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ABSTRACT. We point our a number of fundamental problematic
aspects of a nonlinear generalization of quantum mechanics recently
proposed by S. Weinberg, such as: the lack of a consistent, left and
right unit of the underling operator algebra; the lack of a consis-
tent measurement theory; the lack of Planck’s quantum of energy;
the lack of quantization; the lack of consistent Casimir’s invariants;
the lack of well defined characteristics of particles; the lack of well
defined exponentiations into finite space-time symmetries; the in-
equivalence of the Heisenberg-type with the Schrödinger’s-type rep-
resentation; the absence of any essential remnant of nonlinearity at
the abstract, realization-free level, and others caused by Okubo’s
no-go theorems on the inconsistencies of operator formulations with
nonassociative envelopes. We finally indicate the existence of a gen-
eralization of quantum mechanics, known as “hadronic mechanics”
and based on the so-called axiom-preserving isotopies of quantum
mechanics, which: 1) avoids all problematic aspects of Weinberg’s
nonlinear theory because it is characterized by an associative enve-
lope, although realiezd in its most general possible unity-preserving,
isotopic form; 2) includes all possible Weinberg’s equations nonlinear
in Ψ and Ψ∗, plus all possible additional equations which are non-
linear in r, p, ṗ, ∂Ψ, ∂Ψ∗, . . . as well as nonlocal-integral in all these
quantities; and 3) is a covering of quantum mechanics because it
admits the latter as a particular case. A primary function of this
paper is therefore that of stressing that the established knowledge
on operator theories is currently restricted to those with an associa-
tive enveloping algebras, and that care should be exercised for all
nonassociative extensions of the envelope.
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1. Introduction.

As is well known (see, e.g., ref.s [1, 2]), the mathematical structure
of quantum mechanics can be essentially reduced to that of the univer-
sal enveloping associative algebra A of operators A,B, . . . with trivial
associative product AB and unit I = Diag(1, 1, . . . , 1)

A

{
AB = Ass,
IA = AI = A,∀AεA, (1.1 a et b)

on a Hilbert space H with conventional inner product

H :

∫
ψ∗ψdv, (1.2)

over the field C of complex numbers. In fact, the brackets of the first
fundamental representation of the theory, Heisenberg’s representation,
are characterized by the Lie algebras A− attached to A according to the
familiar equation

iȦ = [A,H]A = AH −HA, h̄ = 1 (1.3)

Similarly, the modular-associative structure of the second funda-
mental representation of the theory, Schrödinger’s representation, is cen-
trally dependent on the conventional associative character of the original
enveloping algebra, as expressed by the celebrated equation.

i
∂

∂t
ψ = Hψ (1.4)

where the modular-associative character is expressed by the fact that
the action Aψ of an element AεA on an element ψεH is associative.

In a recent article [3], S. Weinberg has proposed a nonlinear gener-
alization of quantum mechanics which is centered in the generalizatiion
of the conventional associative envelope A into the form

U : a× b =
∂a

∂ψk

∂b

∂ψ∗k
(1.5)

where the elements a, b, . . . εU are trilinear or higher-linear functions of
the states ψ,ψ∗. The nonlinear of the theory evidently results from the
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non-linearity of the elements a, b, . . . in the states ψ,ψ∗. The generaliza-
tion of Heisenberg’s law [1.3] proposed by Weinberg is characterized by
the brackets of the algebra U− attached to U to the forms [3]

iȧ = [a, h]U =
∂a

∂ψk

∂h

∂ψ∗k
− ∂h

∂ψk

∂a

∂ψ∗k
(1.6)

where the Hamiltonian is given by

h =
1

2m

∫
ψ∗k(~x)4ψk(~x)d~x+ h′ (1.7)

and the expression

h′ =

∫
H[ψ(~x), ψ∗(~x)]d~x (1.8)

holds under certain restrictions for the functional H [3].

