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ABSTRACT. We present here a new formulation of Maxwell’s equa-
tions based on an extension of the Hamiltonian formalism for a single
particle. We introduce a quaternion action, whose scalar part is the
usual action S, and which contains a vector component S. From this
quaternion action the generalized momentum and generalized Hamil-
tonian are defined. After imposition of suitable constraints, S and S
turn out to be the usual potential and potential vector of standard
Electromagnetic theory. This approach allows to express the quan-
tization of charge as a quantum condition of the Bohr-Sommerfeld
type on the generalized momentum. In addition, gauge invariance
and minimal coupling are unified into a single operation. Finally the
fundamental difference between Newtonian gravitation and Electro-
magnetism is reviewed.

RESUME. Nous proposons une nouvelle formulation des équations
de Maxwell, construite à partir d’une extension du formalisme
Hamiltonien pour une particule simple. Nous introduisons une ac-
tion quaternionienne dont la partie scalaire est l’action ordinaire S,
et qui comprend une composante vectorielle S. A partir de cette ac-
tion quaternionienne nous définissons le moment et l’Hamiltonien
généralisés. Après imposition de contraintes adéquates, S and S se
révèlent être les usuels potentiels scalaire et vecteur de l’électromagnétisme
standard. Cette approche permet l’expression de la quantification de
la charge comme une condition quantique du type Bohr-Sommerfeld
imposée au moment généralisé. De plus, l’invariance de jauge et le
couplage minimal se trouvent réunis au sein d’une même opération.
Enfin la différence fondamentale entre la gravitation Newtonienne et
l’électromagnétisme est ré-examinée.
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Introduction

The customary Hamiltonian formulation of Electromagnetism is
based on a reformulation of Maxwell’s equations in terms of canoni-
cally conjugated quantities E and A and Hamiltonian H equal to the
electromagnetic energy. The advantage of this formulation is that the
transition to QED is facilitated. However if the Hamiltonian formalism
is retained, the connection to the mechanics of a point particle is lost,
since the new canonical variables bear no relationship to position and
ordinary momentum (mass × velocity).

We present here a different formulation, in which the Hamiltonian
formalism is extended to the case where the Action is a quaternion in
ordinary space, i.e. with a scalar and a vector part. The main reason
for doing so is to be able to obtain a momentum which is not merely
the gradient of a (scalar) action, but contains a rotational component as
well. Although the original motivation was fluid mechanics, where the
role of vorticity is crucial, this approach yields very interesting insights in
electromagnetism, in particular gauge invariance and minimal coupling.

1. Generalized Hamiltonian and momentum and Maxwell’s
equations

In order to treat the case of rotational momentum we introduce
a vector action S in addition to the scalar action S. We define the
generalized momentum and Hamiltonian as follows :

−H
c

+ P = (
∂

c∂t
+∇) ∗ (S + S) (1)

where ∗ stands for quaternion multiplication [1]. Or

P = ∇S +
∂S

c∂t
+∇× S (2)

H = c∇ · S − ∂S

∂t
(3)

When S equals zero we recover the usual definition of momentum and
Hamiltonian. Note that the momentum P has nothing to do with the
so-called electromagnetic momentum i.e. the Poynting vector.

Th expression for P suggests that we rewrite P in the form:

P = −E + B (4)
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where E and B are electric and magnetic fields respectively. From this we
see that two of Maxwell’s equations are automatically satisfied, namely:

∇×E = −∂B

c∂t
(5)

∇ ·B = 0 (6)

However the next assumptions are crucial to make E and B actual elec-
tric and magnetic fields, despite the fact that they already have the
right expression in terms of S and S. We therefore need to impose the
following conditions: ∫∫

P · dA =
q

ε0
(7)

This defines the charge q. We interpret this condition on the momentum
as a quantum condition of the Bohr-Sommerfeld type. The difference
with the usual quantum condition on the ordinary momentum lies in
the integration over area. In both cases however, quantification results
in having the momentum scaling inversely with distance (q/r2 for elec-
tromagnetism, h/λ for mechanics) instead of being independent of it.
Physically, the quantum of action is connected to motion, whereas the
quantum of charge is not. The reason is that the Gauss integral is de-
fined for any area enclosing the source, so that in addition to possessing
spherical symmetry, the generalized momentum P is defined for all val-
ues of r. This precludes its interpretation as a velocity, or even a velocity
field. The quantification of charge is thus explained by the same type of
mechanism as that of action, without the need of any extra hypothesis
(such as Dirac monopoles [2]).

As fas as dimensions are concerned, the rhs of (7) has a dimension
of mass × vol × time−1. We choose q to have the dimension time −1

and ε0 the dimension vol−1 ×mass−1 (see section 2 below).

∂

∂t
= −v · ∇ (8)

The fields are advected with a particle of velocity v.

∂

∂t
(∇S) = −∇(c∇ · S) (9)

This is the Lorentz condition which says that position and the S part of
the generalized momentum (2) are canonically conjugated with respect
to the S part of the generalized Hamiltonian (3).
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These three conditions give the remaining Maxwell’s equations as
well as the inhomogeneous wave equations for the scalar and vector po-
tential (see appendix).

