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Observation of the squeezed light
and quantum description of macroscopic body movement

V.P. Bykov

General Physics Institute of the Russian Academy of Sciences

117942, Vavilova 38, Moscow, Russia

ABSTRACT. Possibility of a nondemolition measurement (obser-
vation) of macroscopical objects in widespread quantummechanical
states arises from the fact of the squeezed light observation. Macro-
scopical bodies - objects of classical mechanics - are usually in states
with narrow wave packets. It is shown that the absence of macro-
scopical bodies in widespread states can be due to the focusing influ-
ence of the body’s gravity field on its wavepacket. An evidence that
the gravity is essential in the classic limit of quantum mechanics is
given.

RÉSUMÉ La possibilité d’une mesure non destructive (observation)
d’objets macroscopiques dans des états quantiques étalés résulte de
l’observation en lumière comprimée (“squeezed”). Les corps macro-
scopiques - objets de la mécanique classique - sont habituellement
dans des états avec des paquets d’ondes étroits. On montre que
l’absence de corps macroscopiques dans de états étalés peut être due
à l’influence focalisante du champ de gravité du corps sur son paquet
d’ondes. On donne une preuve que la gravité est essentielle dans la
limite classique de la mécanique quantique.

In this paper we want to attract some attention to the consequences
for some basic questions of quantum theory which are following from
the observation of squeezed light. This observation is one of the most
important achievements in optics in the last years and it will have many
scientific continuations and practical applications. But we think that
the most important consequence of the squeezed light observation will
be some changes in our understanding of quantum mechanics. In essence,
radical changes in the quantum measurement procedure of macroscopic
quantum systems appeared in the observation of squeezed light (the
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squeezed light is a macroscopic effect since it occurs at great energy or
large number of photons) and these changes appeared imperceptibly.

Indeed, the observation of the squeezed light showed that the
widespread quantum mechanical wave packets can be measured in such
a way that the object of measurement (the field in the cavity of the para-
metric oscillator) remains in the same state as before the measurement.
It means that for macroscopic objects the measurements are possible
without a wave packet reduction, which is assumed usually in quantum
mechanics.

Quantum descriptions of the electromagnetic and mechanical oscil-
lators are fully identical and, consequently, the widespread wave packets
for macroscopic material bodies can be also observable. Narrow wave
packets have no any advantages thereat in compare with the widespread;
therefore a reason of the absence of the macroscopic bodies with the
widespread wave packets in the surrounding us world must be clarified.

One possible explanation of this situation is given at the end of the
paper. This explanation is based on the idea that the gravitational field
of the macroscopic bodies, being equivalent to the space distortion, leads
to the selffocusing of the body’s wave packet.

1. Quantum description of the macroscopic body movement.

We concern only one problem - the quantum description of the
macroscopical bodies movement. The macroscopical body is a body
of significant mass, for example, 1 gram (later we define more exactly
this value). So we consider the possibility of quantum description of
body movement, which obeys, as is well known, to the laws of classical
mechanics. Let us consider a simple example - a uniform movement of
macroscopical body with mass m and velocity v̄ in a free space. This
movement is described by the wave packet [1]

Ψ(r̄, t) =
C

(1 + it/τ)3/2
exp
[
− r̄

2 − 2v̄r̄τ + v̄2τt

2a2(1 + it/τ)

]
(1.1)

with a characteristic size a, connected with the packet decay time τ by
relation

τ = ma2/h̄ (1.2)

For a macroscopic body (m ≈ 1g) and for a characteristic packet size
of the order of the size of an atom (a ≈ 10−8cm), the packet (1.1)
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describes a well-defined rectilinear trajectory over great time interval,

τ ≈ 1011s(≈ 3 ∗ 103years).

However, quantum mechanics does not prohibit large values of the

parameter a, comparable, say, to the optical wavelength or even to the

geometric size of the macroscopic body at any its mass. Narrow wave

packets, many times smaller than the geometric size of the body or even

smaller than the typical optical wavelength (10−6m), can be naturally

attributed to macroscopical classical objects, since in this case the exis-

tence of the wave packet can be neglected generally considering it as a

point.