The generalization of Schrödinger’s equation [1.4] proposed by
Weinberg is given by [3]

i
∂

∂t
ψk = − 1

2m
4ψk +

∂H

∂ψ∗k
(1.9)

The remaining parts of paper [3] are devoted to a generalization of var-
ious aspects of quantum mechanics, such as eigenvalues, expectation
values, and others topics. An illustration of Eq. [1.9] is provided by the
equation

i
∂

∂t
ψ = [− 1

2m
4+ V (~x)]ψ + VRR(ψ∗ψ)ψ (1.10)

which was originally suggested by Fermi [4].

Weinberg’s proposal [3] was rapidly considered by several authors
[5-12]. From an experimental viewpoint, tests on hyperfine transitions
of Be [8] and Ne [9] as well as on hydrogen maser transitions [10] have
established that possible nonlinear corrections to conventional, linear,
atomic, transitions are very small, with an upper limit of the order of
1027. Previous experiments looking for possible nonlinear corrections to
conventional quantum mechanics, based on neutron interferometry, have
also set very stringent limits on the contributions from such nonlinearity
[13, 16]. We can therefore conclude that current experiments do not
support nonlinear contributions for the conditions considered.
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In this paper we shall point out certain fundamental problematic
aspects of Weinberg’s nonlinear theory which appear to originate from
the selection of the particular form [1.5] of the enveloping operator alge-
bra. In the concluding remarks we shall briefly touch the problem of a
nonlinear generalization of quantum mechanics capable of resolving these
problematic aspects.

2. Fundamental problematic aspects of Weinberg’s nonlinear
theory.

It is our duty to report that, to the best of our knowledge, Wein-
berg’s nonlinear generalization of quantum mechanics [3] via structures
[1.5], [1.6] and [1.9] is afflicted by fundamental problematic aspects, some
of which are reviewed below.

Problematic aspect 1: Weinberg’s nonassociative generalization
U of the conventional associative enveloping algebra of quantum me-
chanics does generally not admit a consistent unit, except for the trivial
case in which U is one-dimensional with the sole element given by the
unit itself.

Let U be an (abstract) algebra with elements a, b, c, . . . and product
ab over a field F (hereinafter assumed of characteristics zero). The unit
of U , when it exists, is the element 1 of the center of U which verifies
the left and right identities

1a = a1 ≡ a (2.1)

for all elements aεU . The conventional associative envelope of quantum
mechancis, Eq. [1.1], does admit a consistent, left and right unit, which
is usually given by the trivial unit matrix I = diag.(1, 1, . . . , 1).

For the case of Weinberg’s envelope U , Eq. [1.5], conditions [2.1]
require the existence of an element 1(ψ,ψ∗)εU such that

∂1

∂ψk

∂a

∂ψ∗k
=

∂a

∂ψk

∂1

∂ψ∗k
≡ a (2.2)

for all elements aεU . These conditions are evidently not possible for
algebra [1.5] in the necessary generality. The lack of existence of the
unit is, in reality, a direct consequence of the nature of the algebra U
which was not identified in Weinberg’s original paper [3], nor in any of the
subsequent investigations [5-12]. It can be readily seen that Weinberg’s
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product ab as per Eq. [1.b) characterizes a general nonassociative Lie-
admissible algebra [1.18] in the terminology of ref. [18]. In fact, the
algebra U is nonassociative, trivially, because it violates the associativity
law

(a×b)×c =
∂

∂ψk
(
∂a

∂ψk

∂b

∂ψ∗k
)
∂c

∂ψ∗k
6= a×(b×c) =

∂a

∂ψk

∂

∂ψ∗k
(
∂b

∂ψk

∂c

∂ψ∗k
)

(2.3)

Second, the algebra U is Lie-admissible in the sense originally iden-
tified by Albert [17], that is, the attached algebra U− is Lie. In fact, the
attached antisymmetric product

[a, b]U =
∂a

∂ψk

∂b

∂ψ∗k
− ∂b

∂ψk

∂a

∂ψ∗k
(2.4)

verifies the Lie algebra axioms

[a, b]U + [b, a]U = 0 (2.5a)

[[a, b]U , c]U + [[b, c]U , a]U + [[c, a]U , b]U = 0 (2.5b)

as the reader is encouraged to verify.