2. Coupling with matter

It has been experimentally found that the electric force on a charge
q is F = qE. Since E has the dimension of a momentum, q takes the
dimension of time−1.

The coupling of the electromagnetic field with matter results in the
following substitutions in the ordinary Hamiltonian and momentum [3]
:

p = mv→ p = mv +
q

c
A (10)

H = E → H = E + qφ (11)

This should be compared to the expressions for the generalized Hamil-
tonian and the Electric part of the momentum (1), rewritten with the
usual notation for vector and scalar potentials :

E = −∇φ− ∂A

c∂t
(12)

H = c∇ ·A− ∂φ

∂t
(13)

In the process of coupling the EM field to a particle, only the explicit
time dependent part of E and the generalized Hamiltonian are added to
the usual momentum (mv) and Hamiltonian H (Energy E), provided
the following rule is used :

− ∂

∂t
→ q i.e. − ∂φ

∂t
→ qφ , −∂A

c∂t
→ qA (14)

Since the magnetic part of the generalized momentum does not con-
tribute to the definition of the charge, it does not take part in the cou-
pling as expected.

3. Gauge invariance

Maxwell’s equations are invariant under the transformations [4] :

A→ A + c∇χ (15)
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φ→ φ− ∂χ

∂t
(16)

Dimensional analysis yields that χ has the dimension of Action× time.
Multiplying (15) by q/c yields :

q
A

c
→ q

A

c
+∇(qχ) (17)

Now, according to the minimal coupling rule, qχ has the dimension of
an action, hence

q
A

c
→ q

A

c
+∇(action) (18)

q
A

c
→ q

A

c
+ p (19)

Also (16) gives :

qφ→ qφ− ∂(qχ)

∂t
(20)

qφ→ qφ− ∂(action)

∂t
(21)

qφ→ qφ+H (22)

where H and p are ordinary Hamiltonian (i.e. energy) and momentum
(i.e. mass times velocity). We then obtain the gauge invariance as being
the dual (or reverse) of the matter-field coupling i.e. :

matter-field coupling gauge invariance
p→ p + qA/c qA/c→ qA/c+ p
H → H + qϕ qϕ→ qϕ+H

(23)

Hence gauge invariance and minimal coupling are unified into a single
operation. In other words the transformation that leaves Hamilton’s
equation invariant in presence of an electromagnetic field, and the one
that leaves Maxwell’s equations invariant are parts of a single operation.

Conclusion.

This formulation of electromagnetism yields the following results.

The charge plays the role of the quantum of flux of momentum,
in the same way the Planck constant is the quantum of circulation of
momentum (or action).
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The identification of the dimension of charge as time−1 allows min-
imal coupling and gauge invariance to be unified into a single operation.

The invariance of charge takes on a different formulation, as does
the Lorentz transformation : Instead of deriving Maxwell’s equations by
going over from the static case to the dynamic (uniform velocity) one, the
complete expression for E and B is first obtained, and then constraints
are imposed. This means that the covariance of Maxwell’s equations can
be explained (or viewed) in a very different fashion. Namely it is the
imposition of the set of constraints which results in having S propor-
tional to the velocity of the charge. Only at this point can we separate
the velocity dependent and independent effects in EM and derive the
Lorentz transformation. This suggests that the principle of covariance
(in the special relativistic sense) is a composite principle. Extending this
formalism to treat gravitation might result in decomposing the princi-
ple of general covariance as well. This will require richer objects than
ordinary quaternions.

Finally the profound difference between (Newtonian) gravitation
and Electromagnetism is revealed in the expressions for mass and charge
:

m =

∫∫
g · dA

q =

∫∫
P · dA

where P is a momentum whereas g is the gradient of a potential. This
results in having the force being the time derivative of the ordinary
momentum (mv), while being proportional to the electric momentum.
As a consequence the charge is quantized whereas mass is not. This
illustrates well the limits of the present formalism and the need to extend
it.
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Appendix

The derivation follows that of Rosser [5], but in different order. Also
the constant µ0 is introduced with a different relationship to ε0. It is
reproduced here for clarity.
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From
∇ ·E =

q

ε0
(1)

using Lorentz condition, we obtain

φ = − q

ε0
(2)

hence
φ =

q

4πε0s
(3)

where
s = r − r · v

c
(4)

and v is the velocity of the particle.

Using Lorentz condition again yields

∇ ·A = −1

c

∂φ

∂t
= v · ∇φ =

q

4πcε0
v · ∇(

1

s
) (5)

since v is constant we obtain

A = φ
v

c
(6)

and therefore
A = − pv

cε0
= −µ0J (7)

where

µ0 ≡
1

ε0c
(8)

Adding equation (7) and the Lorentz condition gives

∇×B = µ0J +
∂E

c∂t
(9)

In vacuum, waves propagate with velocity c. This identifies c with the
velocity of light. It is straightforward to check that ε0E

2 and B2/cµ0

have dimension of energy density.
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