However, to what can we attribute wide wave packets? No one

macroscopical classical object with great quantummechanical uncer-

tainty of its position was observed in the world surrounding us. If such

objects could be seen we would not have such a science as a classical

mechanics with its precisely definite trajectories. This fact, peculiar to

a quantum mechanics, was observed long ago and gave initiative to a

worldwide interpretation of the widespread solutions of the Schrodinger

equation. These solutions were interpreted in an ensemble, statistical

sense. It was acknowledged that in the measurement of the coordinate

of some definite body, similar to that which described by packet (1.1),

one can obtain any value, but if one executes many measurements on

bodies in identical states then the distribution of the probability of co-

ordinate will be described by the squared module of the wave function

Ψ(r̄, t). For example in the textbook of A.Messiah [2] in the discussion of

the widely distributed solutions of the Schroedinger equation it is said:

”In the classical approximation the function Ψ describes the ”liquid” of

classical noninteracting particles of mass m(statistical ensemble) . . .”. A

similar interpretation of the distributed solutions is given in the textbook

of L.Schiff [1].

After the laboratory observation of the squeezed light such en-

semble, statistical interpretation of the widespread wave packets of the

macroscopic bodies becomes doubtful. We shall discuss it later and now

show some additional examples of the widespread states of the macro-

scopic bodies.
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2. Mechanical oscillator.

Figure 1. A mechanical oscillator.

In quantum mechanics the hamiltonian [3]

H =
1

2m
P 2 +

1

2
κQ2 (2.1)

describes a mechanical oscillator (fig.1) with operators of coordinate Q
and conjugate momentum P subjected to the commutation relation

QP − PQ = ih̄, (2.2)

m is a mass and κ is an elasticity coefficient of the oscillator spring.
Introducing variables p = P/

√
m , q = Q

√
m transforms a hamiltonian

to the more usual form

H =
1

2
(p2 + ω2q2), (ω2 = κ/m). (2.3)

Operators of creation a+ and annihilation a of the elementary oscillator
excitations

a+ =
1√
2h̄ω

(ωq − ip) , a =
1√
2h̄ω

(ωq + ip) (2.4)

are important in the oscillator theory. In particular the coherent state
of the oscillator |z〉 (fig.2a) is an eigenstate of the annihilation operator
a|z〉 = z|z〉; it is a solution of the Schroedinger equation at z = z0e

−iωt

and in a coordinate representation it is described by the wave function

Ψcoh(q) = A exp
[−ω

2h̄

(
q −

√
2h̄

ω
z
)2]

. (2.5)

The distribution for this state is shown on fig.2a; it is going periodically
from right to left and back according to the harmonic law with amplitude
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E0 and frequency ω. Since the distribution width (or dispersion) of this
state is essentially smaller than the oscillation amplitude at |z| � 1(Q ≈
1cm,∆Q/Q ≈ 10−14) and going to zero with h̄→ 0, this state naturally
describes classical oscillations of the mechanical oscillator. Coherent
state is a typical state with a narrow wave packet.

Figure 2. Quantummechanical states of oscillator: a. Coherent state ; b.
stationary states

However there are also the stationary states |n〉, (fig.2b, n – whole
numbers) which are the eigen states of the number particle operator
(the number of the oscillator excitations): a+a|n〉 = n|n〉. The state
|n(t)〉 = e−inωt|n〉 is also a solution of the Schroedinger equation and in
the coordinate representation is described by the wave function

Ψstat(q) = AHn(
√
ω/h̄q) exp(−1

2
ωq2/h̄), (2.6)

where Hn is the Hermite polynome of degree n. The coordinate un-
certainty in a coherent state is equal to ∆Qcoh =

√
h̄/2mω and in a

stationary state is equal to ∆Qstat =
√

(2n+ 1)h̄/2mω.

Uncertainty in stationary state

∆Q ≈ ω−1
√
E/m

is of the order of the oscillation amplitude in the coherent state at the
equal energy (n = |z|2), i.e. it is very great at the great enough energy.
So the stationary states at large n are typical widespread states. They
are also macroscopical since they exist at high energies (n� 1) and great
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masses m. In classical mechanics there is no appropriate movement of
some particular object and the stationary states demand an ensemble,
statistical interpretation which we concerned above.

3. A macroscopic body movement in the gravitational field.

The movement of the material point of the mass m in the field U(r̄),
which changes slowly in space, can be described by the gaussian wave
packet [4]

Ψ(r̄, t) = C(t) exp

[
−(ρ̄, F ρ̄) +

i

h̄
(p̄0(t)ρ̄+ E(t))

]
, (3.1)

where ρ̄ = r̄−r̄0(t) and r̄0(t), p̄0(t) are solutions of the classic hamiltonian
equations

˙̄r0 = p̄0/m , ˙̄p0 = −gradr0U(r̄0); (3.2)

3 ∗ 3 matrix F (t) is symmetric and has complex elements, which are
functions of time (real part of F (t) defines geometric dimensions of the
wave packet).