Finally, the algebra U is a nonassociative Lie-admissible algebra of
the general type, in the sense of ref. [18] of not verifying the flexibility
law

(a× b)× a = a× (b× a),∀A εU (2.6)

The point is that, as well known in the theory of abstract algebras,
general nonassociative Lie-admissible algebras do not generally admit
the unit [18]. An intriguing exception is the case when the algebra U
is one-dimensional. In fact, one can assume the element I = ψ∗kψk, in
which case the identities Ixa = axI ≡ a hold for all elements a given by
the scalar products of I, a = kI, kεI (but excluding the functions a(I)
of I, as required by the last identity). An inspection then easily reveals
that the algebra U is composed by the element I alone, because its scalar
extensions belong to the center [19]. It is evident that a one-dimensional
algebra U is insufficient for a quantitative description of physical re-
ality. Thus, to have a nontrivial theory, one must have the identities
Ixa = axI ≡ a for all possibler elements a 6= kI, which is impossible
for general nonassociative Lie-admissible algebras. For completeness we
should recall here that the nonassociative character of the algebra with
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product axb was fully identified by Weinberg [3]. What we are refer-
ring here is the important Lie-admissible character of the nonassociative
algebra which was not identified in the quoted paper.

Problematic aspect 2: Weinberg’s nonlinear theory does not ad-
mit a consistent measurement theory.

As well known in the axiomatic theory of quantum mechanics, the
admission of a consistent measurement theory by ordinary quantum me-
chanics is due not only to the existence of consistent expectation values,
but also to the possibility of their “measurement” when referred to a
consistent unit of the theory. In Weinberg’s nonlinear theory, expecta-
tion values can indeed be formally defined [3], but their “scale” cannot
be uniquely and unequivocally introduced, thus preventing a consistent
notion of measurement. More specifically, the notion of dilations, e.g.

A→ NA, NεH, AεA (2.7)

can be fully defined in ordinary quantum mechanics because the envelop-
ing algebra always admit a consistent unit, but the same notion is absent
in Weinberg’s nonlinear theory. This results in rather serious problems
of consistency from an experimental viewpoint (see the concluding re-
marks).

Problematic aspect 3: Weinberg’s nonlinear theory does not ad-
mit Planck’s quantum of energy.

In fact, as well known, Planck’s constant h̄ = 1 is the algebraic unit
of quantum mechanics, that is, the (left and right) unit of the enveloping
associative algebra A. The lack of a unit in Weinberg’s non-associative
generalization U of A evidently implies the impossibility of defining in
a consistent way Planck’s fundamental notion of quantum of action. It
also prevents any meaningful attempt at its possible generalization for
physical conditions more complex than those of the atomic structure
(see next section). Note that Planck’s constant h̄ = 1 fixes the scale [
.7] of the algebraic unit of quantum mechanics. As a result, Problematic
Aspects 1, 2 and 3 are deeply interrelated.

Problematic aspect 4: Weinberg’s nonlinear theory does not ad-
mit a consistent quantization.

As also well known, quantum mechanics can be reached as an oper-
ator image of classical Hamiltonian mechanics via various quantization
techniques. All these techniques, however, are centrally dependent on
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the existence of the unit in the operator formalism. For instance, the
socalled naive quantization can be expressed via the mapping of the clas-
sical action functional a into the unit h̄I of quantum mechanics times
(−ilogψ)

a → h̄I(−ilogψ) (2.8)

under which the conventional Hamilton-Jacobi equations

−∂a

∂t
= H (2.9a)

∂a

∂~x
= ~P (2.9b)

are mapped into Schrödinger’s equations

i
1

ψ

∂

∂t
ψ = H (2.10a)

−i 1

ψ
~∨ψ = ~P (2.10b)

Similar quantization procedures leading to Weinberg’s nonlinear
theory are evidently impossible because of the lack of center of U . This
implies that the classical counterpart of Weinberg’s theory cannot be
consistently identified.

Problematic aspect 5: Weinberg’s nonlinear theory does not ad-
mit well defined Casimir invariants.

