
We are here trying to express the fact that the loss of the notion of
particle at the representation level (Problematic Aspect 6) is only
a first layer of problems. The second layer exists, specifically, at
the level of individual quantities, such as the spin. In fact, for the
case (3.2) we can consistently define spin because of the consistent
formulation of the SU(2)-spin algebra. More specifically, the latter
algebra has mathematical and physical meaning for equations (3.2)
because the brackets of the spin algebra coincide with the funda-
mental brackets of the time evolution law. All this is irreconcilably
gone for Lindblad equations (3.7). In fact, one could aprioristically
introduce the words “SU(2)-spin” and talk about, say, an ensem-
ble of “particles with spin 1/2”, but this statement would have not
hopes for mathematical or physical consistency, evidently because
the brackets [A,B] of the SU(2) algebra have no meaning for Lind-
blad equations (3.7), mathematically and physically.

The above seven problematic aspects of Eqs.(3.7) are only a part of
the problematic aspects identified by Santilli in his study of algebraically
inconsistent modification of the Lie brackets [A,B], such as: Eqs.(3.7)
imply the breakdown of quantization (e.g., prequantization in symplectic
geometry) which is notoriously dependent on the existence of consistent
algebraic structures both before and after the mapping (classical and
operator levels); the notion of quantum of energy has problematic as-
pects in its very introduction; there exist numerous other operator-type
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problematic aspects for which we refer the interested reader to Santilli’s
original studies [13-20].

We now pass to a review of the central aspects of this paper, namely,
the resolution of the above problematic aspects. In fact, Santilli proposed
his fundamental Lie-admissible equations (3.1) because they are capable
of resolving all problematics aspects 1 through 7 above. To see this oc-
curence, one must first understand the mathematical structure of the
Lie-admissible equations and then study the physical profiles.

Eqs.(3.1) are based on the existence of a consistent, bimodular, left
and right generalization of the envelope of quantum mechanics. Select
one direction of time, say the forward. Then the equations underlying
(3.1) are given in their Schrödinger-type form by [18,19]

i
∂

∂t
Ψ = H .Ψ

def
= HSΨ (3.11)

with corresponding, inequivalent form for the backward motion,

−iΦ
←−
∂

∂t
= Φ / H

def
= ΦRH , S+ = R 6= S, (3.12)

This is done to ensure the nonconservative nature of the physical sys-
tem considered via his intrinsic irreversible structure, as typical of all
nonunitary time evolutions. Conservation/reversibility is a trivial par-
ticular case, when desired, when S = S+ = R.

Each equation (3.11) and (3.12) is modular-isotopic in the sense that
the conventional modular action of quantum mechanics is lifted “isotopi-
cally” that is in a linearity preserving and associativity preserving way.

HΨ→ H .Ψ , ΦH → Φ / H (3.13)

This implies the generalization of the conventional envelope ξ, Eq.(3.3),
into two different forms, one per each direction in time

ξ. : A . B = ASB , I.A = A . I. , I. = S−1 (3.14a)

/ξ : A / B = ARB , /I / A = A // I , /I = R−1 (3.14b)

The above ultimate structure of Santilli’s Lie-admissible equations re-
solves Problematic Aspects 1 and 2 of Lindblad equations (3.7) by its
very conception (existence of generalized but consistent envelope and
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related units). In particular, specific mathematical studies have proved
that the envelopes ξ. and /ξ preserve all the properties of the old en-
velopes (Poincaré-Birkhoff-Witt theorem, ordered infinite-dimensional
basis, etc.). In particular, they allow a consistent exponentiation, of
course, one per each direction of time, according to the rules

ξ. : U. = eiAθ|ξ. = I.eiA.θ|ξ = I.eiASθ (3.15a)

/ξ :/ U = eiθA|/ξ =/ Ieiθ/A|ξ = eiθRA/I (3.15b)

This confirms the existence of a consistent representation theory, of
course, of generalized nature (the so-called bi-representations on bimod-
ular vector spaces).

The reader should note the transition in Eqs.(3.15) from the ex-
ponentiation in the new envelopes ξ. and /ξ to their reformulation in
terms of the old envelope ξ for facility of explicit expressions, with the
understanding that the mathematically correct exponentians are those
in the new envelopes. For more details on these aspects, the reader
may consult ref. 18, 19, where the underlying Hilbert space structure is
identified too.