This wave packet is a solution of the Schroedinger equation if in the
potential energy expansion near the r̄0 point

U(r̄0 + ρ̄) = U(r̄0) + (ρ̄ gradr0U(r̄0)) +
1

2
(ρ̄, U”ρ̄) + . . . . (3.3)

the third order terms marked by dots can be neglected. The 3∗3 matrix
U” of the second derivatives is also symmetric. Its real elements

U”αβ(t) =
∂2U(r̄)

∂xα∂xβ
|r̄=r̄0(t) (3.4)

are time-dependent through the vector r̄0(t).

The wave packet (3.1) is moving along a classical trajectory (3.2)
until its dimensions are so small that the third order terms in the po-
tential energy (3.3) can be neglected. The matrix F (t), which defines in
particular the wave packet dimensions, must satisfy the matrix equation

ih̄Ḟ =
2h̄2

m
F 2 − 1

2
U”, (3.5)
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which is similar to the Ricatti equation. The values C(t) and E(t) are
equal to

C(t) = C0 exp

[
− ih̄
m

∫ t

0

dt(F11 + F22 + F33)

]
,

E(t) =

∫ t

0

dt

[
p̄2

0

2m
− U(r̄0)

]
.

(3.6)

For macroscopic bodies the gravitational field is the most important. As
is well-known the classic mechanics appeared from the observations on
the macroscopical bodies - planets movement in the field of Sun. In this
case the trajectory (3.2) does not depend on mass, since p̄0 and U(r̄0)
both are proportional to m. Introducing in (3.5) an evident dependence
U(r̄0) on mass m, the equation

iΦ̇ = 2Φ2 − 1

2
V, (Φ = Fh̄/m,mV = U”), (3.7)

in which all quantities does not depend on mass m, can be obtained.
So one can see, that F is growing with the growth of mass m and it
means that the wave packet dimensions are decreasing and the wave
packet concentrates itself more and more near the classic trajectory (3.2).
Consequently the wave packet (3.1) describes naturally in the frames of
quantum mechanics the macroscopic body movement.

But it is not the only way to quantum description of the macroscopic
body movement. Another way is connected with a well-known eiconal
method [2]. When the mass m is great enough and consequently when
the deBroglie wavelength λ = h̄/

√
2mE is small (E- energy of state) the

stationary solution of the Schroedinger equation can be written in the
form

Ψ(r̄, t) = A(r̄) exp[i(S(r̄)/λ− Et/h̄)], (3.8)

where S(r̄) - the eiconal function, which changes a little on the length
of the order of the wavelength λ and which satisfies the equation

(gradS(r̄))2 = 1− (U/E). (3.9)

Amplitude A(r̄) also changes a little on the length of the order of the
wavelength λ and satisfies the equation

(
−−→
gradS(r̄)

−−→
gradA(r̄)) +

1

2
A∆S = 0. (3.10)
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In a gravitational field U and E both proportional to the mass m
and then S does not depend on m. Curves orthogonal to the wave
surfaces S(r̄)=const are the classical trajectories of the material body.

In this section basic elements of quantum description of the macro-
scopical body movement in a gravitational field [2,4] are given. As in
the mechanical oscillator, there are two types of the quasiclassical so-
lutions. The narrow gaussian wave packet solution (3.1) naturally de-
scribes a classical movement of the macroscopical body. But there are
also widespread solutions of the eiconal type. The eiconal function S(r̄)
is widespread as in a longitudinal, so in the transversal directions to the
trajectories. In the transversal direction it can be bound only by possible
caustic surfaces (see, for instance, fig.3). If such state is considered as a
state of one definite body then there is no anything in classic mechanics
corresponding to it.

Figure 3. An orbit system for the gravitational field which forms an eiconal
solution of the Schroedinger equation: a.trajectory, b.wave front c.caustic lines

In conclusion of this section it should be noted that in quantum
mechanics the transition to a classic limit is not such automatic as,
say, in the theory of relativity. There it is enough the body velocity
divided by the light velocity to be small for the appearance of the classic
mechanics laws from the relativity laws. But in quantum mechanics
only part of possible states, namely narrow wave packets gets into the
classical movements with the growth of mass. Another part of possible
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states - widespread solutions - can be interpreted in a classical style
only in the ensemble, statistical sense. Narrow wave packets can be also
interpreted in the ensemble, statistical sense of course, but for them this
interpretation is not necessary.