As well known in the mathematical theory of Lie’s algebras (see, e.g.,
ref [19], the Casimir invariants are characterized by the center of the uni-
versal enveloping associative algebra and, as such, they are not elements
of the Lie algebra. Weinberg’s nonlinear theory does indeed admit a well
defined Lie algebra, as characterized by brackets [2.4]. Nevertheless, the
Casimir invariants of the theory cannot be consistently defined because
of the lack of the center of the underlying nonassociative Lie-admissible
envelope U. The physical implications of the latter problematic aspect
are also rather serious. As an example, the indefinabilities implies that
fundamental algebras such as the Galilei algebra can indeed be consis-
tently defined, as done in paper [3], Sect. 2. Nevertheless, the crucial
Casimir invariants of the Galilei algebra cannot be generally defined in
a consistent way.
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Consider, for instance, the central case of the magnitude of the an-
gular momentum ~j. In conventional quantum mechanics it is given by
the “square” ~j2 which is characterized, of course, by the product of the
underlying associative envelope A, i.e.~jdef=jkjk, where “jkj

′′
k is the asso-

ciative product. In Weinberg’s nonlinear theory, the associative product
jkjk must necessarily be replaced, for consistency, with the nonassocia-
tive product jkxjk of U , resulting in the form

~j2def=
∂jr
∂ψk

∂jr
∂ψ∗k

(2.11)

The above quantity can indeed be consistently defined. Nevertheless, its
invariant character cannot be established. Even when, in some partic-
ular case, quantity [2.11] is indeed invariant, its eigenvalues cannot be
consistently defined owing to the lack of the center of the nonassociative
envelope. The above results can also be independently obtained via a
property indentified in paper [3], to the effect that elements of U do not
generally commute with their own powers. This evidently implies the
inability to define all the infinite elements of the center which, in turn,
results in the general lack of consistent Casimir invariants. The physical
implications of Problematic Aspects 5 are equally deep. In fact, it im-
plies the inability to define a particle (whether a physical particle such
as the proton or a quark) as currently done, via the Casimir invariants
of the Galilei (or Poincaré) algebra.

For completeness we mention that Weinberg did indicate in his pa-
per [3] that observables such as linear or angular momentum should be
represented by bilinear functions which evidently commute with their
powers. The issue here addressed is the restrictions on the algebra im-
posed by a consistent center. In fact, to have a center, we need first a con-
sistent unit which, as mentioned after Problematic Aspect 1, restricts all
elements of the algebra U to the scalar multiples a = kI, kεF, I = ψ∗kψk.
The issue here addressed is therefore whether a consistent algebra made
up of the quantity I = ψ∗kψk and of its scalar multiples kI, and with
Casimirs provides by powers kIn is indeed sufficient for a quantitative
representation of physical reality.

Problematic aspect 6: The particles of Weinberg’s nonlinear the-
ory do not possess well defined intrinsic characteristics such as spin.

Here, we would like to stress that the problematic aspects in the
definition of a particle are not of mathematical nature, but refer, specif-
ically, to the inability to define consistent intrinsic characteristics, such
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as spin, trivially, which follow from the lack of existence of consistent
invariants such as [2.11].

It is evident that we can always talk about spin 1
2 . The technical

issue here addressed is whether such a familiar notion can indeed be
consistently formulated for Weinberg’s algebra, namely, whether the SU
[2] symmetry algebra can be consistently defined for product axb− bxa,
whether it admits a consistent enveloping algebra with producty axb
and with a consistent unit (i.e., a consistent Poincaré-Birkhoff-Witt the-
orem), and whether it admits a consistent exponentiation to the cor-
responding SU [2] symmetry group. It is evident from the preceding
analysis that there are problematic aspect in each of these basic aspects,
thus requiring care before claiming that the traditional spin 1

2 can indeed
be consistently formulated for Weinberg’s theory [3].