The reader should be aware that the transition for envelope ξ to one
of its generalizations is nontrivial. In fact, squares (and higher powers)
of operators such as p2 = pp are inconsistent in the generalized theory
(they break the linearity condition [18]). The consistent square is instead
given by p . p or p / p depending on the time arrow.

We now pass to Heisenberg-type formulations. A generalization of
the standard transition from Schrödinger to Heisenberg equations leads
to Santilli’s fundamental time evolution law associated to Eqs.(3.11) and
(3.12) [13].

iȦ = (A,H)
def
= A / H −H . A = ARH −HSA (3.16)

with integrated form

A(t) = eiHStA(0)e−itRH = I.eiH.t . A(0) / e−it/H/I (3.17)

which is evidently nonunitary by conception.

The fundamental product of Santilli’s formulation is now given by

U : A×B def
= (A,B) (3.18)
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It is important for the reader to know that, unlike Lindblad product
(3.8), Santilli’s product (A,B), first and above all verifies all the condi-
tions to characterize an algebra (2.18), (2.19) i.e., the distributive and
scalar laws

(A+B)× C = A× C +B × C
A× (B + C) = A×B +A× C

α(B × C) = (αB)× C
(A×B)α = A× (Bα)

(3.19)

Secondly, the algebra turns out to be Lie-admissible in the sense that the
attached algebra U−, which is the same vector space as U , but equipped
with the attached antisymmetric product

U− = [A,B]U = (A,B)−(B,A) = ATB−BTA , T = R+S (3.20)

is Lie. In fact, it is instructive for the interested reader to check that,
despite its generalized structure, product (3.20) verifies all Lie algebra
axioms. In actually, product (3.20) characterizes an important general-
ization of Lie’s theory called by Santilli Lie-isotopic theory [2,14], and
which is evidently an intermediary formulation between the simplest pos-
sible product AB − BA, and the most general possible Lie-admissible
form ARB −BSA.

The above findings resolve, by conception, Problematic Aspect 3
(loss of a consistent algebra in the brackets of the time evolution).

To summarize these mathematical aspects, Santilli’s fundamental
Lie-admissible equations are based on a mathematically consistent gen-
eralization of the enveloping associative algebra of quantum mechanics
which, from the original simple form ξ with product AB valid for both
directions of time, is generalized into forms (3.14) which first of all, are
still associative, and, still universal and enveloping, although different
for forward and backward in time (to achieve the desired physical prop-
erty of characterizing nonconservative irreversible processes). Second,
the simplest conceivable Lie brackets AB −BA are generalized into the
form ARB − BSA which, first of all, characterize a consistent algebra
and, then, that algebra turn out to be of the Lie-admissible type, i.e.,
possessing the well defined Lie content (3.20). Third, unlike Lindblad
equations (3.7), exponentiation in Santilli’s theory can be consistently
defined, thus leading to the formulation of a consistent exponential form,
Eqs.(3.17) for the characterization of the time evolution in a finite form.
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Equivalently, we can say, that Eqs.(3.1) are those emerging from the fi-
nite form (3.17) when considered in the neighbourhood of the generalized
identities.

The above consistent mathematical structure underlying Eqs.(3.1)
readily allows the resolution of all remaining problematic aspects of Lind-
blad equations.

To begin, the measurement theory can now be consistently defined
for Eqs.(3.1), because of the existence, first, of consistent envelopes, and,
more specifically, of consistent centers with well defined units. Of course,
the measurement theory is now divided into two, one for measurements
forward in time, and the other for measurements backward in time, with
the understanding that such measurements of the same physical quanti-
ties must be different under irreversibility for physical consistency of the
theory. This resolves Problematic Aspect 4, with the understanding that
the measurement theory can be consistently formulated for Eqs.(3.1), but
the studies are just at the beginning.