4. Squeezed light and its observation.

Let us look now at a squeezed light. As a laser light it can be
excited in an optical cavity. The cavity field is a superposition of the
fields of the partial modes or resonances. It is well-known from practice
that in a cavity one mode field excitation is possible. Since the space
distribution of the mode field is defined by the boundary conditions, so
the mode field can be considered as a system with one degree of freedom
which coordinate is an electric field of the mode in some chosen point
of the cavity. Then the quantum theory of the mode field coincides
with the quantum theory of the mechanical oscillator. This field has
the same hamiltonian (2.3), where coordinate q must be replaced by the
mode electric field E in the chosen point of the cavity. In particular
different states - coherent and stationary, which were mentioned above
- are possible for the mode field.

But these two state types are not only possible in mechanical or
electromagnetic oscillators. Squeezed state joints in itself the properties
of the narrow and widespread states [5,6]. In this state the electric field
value distribution is described by the gaussian wave packet (fig.2a) as in
the coherent state but the dispersion of this distribution is different from
the dispersion of the coherent (or vacuum) state. It can be shown that in
this case the dispersion changes periodically with the double frequency of
the oscillator from the value smaller than the dispersion of the coherent
state to the value greater than it.

Basic elements of the squeezed state theory are given below.
Squeezed states of light [5,6] are the eigen states |ζ〉 of the operator
µa+ νa+

(µa+ νa+)|ζ〉 = ζ|ζ〉, (|µ|2 − |ν|2 = 1), (4.1)

where µ, ν, ζ - complex numbers. If µ and ν depend on time µ =
µ0e

iωt, ν = ν0e
−iωt, then the states |ζ〉 are the solutions of the

Schroedinger equation. The most expressive representative of the
squeezed states is the squeezed vacuum state corresponding to ζ = 0. In
coordinate representation it is described by the wave function

Ψζ(q) = A exp

[
−ωq

2

2h̄

µ

µ

+

−
ν

ν

]
. (4.2)
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The squeezed state dispersion

D2 =
h̄

2ω

[
|µ|2 + |ν|2 − 2|µ| ∗ |ν| cos(Ψ0 + 2ωt)

]
(4.3)

oscillates with the double oscillator frequency. It can be smaller than the

coherent state dispersion D2
min = h̄

2ω (|µ|− |ν|)2 < D2
coh = h̄

2ω and can be

greater than it D2
max = h̄

2ω (|µ|+ |ν|)2 > D2
coh = h̄

2ω (fig.4). The instants

when the dispersion is small gave initiative to the term - squeezed state.

A squeezing coefficient

K = Dcoh/Dmin =
√
Dmax/Dmin = |µ|+ |ν| = (|µ| − |ν|)−1 ( 4.4)

is a characteristic of the squeezed state. There is an energetic limita-

tion for the squeezing coefficient. At the average photon number N the

maximum squeezing coefficient is equal to

Kmax =
√
N + 1 +

√
N. (4.5 )

The qualitative picture of the squeezed state can be accepted from

fig.4. Fig.4a gives the coordinate oscillations versus time in the coherent

state. The constant dispersion of this state is shown by the thickness of

sine line. At the usual laser intensity, say, at the 1 joule energy, stored in

the laser cavity, the ratio of the dispersion to the oscillation amplitude

is small, ≈ 10−9 − 10−10.
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Figure 4. Field oscillations versus time: a.coherent state b.squeezed state
c.squeezed vacuum state

Fig.4b shows oscillations in the squeezed state. Here the dispersion
changes with time and at some instants is of the same order of value
as amplitude. The points, where the dispersion is minimal, initiated
the name of states as squeezed. Fig.4c shows ”oscillations” in squeezed
vacuum state. Inverted commas are used to pay attention that now there
are no any oscillations with ω frequency, but only the dispersion changes
with the double frequency. Emphasize that although the oscillations are
absent the squeezed vacuum is a high excited, macroscopical state with
great energy.

Parametric excitation of the oscillator is described by the Schroedin-
ger equation

ih̄
∂Ψ(q, t)

∂t
=

1

2

[
p2 + Ω2(t)q2

]
Ψ(q, t).