The above comments refer to the case of closed-isolated systems. If
we have a particle under external forces, the problems for the spin are
compounded. In fact, in this case the product appearing in the time
evolution is itself a nonassociative Lie-admissible product, as discussed
in detail in ref.s [18, 20, 23]. But, a central condition of physical con-
sistency requires that the brackets of the time evolution must be those
characterizing the spin algebra. This evidently implies a further de-
parture from the conventional Lie algebra SU [2], to a Lie-admissible
SU [2] spin algebra, that is, an algebra whose product is non-Lie and
Lie-admissible, for which the value 1

2 is known to be generally lost.

Problematic aspect 7: Weinberg’s nonlinear theory does admit
consistent space-time symmetries in their finite form.

As well known, the existence of quantum mechanical, space-time
(and other) symmetries in their finite, group theoretical form, is due to
the existence of a consistent infinite-dimensional basis in the underlying
envelope. For a given Lie algebra of n-dimension and generators Xj , j =
1, 2, . . . n, such a basis can be written

I, Xi, XiXj , XiXjXk, . . .

i ≤ j i ≤ j ≤ k
(2.12)

as ensured by the celebrated Poincaré-Birkhoff-Witt theorem [19]. In
fact, the exponentiation into a finite (unitary) symmetry group is pre-
cisely a power series expansion in A (here considered for the simple
one-dimensional case without loss of generality)

G(w) : eiXw = eiXw
A = I +

iXw

1!
+

(iXw)2

2!
+ . . . (2.13)
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In particular, its convergence into the finite form exp(iXw) is precisely
due to the existence of a consistent basis in A. It is known to experts in
Lie-admissible algebras that the Poincaré-Birkhoff-Witt theorem can in-
deed be extended to flexible nonassociative Lie-admissible algebras (see
ref. [18]) and the specific study [20], but its extension to the case of gen-
eral Lie-admissible algebras does not exist, because of numerous tech-
nical problems, beginning from the lack of existence of the first term
in the infinite basis [2.12] (the unit), and then passing to the lack of a
consistent ordering of the basis due to the intrinsic nonassociativity of
the product, i.e.,

(Xi ×Xj)×Xk 6= Xi × (Xj ×Xk) (i ≤ j ≤ k) (2.14)

As a result, the process of esponentiation can indeed be defined up
to flexible Lie-admissible algebras, but not, in general, for the Lie-
admissible algebras of the general class selected by Weinberg. The phys-
ical implications of the latter problematic aspect are also far reaching.
For instance, it implies that fundamental symmetries, such as the Galilei
symmetry, the Lorentz symmetry and the SU [3] symmetry, cannot be
defined in a clearly consistent way.

Problematic aspect 8: In Weinberg’s nonlinear theory, the Hei-
senberg-type representation [1.6] and the Schrödinger-type one [1.9] are
generally inequivalent.

As recalled in the introductory section, the conventional modular-
associative structure of the Schrödinger’s action Hψ,HεA, ψεH, is di-
rectly due to the conventional associative structure of the underlying
envelope A. This, in turn, is at the foundation of the proof of the equiva-
lence of the conventional Heisenberg’s and Schrödinger’s representations.
In different terms, the algebraic structure of action Hψ of Schrödinger’s
representation and of the product AB underlying Heisenberg’s represen-
tation are the same. In particular, the modular action Hψ is associative
in the conventional sense, i.e.

ABCψ = (AB)(Cψ) = A(BC)ψ = (ABC)ψ (2.15)

The above equivalence of mathematical structures between the Heisen-
berg-type and the Schrödinger-type representations is lost in Weinberg’s
nonlinear theory. In fact, to achieve such an equivalence, instead of
Weinberg’s action

Hoψk =
∂H

∂ψ∗k
(2.16)
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the Schrödinger’s type representation should have the action

Hxψ =
∂H

∂ψk

∂ψ

∂ψ∗k
(2.17)

Again, to clarify this important point, the equivalence between the
Heisenberg-type and Schrödinger-type representations requires, first, the
same algebraic structure in both representations. For the case of or-
dinary quantum mechanics, the Heisenberg representation is based on
the conventional associative product AB which is evidently equivalent
to the Schrödinger’s conventional associative product Hψ. In Wein-
berg’s case, the Heisenberg-type representation is now characterized by
the nonassociative Lie-admissible product AxB = (∂A/∂ψk)(∂B/ψ∗k).
As a result, the corresponding product in the Schrödinger-type repre-
sentation should be exactly the same, that is, we should have HxA =
(∂H/∂ψk)(∂ψ/∂ψ∗). But this is not the case for Weinberg’s Schrödinger-
type equation [1.6], thus implying the inequivalence of the two represen-
tations.

