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ABSTRACT. The relation existing between classical (pure) thermo-
dynamics and statistical thermodynamics is analysed at a metatheo-
retical level by means of a network of inter-theory relations involving
formal analogies and theory reductions. On this basis, we obtain a
conceptual framework by which we discuss an alternative definition
of thermodynamic limit and the complementarity existing between
the statistical and dynamical descriptions of macroscopic systems.
The topic is also considered from the epistemological and historical
point of view.

RÉSUMÉ. On analyse la relation qui existe entre la thermo-
dynamique classique (pure) et la thermodynamique statistique au
niveau métathéorique, à travers un réseau de relations inter-théori-
ques qui comporte des analogies formelles et des réductions de
théories. Il est donc possible d’obtenir une structure conceptuelle
par laquelle on peut examiner une définition alternative de la lim-
ite thermodynamique et la complémentarité entre la description dy-
namique et celle statistique des systèmes macroscopiques. Le suyet
est analysé aussi du point de vue épistémologique et historique.

Introduction.

In the second half of the 19th century the atomistic interpretation of
the laws of classical thermodynamics (CT ) led to the birth of statistical
thermodymamics (ST ). This theory has two fundamental characteris-
tics: on the one hand it deprives the second law of CT of its absolute
character (and therefore corrects it) while, on the other, it reveals the
impossibility of obtaining an integral reduction of CT to either classical
mechanics (CM) or quantum mechanics (QM).
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ST is situated in fact at an intermediate level between a purely
macroscopic description and a microscopic description of thermodynamic
systems; this level is characterized by the presence of fluctuations around
mean values of the macroscopic variables of a system in equilibrium, due
to the microscopic activity of the system itself. Thus it appears clear
that the study of the fluctuations is essential to clarify the relation that
exists between ST and CT , with the aim of establishing: a) what are
the physical hypotheses and mathematical structures that characterize
these theories; b) in what sense can ST be interpreted as a generalization
of CT and be approximated by it under suitable assumptions in certain
extreme cases; c) what relation exists between ST , CT and other theories
such as CM and QM .

The crux of the question is the possibility of obtaining, within the
framework of the phenomenological theory of fluctuations, some correla-
tion relations between thermodynamic quantities which are completely
similar to the uncertainty relations of QM . These ST uncertainty re-
lations have already been obtained and discussed in previous literature.
Here we will limit ourselves to presenting the fundamental conditions for
obtaining them, and discuss how they can be interpreted and what is
their significance for our inquiry.

Through such analysis it will be possible to construct a network of
inter-theory relations, based on formal analogies and on the reduction of
certain theories to others, which will enable us to develop a number of
considerations on the use of analogies, on the correspondence principles
and on the concept of complementarity (which already occupies a central
role in the interpretation of QM), by re-examining the historical genesis
of ST and QM . From the start we draw attention to the terminology:
when a theory T ′ can be obtained from T as an extreme case (T → T ′

for a→ b) we say that T ′ is reduced to T .

1. Uncertainty relations in statistical thermodynamics.

The fluctuations and correlations of thermodynamic quantities can
be computed on the basis of the phenomenological theory developed
by Einstein [1], Szilard [2], Mandelbrot [3], Tisza and Quay [4], with
the explicit objective of building a ST based on principles analogous to
those of CT . This approach is based on the inversion of the Boltzmann
relation between entropy and probability of thermodynamic states, ac-
cording to which, for a state near to equilibrium, with entropy S and
thermodynamic probability W , we have

S − S0 = k ln(W/W0) (1)
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where S0 and W0 are, respectively, the entropy and the thermodynamic
probability of the state of equilibrium. According to Landau and Lifshitz
[5], by means of (1), the second order moments can be calculated exactly
starting from the Gaussian distribution

W = W0 exp (S − S0)/k (2)

where

S − S0 = −1

2

N∑
i,j=1

Φijxixj (3)

The entropy S is a function of the instantaneous values of the ex-
tensive variables xi and xj (i, j = 1, . . . , N). If we put xi = 0,
then the deviations from the equilibrium are given by δxi = xi, while
Φij = (∂2S/∂xi∂xj)0. The intensive variables conjugate to the xi are
defined by the relations Xi = −∂S/∂xi.