As can be seen a parameter of the oscillator - its resonant frequency Ω -
depends on time. The solution of this equation, similar to the squeezed
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vacuum state, is

Ψ(q, t) = A(t) ∗ exp

[
iε̇(t)

2h̄ε(t)
q2

]
, (4.6)

where ε(t) is the solution of the equation

ε̈(t) + Ω2(t)ε(t) = 0 (4.7)

which satisfies initial conditions ε(0) = 1, ε(0) = iΩ0 (Ω0 is the average

oscillator frequency). The dispersion of the state (4.6) equals

D = |ε(t)|
√
h̄/2Ω0.

The squeezing coefficient grows with time if ε(t) is not bound solution

of the equation (4.7).

To this time squeezed light was observed in some laboratories [7,8].

One of the possible devices was realized by a group of investigators from

the Texas University and is given on fig.5. Although this experiment

was not the first one, it is the most fruitful from the engineering point of

view. It consists of three major parts - the source of parametric pumping,

the parametric generator and the detector-analyzer of squeezed states.

The first two parts in major features are similar to that which were

used in the first experiments on the parametric generation [9,10]. The

source of the parametric pumping power is the solid-state ring laser with

a YAG:Nd3+ and with an intracavity excitation of the second harmonic

in the nonlinear crystal. The second harmonic of the Nd-laser is used

for pumping the parametric generator, where the first harmonic appears

again but now in the squeezed vacuum state. The receiver-analyzer

compares the signals from laser and parametric generator and measures

the dispersion of the squeezed light in the instants close to the maximums

of the amplitude of the laser signal.
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Figure 5. A lab device for observation of the squeezed light: RL - ring
Nd-laser with intracavity generation of the second harmonics, OPO - opti-
cal parametric oscillator, LO - local oscillator, PD - photodiode, FH - first
harmonics, SH - second harmonics

The results of observation are shown in fig.6. As one can see the
parametric signal dispersion changes twice for a period of the laser signal:
its period is π, but not 2π. One can see also that at some phases θ the
squeezed light dispersion becomes smaller than the dispersion of the
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coherent light (dashed line). It is just the evidence that the light is in
the squeezed state.

Figure 6. A dispersion of the squeezed light versus the phase of the coherent
signal

Take a notice on the unusual character of the measurement pro-
cedure. There are no in it partial measurements of the field strength,
which in usual quantummechanical measurement procedure form the
distribution |Ψ(E)|2. The result of a measurement now is just the state
parameter, in our case - the state dispersion. Another peculiarity of
measurement is its nondemolition (or nondisturbing) character. Indeed
the object of measurement is the light beam, coming from the para-
metric generator cavity. This beam does not come back into the cavity
independently if the measurement was made with it or not. If such mea-
surement was made the information about it cannot reach the cavity and
therefore the field state in the cavity cannot be changed. But the results
of measurement of the light beam, coming from the cavity, give us an
information about the state of the field in the cavity.

Note that due to the dynamic equilibrium between pumping and
losses the parametric generator field is stationary. Therefore if we made
measurement one time, we can be sure that the field in the cavity is,
say, in the squeezed vacuum state for a long time. So the squeezed light
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observation tells us that there is a macroscopical (number of photons
is great) quantummechanical object - the electromagnetic field of the
picked out cavity mode - which dispersion we can measure, leaving the
object itself in the state in which it was before measurement.

The time instances when the dispersion of the field is smaller than
the dispersion of the coherent state extremely attracted attention of
the investigators. It is natural since the quantummechanical uncertain-
ties, just as the noise, prevent the precise measurement of corresponding
quantities. The smaller this uncertainty the more precisely correspond-
ing quantity can be measured and small uncertainty is an attractive
feature of the light squeezed states. But from the point of view of the
researcher the states with a great uncertainty are more interesting; they
are less classical and more quantummechanical. For this paper they are
important since its observation, taking into account that was said above
about the squeezed light measurements, shows that the measurement
of the widespread state dispersion is possible without disturbing of this
widespread state.

Naturally if such measurements are possible with electromagnetic
oscillator, they are possible also with a mechanical oscillator. This idea
we develop in the next section.

5. Macroscopic bodies in widespread states and their non de-
molition measurement

So it was shown something more in experiments with squeezed light
than its generation possibility. In addition it is shown that the quan-
tummechanical state of one macroscopical object (field of a particular
cavity mode) can be learned in a nondisturbing manner. In particular it
can be learned that this object is in the widespread state when the un-
certainty of its coordinate is a macroscopical value approximately equal
to the oscillation amplitude in the coherent state at equal energies of
both states.