Even assuming that the above problematic aspect can be resolved,
the rigorous proof of the equivalence of the two representations requires
the existence of a unitary equivalence mapping, that is, of a unitary
transformation that uniquely transforms the Heisenberg-type into the
Schrödinger-type representation, and viceversa, exactly as it occurs in
the conventional case. The proof of the inequivalence of Weinberg’s
Heisenberg-type and Schrödinger-type representations is then completed
by the lack of a consistent generalization of the conventional unitary
transformations.

Problematic aspect 9: The nonlinearity of Weinberg’s equations
is not essential, in the sense that it can be made to disappear at the
abstract, realization-free level.

This is the most abstract of the problematic aspects of Weinberg’s
theory, inasmuch as it requires an in depth knowledge of the abstract
transformation theory, algebras and groups. Nevertheless, it is the most
penetrating from a physical viewpoint inasmuch as it pre-empties the
need for experiments on possible atomic nonlinearity.

The latter problematic aspect can be better understood following
the analysis of the next section. At this point, let us recall the result
reached by one of us (R.M.S.) via the use of the so-called Lie-isotopic
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theory [22], according to which a given nonlinear transformation on a
manifold M with local coordinates x

x→ x′ = x′(x,w) (2.18)

can always be expressed in an identical isolinear form of the type

x→ x′ = A(w)∗x
def
= A(w)T (x;w)x (2.19)

by embedding all the nonlinear terms in the so-called isotopic element
T (x;w). The point is that nonlinear transformations [2.19] coincide with
conventional, linear, transformations

x→ x′ = A(w)x (2.20)

at the abstract, realization-free level.

To put it differently, and as stressed in ref. [22], nonlinearity is not
a structure-characterizing feature for operator theories. The lack of an
essential remnant of nonlinearity which survives at the abstract level is
then sufficient to void the need for conventional, atomic experiments,
particularly when keeping in mind the preceding problematic aspects,
such as the lack of a consistent measurement theory.

It should be stressed that Problematic aspect 9 is specifically re-
ferred to “Weinberg’s equations” and not to “Weinberg’s nonlinear the-
ory”, where the former terms refer to “the actual equations” in their
explicit form after working out the partial derivatives of Eq. [1.9], while
with the latter terms refer to “the theory itself”, thus including its nonas-
sociative Lie-admissible operator algebra. In fact, the isotopic techniques
can eliminate at the abstract level the nonlinearity of the actual equa-
tions, but certainly not the nonassociativity of Weinberg’s envelope. As
a result, all preceding problematic aspects persist because they cannot
be eliminated via isotopies, as the reader is encouraged to verify. [The
Authors are grateful to the Referee for suggesting this important clarifi-
cation].

By no means the above problematic aspects exhaust all the prob-
lems afflicting Weinberg’s nonlinear theory [3] (one can find additional
problematic aspects en ref.S [7, 8, 15, 16]).

However, the major problematic aspect of Weinberg’s theory is
that it violate Okubo’s no-go theorems [21], which essentially state that
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a generalization of quantum mechanics based on the transition from
the conventional associative envelope to a nonassociative form is struc-
turally inconsistent. In fact, the inequivalence of Heisenberg-type and
Schrödinger-type representations (problematic aspect 8) is a consequence
of Okubo’s theorems. This is the central point of the analysis of this sec-
tion because it shows that, even assuming that the individual problem-
atic aspects outlined above can be somewhat resolved, one still remains
with the main problematic aspect that a theory based on a nonassocia-
tive, enveloping operator algebra is structurally inconsistent.