In this manner the following correlation relations are obtained:

xixj = kΦ−1ij (4a)

XiXj = kΦij (4b)

xiXj = kδij . (4c)

In the case of a small part of a closed and finite system in equi-
librium, the relations (4c) for the conjugate variables take the following
form:

4U4(1/T ) ≈ k , (5a)

4V4(P/T ) ≈ k , (5b)

(Gilmore [6], Caianiello and Noce [7], Kreuzer [8]). In these relations
Boltzmann’s constant plays a similar role to that played by Planck’s
constant in QM uncertainty relations.

Rosenfeld [9], [10], interpreted the uncertainty relations of ST , (5a)
and (5b), as the formal counterpart of the complementarity existing
between the dynamical and statistical descriptions which can be obtained
for every macroscopic system.

The eq.(5a), in particular, clarifies the relation existing between the
concepts of energy and temperature: they can be referred to the above
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descriptions and are operationally defined by means of mutually exclu-
sive procedures. In fact, in order to be able to specify the energy of a
thermodynamic system it must be isolated from all outside influence,
while definition of the temperature assumes the system to be interact-
ing with a thermostat having infinite thermal capacity. These two ideal
situations are represented, in the theory of statistical ensembles, by the
microcanonical and the canonical systems respectively. In fact they cor-
respond to the two extreme cases which, assuming the existence of limit
conditions, such as complete isolation or interaction with an infinite sys-
tem, are based on a principle other than the phenomenological, according
to which, by contrast, the subsystem being studied interacts weakly with
a finite system (Kreuzer [8], Landau and Lifshitz [5]).

In the following paragraphs, referring back to considerations made
by Rosenfeld and extending results presented in a previous paper (Neri
[11]), we shall see how the meaning of the (5a) and (5b) can provide indi-
cations on the relation existing between ST , CT and QM and, therefore,
how they permit us, at a metatheoretical level, to clarify the relation be-
tween the mechanical description and the thermodynamic description of
physical systems.

2. Atomism, classical thermodynamics and reductionism.

In the second half of the 19th century an extensive debate developed
on atomism and the possibility of its utilization in interpreting the laws
of thermodynamics which had recently been discovered. On this prob-
lem, the cultural climate of the time presented widely differing views
(Brush [12]). Some conceptions resorted to a mechanistic interpretation,
although within their confines differing interpretations of the relation
between CT and CM could be identified. Other conceptions rejected
contamination of the phenomenological laws of CT with models and hy-
potheses on the atomic structure of matter, and accepted in a general
sense the interpretation of heat as a form of motion, or attributed physi-
cal significance only to phenomenological concepts (empiriocriticism), or
assigned to energy the status of fundamental concept (energetics). These
last two tendencies were based on a radical rejection of mechanical expla-
nation. While some physicists took a firm stand for or against atomism
(Boltzmann for, Mach and Oswald against), others provided contribu-
tions which were sometimes in harmony with one tendency, sometimes
with the other; this shows how difficult it is to describe the general
situation schematically.
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Within this general pattern ST appears, under various aspects, to
be the by-product of the attempt to obtain a complete reduction of CT to
CM (Brush [13], Daub [14]). This is particularly evident if we consider
the intellectual itinerary followed by Boltzmann (Klein [15]). ST in fact
was born of the recognition (by Maxwell and subsequently by Boltzmann
himself) of the necessarily statistical nature of the law of entropy. The
birth of ST revealed that, on one hand, the laws of CT did not possess
the absolute validity which upholders of pure thermodynamics wished to
attribute to them; and on the other, that the laws of CM - and with them
the purely dynamical description - were not sufficient to interpret the
laws of CT on the basis of the atomic theory. The search for mechanical
analogies, furthermore, revealed the existence of a number of purely
formal similarities between CT and CM (Klein [16]).

All these facts point to the existence of a far more complex, but less
substantial, CT − CM relation, than that originally posited by reduc-
tionists, and one which involves other theories, such as ST and, as we
will see, QM .

3. Inter-theory relations: formal analogy and reduction.

The metatheoretical pattern which we intend to analyse links the
four theories named so far by inserting them into a structure having the
form of an arithmetic proportion, given by

CM : QM ≈ CT : ST , (6)

which can be defined as a ”inter-theory relation of the second order”
since, through a series of binary formal relations between theories, it
allows us to analyse relations between relations (Strauss [17]).

It is easy find examples in the history of physics where the applica-
tion of a type (6) structure provided a fundamental heuristic instrument
for discovering new theories. Suffice it to mention the discovery of wave
mechanics, obtained by Schrödinger starting from the pattern:

wave mech.: class. mech. ≈ wave optics: geom.optics.