If such learning is possible with electromagnetic oscillator it is also
possible with a mechanical oscillator and even with a macroscopic body
freely moving in the space since it can be seen as an oscillator with a
zero frequency. Such conclusion is a natural consequence of a similar
description of the electromagnetic and mechanical oscillators (see also
below).
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One can ask - why there are no macroscopic bodies in widespread

states in the world surrounding us. Quantum mechanics does not pro-

hibit such states (see first section), and in some cases they are preferable.

One possible explanation of it is concluded in supposition that at the

observation of such bodies its wave packet reduction occurs. To exclude

such possibility we considered the electromagnetic signal reflection from

the body (mirror) which is in the widespread state [11]. Major results

of this consideration are given below.

Figure 7. A reflection of light from the mirror, which quantum mechanical
state is widespread

We suppose [11] that the mirror has two degrees of freedom (fig.7).

The first degree of freedom, transversal oscillator describes the motion

of the negative charges (bounded electrons) along the mirror (displace-

ment Q, conjugate momentum P , surface mass density ρ, surface charge

density σ). This motion leads to the reflection of the electromagnetic

signal. The second degree of freedom, longitudinal oscillator describes

the motion of the mirror along the direction of the electromagnetic wave

propagation (coordinate q, conjugate momentum p, surface mass density

µ). It is supposed also that there are only waves of normal incidence to

the mirror. The mirror is infinitely thin and perpendicular to the z-axis

along which waves propagate. The electrical field and the charge dis-

placement directed along x-axis. The region of space occupied by the

field has the same section form as a form of the mirror and its area

is equal to s. Then quantum system mirror+field is described by the
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hamiltonian

H =
1

2ρs
(P − σs

c A(q) )
2

+
1

2
sKQ2

+
1

2
s

∫
dz [ 1

4π (∂A∂z )2 + 4πc2Π2 ] +
1

2µs
p2 +

1

2
sκq2

(5.1)

where K and κ - the transversal and longitudinal oscillator elasticities,
A(z) - vector-potential of the electromagnetic field and Π(z) - its canon-
ically conjugate momentum.

The field oscillators (plane waves) in the initial instant are in co-
herent states with such phases that the field forms a rectangular pulse
filled with a high frequency oscillations

〈Ein(z, t)〉 = E0 sinω0t̃Π(τ0, t̃), (5.2)

where Π(τ0, t̃) - a function describing the rectangular form of the in-
pulse of the 2τ0 = 4πn0/ω0 duration (2n0 - number of wavelength in the
pulse), t̃ = t− t̄− z/c and t̄ - the instant of the arriving of the pulse at
the origin. The transversal oscillator initially is in the ground or vacuum
state and the longitudinal oscillator is in a squeezed state described by
the wavefunction

Ψ(q) = (2πq̄2)−1/4 exp(−q2/4q̄2), (5.3)

where q̄2 = h̄/(2sµν
√
K) and K is the squeezing coefficient. The addi-

tional parameter in the wavefunction (5.3) - the coefficient of squeezing
- provides the possibility to change the longitudinal oscillator parame-
ters µ, ν in future without changing its distribution; in particular the
transition to the motion in the free space will become possible.

The investigation of this problem shows that the field averaged value
in the reflected signal in the stationary conditions and in the resonance
(Ω = ω0) is

〈ER(z, t)〉 = E0e
−2q̄2/λ2

sin Ω(τ − t̄), (5.4)

where λ = c/Ω and τ = t+ z/c. The average value of the squared field
in the reflected signal is

〈E2
R(z, t)〉 =

1

2
E2

0

[
1− e−8q̄2/λ2

cos 2Ω(τ − t̄)
]

; (5.5)
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this value is proportional to the electrical energy density. As can be
seen when the position uncertainty of the mirror is small (q̄ � λ) the
reflected signal keeps the properties of the coherent state; in particular
〈ER〉2 ' 〈E2

R〉. When the position uncertainty is large (q̄ � λ) the field
average value is close to zero but the average value of the squared field is
not close to zero and keeps the finite value; only double frequency oscilla-
tions of energy density are close to zero. One can say that the amplitude
reflection coefficient goes to zero when the position uncertainty grows,
but the intensity reflection coefficient keeps finite value in the same case.
It means that the reflected signal being a macroscopical one is in essen-
tially quantum state, as only in such states the relation (〈E〉2) < (〈E2〉)
is possible.

It can be shown also that the length of the reflected signal greater
than the length of the incident signal approximately on q̄.