It is hoped the reader has noted our emphasis on the terms “prob-
lematic aspects” rather than “inconsistencies”, because the above issues
deserve additional inspections by other colleagues, and suggest caution
prior to claiming final conclusions whether in favor or against Weinberg’s
nonlinear theory.

3. The isotopies of quantum mechanics.

While studies on the consistency or inconsistency of Weinberg’s the-
ory [3] will take their predictable time, the remaining issue is whether
there exists a generalization of quantum mechanics which includes all
possible Weinberg’s nonlinear equations, while bypassing all problem-
atic aspects of Weinberg’s theory considered in Sect. 2. It may be of
some interest to the interested reader to known that such a generalized
mechanics does indeed exist, and it is provided by the so-called hadronic
generalization of quantum mechanics, or hadronic mechanics for short,
as originally proposed by one of us [23] and then developed by a number
of authors (see ref.s [24 - 27] and quoted papers).

The mechanics is based on the preservation of the associative charac-
ter of the conventional enveloping algebra, although expressed in its most
general possible form. Hadronic mechanics therefore by-passes Okubo’s
no-go theorems [21] by its very conception. The associativity of the enve-
lope ensures the existence of a bona-fide, left and right unit, as we shall
see. The resolution of all problematic aspects of Weinberg’s nonlinear
theory [3] is then consequential.

Moreover, hadronic mechanics is characterized by the isotopies of
quantum mechanics, which essentially are given by the most general pos-
sible nonlinear (in all variables and their derivatives), nonlocal (integral)
and nonpotential (nonhamiltonian) generalization of quantum mechan-
ics capable of preserving its original axioms unchanged at the abstract,
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realization free-level. This implies that hadronic mechanics, not only
contains the totality of Weinberg’s nonlinear equations, but also a con-
siderably broder class of nonlinear equations (such as those nonlinear in
the derivatives of the wavefunctions, as we shall see shortly).

It should be indicated that hadronic mechanics was specifically con-
ceived for the interior dynamics of strong interactions, in the hope of
achieving a compatibility between the established local, differential and
potential (center-of-mass) behaviour of hadrons (say, in a particle accel-
erator), with the historical open legacy of their ultimate nonlocality.
Hadronic mechanics is therefore intrinsically nonlocal, nondifferential
(integral) and nonhamiltonian. As such, it can only be applied under
the existence of the latter forces.

The physical arenas of intended applicability of Weinberg’s and
hadronic mechanics are, therefore, profoundly different. The former
mechanics has been used to attempt the identification of possible non-
linearity under electromagnetic interactions (e.g., in atomic structure).
The latter mechanics assumes the current quantum mechanical descrip-
tion of the electromagnetic interactions as being exact “ab initio”, and
searches for possible nonlinearity (or, more generally, nonlocality) in the
interior dynamics of strong interactions, e.g., for a hadron in the core of
a star, or, much equivalently, for a quark with extended wavepacket of
the size of all masive particle (1F ) which coincides with the size of all
hadrons. This implies a hadronic structure characterized by motion of
extended wavepackets within the volume occupied by all remaining con-
stituents, with consequent expected nonlinear, as well as nonlocal and
nonhamiltonian effects.

The experimental profiles of the two mechanics are consequentially
fifferent. In fact, a conceivable nonlinearity is studied by hadronic me-
chanics as an approximation of the expected nonlocality of the strong
interactions. The experimental results on the lack of appreciable nonlin-
earity [13 - 16] are therefore strictly inapplicable for hadronic mechanics,
as well as yet inconclusive, in the sense that they are insufficient for a
final claim on the lack of appreciable nonlinearity in particle physics.

Recall that all current measures are reached via the use of exter-
nal electromagnetic interactions. By recalling that the dynamics of the
center-of-mass of a composite system with strong internal forces is con-
ventional, the possible future experimental detection of the nonlinearity
predicted by hadronic mechanics will require a duplication, this time at
the level of strong interactions, of the current experimental measures, i.e.,
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a new technology capable of providing measures under external strong
interactions.