The inter-theory relations which appear in (6) belong to two types:
a) formal analogies, deriving from Hamiltonian formalism, which link
deterministic (CM − CT ) or statistical (QM − ST ) theories; b) corre-
spondence principles, which allow us to obtain certain theories, such as
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CM or CT , from others, such as QM or ST , taking the limit of some
characteristic constant (QM → CM , ST → CT ).

The use of analogies in science is a much debated point in modern
epistemology. As far as the role they play in scientific explanation is
concerned, very different positions are to be found in the literature (Hesse
[18], Bunge [19]). There is however a general consensus that analogies
perform an important function in the formation of theoretical ideas.
Distrust of them springs from the absence of a logic of analogy, from
the frailty of this conceptual instrument compared with the solidity of
the perfect equivalence. However, notwithstanding their failings, they
produce scientific knowledge, and permit the transfer of the solution of
mathematical problems in one sector of inquiry to another, leading to
the development of new physical hypotheses.

In the literature, greatly differing approaches are also to be found on
the problem of the reduction of theories. These approaches are based on
differing definitions (Nagel [20], Schaffner [21], Kemeny and Oppenheim
[22], Sklar [23], Nickles [24], Popper [25]), or even the rejection of the
possibility of establishing logical connections between different theories,
on account of their presumed incommensurability (Kuhn [26], Feyer-
abend [27]). In the light of our investigation a viewpoint which acquires
particular interest was formulated by Schaffner. He attempts to extend
the concept, introduced by Nagel, of reduction of a theory T ′ to a more
general theory T as a relation of derivability of T ′ from T . According to
Schaffner, instead of conceiving the reduction as a pure logical deduc-
tion of T ′ from T (T → T ′), it must be interpreted as the product of a
double relation: deduction from T of a new theory T” (T → T”) and
formal analogy between T” and the reduced theory T ′ (T” ≈ T ′). This
would enable us to avoid the criticism raised against the Nagel model
of reduction because of its rigidity with respect to the meaning change
of the terms, which according to Schaffner could take place in a partial,
but not arbitrary manner, as on the contrary the upholders of the idea
of incommensurability affirm.

The general problem of the use of analogies and the procedures of
reduction in science is in any case still an open question, and it would
not be possible here to provide a overall answer to the questions raised
by these conceptual instruments. Instead, we will attempt to show that
in the cases which interest us, these forms of inter-theory relation play
a constructive role and have close and important connections. In par-
ticular, it will become clear that the pattern of reduction proposed by
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Schaffner is very well suited to describe the relations QM → CM and
ST → CT , which will be expressed by means of suitable asymptotic
conditions and appropriate formal analogies.

4. The CM − CT relation.

The formal analogy between CM and CT has already been widely
analysed in the literature (Corben and Stehle [28], Peterson [29], Rey
de Luna and Zamora [30]). In this paragraph we shall restrict ourselves
to establishing the relations of correspondence which exist between CM
and CT quantities or equations, relations which we will meet again, in
other forms, when considering the analogy between QM and ST .

The common foundation of CM and CT consists of Hamiltonian
formalism. By means of this, considerable correspondences can be es-
tablished between the two theories.

a) In both CM and in CT it is possible to identify canonical con-
jugate variables. In CM they are linked to action by the relation

dA = pdq −Hdt , (7)

while in CT they are linked to entropy by the fundamental equation

dS = (1/T )dU + (P/T )dV . (8)

b) A conservative mechanical system with N degrees of freedom
can be described by means of an extended phase space with 2N + 2
dimensions, in which time and energy are assimilated to all the other
canonical variables (Synge [31]). For N = 1, in particular, we obtain the
following Poisson brackets:

[q, p] = 1 , [E, t] = 1 , (9)

with H(q, p) = E.

Similarly, in a closed thermodynamic system in equilibrium, we may
define the generalized Jacobian

[α, β] =
∂α

∂U

∂β

∂(1/T )
− ∂α

∂(1/T )

∂β

∂U
+
∂α

∂V

∂β

∂(P/T )
− ∂α

∂(P/T )

∂β

∂V
. (10)

Then we have

[U, 1/T ] = 1 , [V, P/T ] = 1 . (11)
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c) The motion of the mechanical system is limited to one surface
of the extended phase space with 2N + 2 dimensions, defined by the
equation of energy

Ω(x, y) = 0 . (12)

In this equation x and y indicate, respectively, the set of the N + 1
coordinates (x1 = q1, x2 = q2, . . . , xN+1 = t) and of the N + 1 momenta
(y1 = p1, y2 = p2, . . . , yN+1 = −E) of the system.