Consequence of these results is the conclusion that it is possible
to find out experimentally the macroscopical body (mirror) to be in a
widespread quantummechanical state as a result of one pulse reflection
from this body without essential change of its state. Indeed the reflected
pulse, as we could see, bears the information about the widespread state
of the mirror and being the macroscopical one can be analyzed with
the existing experimental means such as used for example to analyze
the squeezed light [7,8]. At the same time it can be shown [13] that
the reflection process does not change the mirror state essentially. For
macroscopic objects such possibility contradicts to the usual interpreta-
tion of the widespread state as describing an ensemble of objects [1,2].

We call attention also to the lengthening of the reflected pulse
〈〈E2

R〉〉 compared with the incident one, due to the partial reflection
of the incident pulse from different layer of the mirror distribution over
the longitudinal coordinate. The human eye with its low temporal re-
solving power cannot, of course, notice such a lengthening (of the order
q̄) of the pulse. For oblique incidence of light from a point source on
a mirror, however, this partial reflection from different distribution lay-
ers is converted into an angular distribution of different rays, and the
angular resolution of the human eye is high enough. A naked eye, there-
fore, will see bodies with large quantum-mechanical uncertainty simply
as blurred. Consequently, were macroscopic bodies with large quantum-
mechanical uncertainty to exist in the world surrounding us, they could
be simply seen with the naked eye.
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6. Why there are no macroscopic bodies in widespread states.

The absence of macroscopic bodies in widespread states could be

explained by their formation in the concentrated state at some initial

time and their subsequent gradual diffusion. But there are no reasons

why they should be formed just in the concentrated state at the initial

time.

The concentration of the macroscopic body wavepackets cannot be

explained in terms of their interaction with some fields. In fact, since

bodies consist of charged particles, they must interact with the electro-

magnetic field. However, such interaction leads only to the formation

of an associated (nonradiative) field, since all particles in uniform rec-

tilinear motion have such fields. A similar argument also applies to

other fields. In all cases, the packet (1.1) describes the motion of the

center of inertia of the macroscopic body and its associated fields, and

consequently, the problem of large values of the parameter a cannot be

removed in this way.

An exception is the interaction of the macroscopical body with the

gravitational field [12]. According to the general theory of relativity,

the gravitational field created by the body can be considered as a de-

formation of space, a deviation it from Euclidian, with this deformation

occurring both in the region occupied by the body and in its vicinity.

If the mass related to some part of the wave packet deforms space, the

remaining parts of the packet move in this deformed space. In general,

any part of the wave packet moves in the space deformed by this part

itself and by all the other parts. Consequently, there is an effect of the

wave packet on itself, or a self-effect of the wave packet caused by its in-

teraction with the gravitational field. As is shown below this self-effect

leads to the formation of an effective potential well within which the

wave packet preserves permanently its concentrated form. Moreover,

the formation of such a potential well is obviously energetically favored,

and this explains the concentration of the wave packets of macroscopic

bodies.

Since we are dealing with macroscopic bodies of ordinary density (of

the order of 1 g/cm3), the gravitational potential is weak, and therefore

the Newtonian expression for the potential is sufficient for calculation.
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Figure 8. Attraction of two mutually penetrating balls.

Let us examine a uniform spherical body of radius R and density ν.
Since we will calculate the gravitational effect of one part of the wave
packet on another, and since the wave packet is much smaller than the
geometric size of the body, we will first examine the attraction of two
mutually penetrating massive spheres whose centers are displaced by a
distance s which is much smaller than R (fig.8). As can be seen, the
attraction between the spheres can be calculated by taking into account
the attraction by the first sphere of a layer of thickness 2s which cover
half of the first sphere. Considering only the projection of the forces of
attraction of unit masses along the line joining centers of the spheres, we
obtain the following expression for the force of attraction of the spheres:

F =
16π2

3
ν2R3s

∫ π/2

0

dθ sin θ cos θ =
8π2

3
Gν2R3s. (6.1)

Consequently, the potential energy of the interaction of the two spheres
is

Us = βs2, β =
4

3
π2Gν2R3. (6.2)

Taking into account this expression for the potential energy, we obtain
a Schroedinger equation describing the wave packets of the macroscopic
bodies

ih̄
∂Ψ(r̄, t)

∂t
= − h̄2

2m
∆Ψ(r̄, t) + U(r̄)Ψ(r̄, t), (6.3)

where

U(r̄) = β

∫
dr̄′(r̄ − r̄′)2|Ψ(r̄, t)|2. (6.4)
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This equation shows that the gravitational self-effect of the wave packet
of a macroscopic body is similar to the optical self- focusing effect. The
only difference is that self-focusing occurs in the two directions perpen-
dicular to the direction of wave propagation, whereas the gravitational
self-effect occurs in all three directions.