Next, Santilli’s fundamental equations (3.16) are form-invariant un-
der the most general possible, generally nonunitary transformations as
known since their original proposal [13]. In fact, the Lie-admissible char-
acter persists under transformations (3.17)

U. . (A,B) // U = (A′, B′) (3.21)

In particular, such Lie-admissible character is preserved by the time evo-
lution characterized by the brackets themselves. Fundamental Equations
(3.1), not only allow the form invariant expression of the Laws of Nature,
but also the form invariance under the most general possible transfor-
mations (recall that in case (3.2) the form invariance exists only under
unitary transformations).

Next, Santilli’s fundamental equations (3.16) allow the consistent
definition of the notion of “particle”, of course, as a suitable generaliza-
tion of the conventional notion for the pure case (3.2). This is due to the
existence of consistent envelopes which permit the consistent definition
of the representation theory, and Problematic Aspect 5 of Lindblad equa-
tions (3.7) is resolved. We should stress here that we have a consistent
formulation of particles in Santilli’s theory, but its actual, explicit com-
putation is under way. In actuality, we are referring here to one of the
most complex notions in contemporary mathematics. Santilli’s notion of
particle is a bi-representation of a Lie-admissible algebra of operators on
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bimodular vector spaces [15]. Predictably, such a notion implies the gen-
eralization of all conventional characteristics under sole electromagnetic
interactions without collisions as in the case (3.2), including a gener-
alization of the intrinsic characteristics. This point is so fundamental
that it was identified already in the original proposal of Lie-admissible
equations (3.1), see in Ref.(13) Sect. 4.11 on the theory of “mutation”
of particles. This should not be surprising to the attentive reader. In
fact, the conventional notion of particle holds under local, potential,
action-at-a-distance, unitary interactions, while the particle under con-
sideration here is under the most general dynamical conditions that are
mathematically conceivable today, and represents extreme physical con-
ditions, such as a proton in the core of a star undergoing gravitational
collapse.

Furthermore, the existence of a consistent algebra in the brackets
of the time evolution (3.16) allows the consistent formulation of phys-
ical characteristics, such as spin, while under extreme nonconserva-
tive/irreversible conditions [17]. For instance, the SU(2)-spin for the
case (3.2) is replaced by the SU(2)-admissible quantity for Eqs.(3.16).
We are again referring to the fact that the problem of spin and other
physical characteristics can be consistently formulated for Eqs.(3.1), be-
cause the brackets characterize a consistent algebra, and that algebra
turns out to have a well defined Lie algebra content, but the explicit
study of the emerging new context is under way.

Finally, we should mention the property that Santilli’s fundamental
Lie-admissible equations in their infinitesimal form (3.16) or finite form
(3.17) are directly universal, in the sense that they represent all possi-
ble nonunitary time evolutions (universality), directly in the frame of the
experimenter without any need of local transformations (direct universal-
ity). In fact, under certain continuity restrictions, any non-Hermitean
Hamiltonian H can be always decomposed into the form

H = H0S , H+ = RH0 , H+
0 = H0 , S+ = R (3.22)

thus leading to Lie-admissible form (3.16).

4. Conclusion

In this paper we identify some mathematical and physical inconsis-
tencies of a class of equations used for the dynamical description of open
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systems. We then point out that these inconsistencies are removed in
the context of the new more general theory of Lie-admissible theory.

At the level of Classical mechanics the Hamilton equations with
external terms (2.14) are reformulated in the form of (2.35) permitting
the recovering of a consistent algebraic structure.

At the Quantum mechanical level, any given nonconservative,
nonunitary equation, including Lindblad equations (3.7), can be always
rewritten in Santilli’s fundamental Lie-admissible form (3.16). This re-
formulation is not purely formal, because it allows the resolution of truly
fundamental, mathematical and physical, problematic aspects which are
inherent to algebraically inconsistent time evolutions. In turn, the rig-
orous formulation of physical problems prevents predictable misconcep-
tions, such as the rather general beliefs that the spin holds for Eqs.(3.7)
without any change as compared to the case (3.2). Finally, the identifica-
tion of the ultimate mathematical structure underlying nonconservative,
irreversible and nonunitary processes permits the systematic study of
the entire class, rather than one individual element. To put it differ-
ently, Lindblad equations (3.7) can indeed be written in Santilli’s Lie-
admissible form (3.16). The point is that the latter also represent infinite
varieties of equations structurally more general than the formers.
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