The analogue of (12) for CT represents the equation of state of the
system.

In general, the following series of correspondences can be estab-
lished:

CM

mech.conjugate variables
equation of energy

action
Poisson brackets

canonical transformations
equations of motion

CT

thermod.conjugate variables
equation of state

entropy
Jacobians

Legendre transformations
Maxwell equations

Particularly interesting is the relation between action (in CM) and
entropy (in CT ). Besides establishing the conjugation relations between
the canonical variables of the respective theories, they are subject to
variational principles defining the conditions of evolution of the system,
and are adiabatic invariants. In CT , furthermore, for entropy it is possi-
ble produce an equation analogous to CM ’s Hamilton-Jacobi equation.
From this viewpoint, retrospective analysis of a work by Ehrenfest [32] on
Planck’s blackbody law (Neri [33]) is interesting, in which the adiabatic
invariance properties of entropy and action are studied.

5. The CM −QM relation.

QM and CM are theories which refer to the same domain of physical
phenomena (particle mechanics) and they use concepts concerning the
same descriptions, but placed in different mathematical structures.

As we have seen in the previous paragraph, CM allows us to obtain
conjugation relations expressed by means of Poisson brackets (9). Each
pair of quantities contains a variable (q in the first case, t in the sec-
ond) which refers to the space-time description, and a variable (p and
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E respectively) which refers to the causal description, based on the en-
ergy and momentum conservation laws. The classical deterministic ideal
would be to be able to attribute both descriptions simultaneously to the
system, with no limitation whatsoever.

The situation differs in QM , where the values corresponding to the
conjugate variables of (9) are linked by the Heisenberg relations, given
by

4q4p ≈ h , 4E4t ≈ h . (13)

Relations (13) establish the existence of correlations dependent on
the value of a universal constant (h) having the dimensions of the action.

These relations have been interpreted (Bohr [34]) as the quantita-
tive expression of the complementarity relation existing in QM between
causal and space-time description of a physical system, the union of
which characterizes classical theory. The term complementarity indi-
cates a relation between descriptions which are mutually exclusive and,
at the same time, necessary to obtain a complete representation of the
physical situation. It provides a conceptual instrument which makes it
possible to overcome the evident contradictions which would arise if we
attempt to attribute unlimited validity to mutually exclusive concepts.
By introducing complementarity we generalize the conceptual structure
into which the concepts borrowed from classical physics have to be in-
troduced, and we define the type of limitation to which their definition
is subject.

The canonical conjugate variables of CM correspond therefore to
the correlated variables of QM . Thus the theory based on the notion of
complementarity constitutes a rational generalization of classical deter-
ministic theory. A quantitative formulation of the link existing between
the two theories can be expressed by the condition

h→ 0 , (14)

by means of which we can define the relation of reduction of CM to
QM (QM → CM). Condition (14), applied to eq. (13), is equivalent to
ignore the correlations between conjugate variables and the limitations
which complementarity imposes on the description of the system.

The introduction of (14) requires some clarification.

a) Firstly, the need to safeguard full consistency of quantum results
with the classical limit obliges us to introduce the additional condition



336 D. Neri

according to which the characteristic quantum numbers of the system
tend to infinity, in such a manner that the products of these numbers
with Planck’s constant, corresponding to the classical action variables,
remain constant. Hassoun and Kobe [35] have put forward important
cases featuring applications of this definition of the classical limit. Take,
for example, the case of the harmonic oscillator, whose energy spectrum,
according to QM , is given by

Equant = (n+
1

2
)
hω

2π
. (15)

If the conditions h → 0, n → ∞ are imposed, so that nh = J =
πA2ωm = constant, we obtain

Equant →
1

2
mω2A = Eclass . (16)

The zero-point energy , which has no classical analogue, disappears
completely.

b) The condition (14), obviously, has a purely metaphorical mean-
ing, since in reality Planck’s constant has a very precise value. How-
ever, we don’t agree with the objections raised against this procedure
(Rohrlich [36]). In fact, the introduction of this condition has great
importance at the metatheoretical level, where the procedure just illus-
trated, in which physical constants are treated like variable quantities,
enables us to analyse the logical relation between different theories.