Let us find the steady-state, spherically symmetric solution of
Eq.(6.3). For Ψ = Ψ(r̄) and ImΨ = 0, we have, according to (6.4),

U(r̄) = α+ βr2, (6.5)

where α = β
∫
dr′

2|Ψ(r′)|2 is an unimportant constant. Thus, to deter-
mine Ψ(r), we have the equation

− h̄2

2m

1

r2

d

dr
( r2 dΨ

dr ) + βr2Ψ = EΨ, (6.6)

whose solution is

Ψ(r) =
1

4
√
π3
√
r3
0

exp

[
− r2

2r2
0

]
, (6.7)

where

r0 =
4

√
h̄2

2βm
=

4

√
2h̄2R3

3Gm3
(6.8)

is the characteristic size of the wave packet due to the gravitational self-
effect. This concentrated wave packet can be considered as a soliton
solution of the Schroedinger equation (6.3). Some values are presented
in the next Table.

m, g R, cm r0, cm

1028 1.3 ∗ 109 1.25 ∗ 10−26

1012 6.2 ∗ 103 1.25 ∗ 10−18

1 0.62 1.25 ∗ 10−12

10−12 6.2 ∗ 10−5 1.25 ∗ 10−6

10−15 6.2 ∗ 10−6 4 ∗ 10−5.
10−27 10−13 0.03.

The mass, geometric size of the macroscopic body with density ν ≈
1g/cm3 and size of its wave packet are given in the respective columns.
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Data for a typical macroscopic body (m = 1g) is given in the middle row
of Table. The top row presents data for a body with a mass of the order
of the mass of the Earth, while the last row is that for a mass of 10−15g,
for which the geometric size is comparable to the size of the wave packet.
The size corresponding to the condition rcr = r0 = R can be determined
from (6.8):

rcr =
10

√
9h̄2

32Gπ3ν3
(6.9)

The condition (6.9) gives a quantitative criterion for dividing bodies
according to their size into macroscopic and microscopic. A criterion for
such division by mass can also be obtained from (6.9). Bodies with mass
greater than

mcr =
10

√
32πνh̄6

81G3
(6.10)

should be considered macroscopic.

Thus, for masses greater than 10−12g, the size of the wave packet is
negligible not only compared to the geometric size of these masses, but
also compared to the typical optical wavelength (10−4 − 10−5cm).

This discussion explains why there are no macroscopic bodies in
states with large quantum-mechanical uncertainty of their center of
mass. But this explanation was reached by the very high prize, namely
by refusion from the superposition principle and the linearity of the
Schroedinger equation [13], as can be seen from (6.3). However the vio-
lation of the superposition principle is not very profound. In particular
it will not influence the microscopical, atomic effects - the basic field of
the quantum mechanics application.

It may be that the refusing from the superposition principle is tem-
porary. After the creation of the quantum theory of gravity our con-
siderations can appear as similar to a semiclassical theory in quantum
electrodynamics in which the medium is described quantummechanically
and the radiation - classically. In quantummechanical description of both
the gravity and medium superposition principle can be restored.

The potential well discussed above is not very deep. By expend-
ing some energy a macroscopic body can therefore be changed to a
widespread state with a large wave packet. Study of the widespread
states of macroscopic bodies would be of great scientific value.
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7. Conclusion.

Considerations stated above show that in mechanics of macroscop-
ical bodies the gravity can play an important role. Due to gravity the
wave packets of macroscopical bodies are narrow and the classical me-
chanics is mechanics of narrow but not widespread packets.

These considerations shows also that macroscopical bodies can be in
the widespread states and it is a matter of importance to observe them
practically. Bodies in such state will be new objects of physical investi-
gation. A natural way to excite such state is a parametric excitation of
the oscillator. An oscillator excited in this way two times for a period
becomes quantummechanical widespread.

It is clear also why the widespread quantum states were observed
first for the electromagnetic field but not for mechanical system. The
electromagnetic field mass is very small at usual intensities and it cannot
deform the space and besides that the space of the field states is not
our 3-dimension space but is abstract Hilbert one. So the narrow wave
packets of the field have no an advantage over the widespread states.

In connection with said above it is correct to refer the A.Einstein pa-
per [14], who was the first raised a question about the correct description
of the macroscopic body movement.
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