6 The CT − ST relation.

Like QM and CM , ST and CT too are theories which refer to
one single domain of phenomena (those characterising macrosystems in
equilibrium). The fundamental difference between ST and CT is that
they are based on different conceptions about the structure of matter.
From these theories derive essentially different descriptions of phenom-
ena, expressed using the same concepts, set however in different formal
structures. In the transition from one theory to another some properties
of these concepts and their domain of definition are modified, but the
modification is always guided by the relation that can be established
between the formal structures of the theories by means of a procedure
of passage to the limit (Rohrlich [37]). Indeed ST can be interpreted as
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a generalization of CT , and the formal structure of CT shows itself to
be a special case of that of ST , obtainable from the latter when certain
extreme conditions are imposed, analogous to those which permit us to
define the relation between QM and CM . This is particularly evident in
the realm of the already mentioned phenomenological approach, within
which the uncertainty relations (5a) and (5b) can be obtained directly.

In CT the thermodynamic conjugate variables are linked by Jaco-
bians (11). Each pair contains an intensive variable, which refers to
the system as a whole and characterising the macroscopic state of equi-
librium, and an extensive variable. In ST , by contrast, the conjugate
variables are correlated through relations (5a) and (5b), which can be
interpreted in terms of complementarity between the dynamical and sta-
tistical descriptions. The significance of this complementarity relation
has already been discussed in the literature (Bohr [38], Rosenfeld [9],
[10]), but it is worthwhile stressing that this idea, applied to ST , is
fundamental in solving a number of longstanding questions:

a) firstly, by clarifying the relation between dynamical and statis-
tical description, it excludes the possibility of obtaining an integral re-
duction of the laws of CT to the laws of CM ;

b) consequently, it allows us to attribute to the statistical descrip-
tion a role which is not secondary to the dynamical description, thus
allowing a direct objective interpretation of the probabilities employed
in ST . In fact, it must be pointed out that if we were to regard the
probabilities employed in ST as a mere consequence of the subjective
non-knowledge of the dynamical state by the observer, the paradoxi-
cal conclusion would follow that all CT - whose laws doubtless possess
an objective character - has on the contrary a value dependent on the
observer’s ignorance.

The link existing between ST and CT , definable by means of the
thermodynamic limit, can be expressed in complete analogy with the
classical limit of QM by means of the condition

k → 0 (17)

(Tisza and Quay [4], Neri [11], Compagner [39]). Like the condition
(14), the limit (17) must be integrated by supplementary asymptotic
conditions, imposed on the number of particles and on all the microscopic
quantities relative to the single constituent elements of the system, in
such a manner that all its macroscopic properties remain unvaried.
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As an example, let us consider a perfect gas made up of N particles
with mass m and thermal wavelength λ, whose entropy is expressed, at
high temperatures, by the Sackur-Tetrode formula

S(N,V, T ) = Nk ln(V/λ3N) + 5Nk/2. (18)

Within the limit k → 0, such that N ∝ NA → ∞, λ → 0, m → 0
(where NAk = R = constant, Nm = constant, Nλ3 = constant), entropy
is unvaried.

The fact that Avogadro’s number NA tends, within this limit, to
infinity, indicates that CT is the continuum limit of ST , in a manner
coherent with the fact that, while the latter is explicitly based on the
atomist conception, the former rejects all hypotheses on the discrete
structure of matter.

As Compagner has demonstrated, the thermodynamic limit defined
by (17) and by the supplementary conditions is substantially identical
to the thermodynamic limit usually defined by means of the conditions

N →∞ , V →∞ , N/V = constant, (19)

where the microscopic variables and intensive macroscopic quantities
remain constant, while the extensive macroscopic variables diverge, such
as entropy in (18).

The difference between the two approaches consists in a different
transformation of scale imposed upon the real system. Definition (17),
which treats Boltzmann’s constant and Avogadro’s number as variables
of a metatheoretical language, has however the advantage of showing
more clearly the logical relation between ST and CT . In this connection,
certain considerations by Boltzmann on the relation between continuous
and discrete in the framework of his finitistic conceptions in mathematics
and atomistic conceptions in physics are illuminating (Boltzmann [40],
Dugas [41]).

The condition k → 0 obviously has the effect of annulling the fluc-
tuations and correlations of the thermodynamic variables caused by the
discrete microscopic structure of the system. As a consequence the lim-
its imposed by complementarity on the definition of the thermodynamic
concepts also disappear.
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7. The QM − ST relation.

The formal analogy between QM and ST is based on the possi-
bility of obtaining, in both theories, uncertainty relations between the
conjugate (correlated) variables. These variables represent the statisti-
cal correspondent of the conjugate variables of the Hamiltonian theories
of which ST and QM are the generalization. The following diagram
represents the sets of relations which exist:

CM CT

[q, p] = [E, t] = 1 [U, 1/T ] = [V, P/T ] = 1

QM ST

4q4 ≈ 4E4t ≈ h 4U4(1/T ) ≈ 4V4(P/T )

Having identified a formal similarity between theories or simple
equations does not mean we have established complete equivalence of
the mathematical structures considered. It is therefore better to clarify
at this point that we do not wish to claim that these theories are com-
pletely isomorphic: it would be possible, in fact, to highlight differences
as well as similarities (such as the fact that QM conjugate variables are
linked by Fourier transforms, while those of ST are linked by Laplace
transforms) and there are problems that might be treated in order to ex-
amine closely the relation between these theories (the role of probability,
the theory of measurement). The existence of differences between the
objects we are comparing is implicit in the use of analogies, and is why
they are utilised with caution. But the damage caused by negative preju-
dice towards analogical procedures could be as serious as that produced
by overestimation. On the other hand, the formal relations described
so far seem sufficient to clarify the main points of the paper and show
that the conditions (14) and (17) characterize a general relation existing
between deterministic and statistical theories, independently of the role
played by probability in the statistical theories.

The real problem facing us when studying relations of this type is to
establish if the positive analogy (i.e. the set of similar properties which
the objects compared display) comprises all the relevant properties of the
objects. If that is the case, the analogy spontaneously suggests that we
extend to one of the two objects (the less known) the properties which
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we already know as belonging to the other. If that is not the case, i.e.
if certain relevant properties of one object are not shared by the other,
then the analogy must be rejected. In any case, however, it is an effective
instrument for increasing scientific knowledge (Turner [42]).

Application of these general considerations to the relations in the
diagram above permits us to establish in a more explicit manner the
link between QM and ST and between ST and CT , and to clarify some
questions regarding the actual foundations of ST , on condition that we
interpret (13) and (5) in terms of complementarity.

The diagram also suggests additional reflections:

a) The Planck’s and Boltzmann’s constants, which appear in the
uncertainty relations of QM and ST , have the same physical dimensions
as the adiabatic invariants of CM and CT , and are the expression of
their quantization.

b) The extreme conditions which allow us to pass from QM to CM
and from ST to CT , expressed respectively by (14) and (17), correspond
to the conditions in which, with the disappearance of the limitations
linked to the complementarity relations, a univocal description of the
systems under study is obtained: CM attributes pure corpuscular char-
acteristics to particles, while in CT there is no trace of the dynamical
description of the microscopic constituents. Vice versa, in the case of
small quantum numbers, or of systems made up of small numbers of
particles, the corpuscular or the thermodynamic concepts are subject to
serious limitations of definition (Feshbach [43]).

c) One last striking aspect of the analogy existing between QM and
ST and between the respective complementarity relations is the role that
the classical concepts play in them (Bohr [44]; Folse [45], Sklar [23]). In
both cases in fact the classical theory (CM or CT ) is generalized by
a statistical theory which corrects it. But while the classical theory
gives erroneous results which are at variance with experimental data, it
continues to supply the fundamental concepts through which the new
theory describes phenomena, although the latter sets these concepts in a
new formal structure and interprets them by means of complementarity.

d) An important difference, which leads us to hold that the two com-
plementarity relations are mutually independent, consists of the different
type of physical systems to which they refer: while QM complementarity
refers to single systems, ST complementarity describes the properties of
systems composed of large numbers of elementary constituents.
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Conclusion.

We can summarize the network of inter-theory relations analysed as
follows:

CM ←−−−− formal analogy −−−−→ CTx x
reduction of
CM to QM

reduction of
CT to STx x

QM ←−−−− formal analogy −−−−→ ST

The horizontal relations are formal analogies between theories which
refer to different phenomena, and which cannot therefore be directly
reduced one to the other. This applies both to the relation between
CM and CT and the relation between QM and ST . Vertical relations,
which consist of correspondence principles, are expressed by asymptotic
conditions which can be interpreted at a metatheoretical level. The link
between the mathematical structures of the theories involved is founded
on formal analogies, while the physical interpretations of the concepts
and the limits to which their definition is subject remain differentiated.
The transition from one theory to another is in any case amenable to
rational reconstruction, since the meaning of the concepts is not modified
in an arbitrary manner, as is highlighted by the role that the classical
concepts play in the context of the complementarity relations.
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