To begin, the central assumption of hadronic mechanics is that of
preserving axioms [1.1] of the conventional associative enveloping alge-
bra, i.e., of preserving the crucial associativity of the enveloping operator
algebra and merely assuming its most general possible form admitting of
a unit. Among the various possible forms, the realization of axioms [1.1]
suggested at the foundation of hadronic mechanics is given by [18, 23]

Â

{
A ∗B = ATB, Tfixed
Î ∗A = A ∗ Î = A for all AεÂ, Î = T−1

(3.1)

where the new product A ∗ B (called isoassociative product) is still as-
sociative, as one can easily verify, and the quantity Î (called isounit) is
still the correct right and left unit of the theory.

For mathematical consistency, isoassociative envelope [3.1] must be
defined on the following generalization of the conventional notion of com-
plex field C

Ĉ = {ĉIĉ = ĉi, cεC, îεÂ} (3.2)

where the sum is the conventional one and the product is isotopic. Thus
ĉ ∗ d̂ = ĉd = (cd)̂i. The numbers of the theory then remain the conven-
tional ones because ĉ ∗ ψ ≡ cψ. The Hilbert space was also subjected to
a lifting with generalized composition [27]

κ̂ :< Î >=< IGI > ÎεĈ, G > 0 (3.3)

which is evidently still inner. The space κ is then called an isohilbert
space.

Howing to the isolinear structure of the theory, all conventional
concepts on a Hilbert space (Hermiticity, unitarity, etc.) admit a con-
sistent operator formulation [26, 27]. In particular, for T = G > 0,
conventional Hermiticity and isohermiticity coincide. Thus observables
of quantum mechanics remain observable of hadronic mechanics under
isotopies [3.1] and [3.4] with the same (positive-definite) isotopic element
T .

The Heisenberg-type equation was identified in the original proposal
[23] as being characterized by the antisymmetric brackets attached to Â

iȦ = [a,H]Â = A ∗H −H ∗A = ATH −HTA (3.4)
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and it is called the isoheisenberg’s equation. Note its nonhamiltonian
character, in the sense that, besides the conventional Hamiltonian H
including all contemporary models, the generalized equation admits an
additional operator T which multiplies the Hamiltonian from the right
and from the left, and which is representative precisely of the nonhamil-
tonian forces.

By central condition, the isotopic element T becomes the identity I
for all particles moving in vacuum at mutual distances larger than their
wavepackets (e.g., in the atomic structure). Eq.s [3.4] therefore recover
the conventional Heisenberg’s equations identically when all nonhamil-
tonian components of the strong interactions are null. In this sense,
hadronic mechanics can be considered as a covering of quantum me-
chanics (i.e., a generalized theory based on a mathematical structure
and intended for physical conditions broder than those of quantum me-
chanics, yet including the latter as a particular case). Notice that con-
ventional quantum mechanics cannot be admitted as a particular case
by Weinberg’s nonlinear theory.

The corresponding Schrödinger-type equation was identified in ref.s
[25, 26]

i
∂

∂t
ψ = H ∗ ψ = HTψ (3.5)

and it is called the isoschrödinger’s equation. Notice, again, the appear-
ance of nonhamiltonian terms, as well as the admittance of the conven-
tional Schrödinger’s equation as a particular case. For numerous addi-
tional properties, see ref.s [25, 26]. It is evident that hadronic mechanics
avoids the problematic aspects of Weinberg’s nonlinear theory. In fact,
the theory is centered on the preservation of the associative character
of the enveloping operator algebra and in the existence of a generalized,
but consistent (right and left) unit, the isounit Î, with consequently well
defined center.

To illustrate this crucial point, note that one could select another
form of isoassociative product, e.g., of the type [23]

A ∗B = WAWBW, W 2 = W 6= 0 (3.6)

which is evidently still associative. Nevertheless, the use of the above
product in the construction of hadronic mechanics was discouraged be-
cause it does not admit a consistent (right and left) unit.
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The preservation of the unit avoids Problematic Aspects [1.6]. The
associative character of the envelope ensures the existence of a consistent
isotopic generalization of the Poincaré-Birkhoff-Witt Theorem [18] and
the isoenvelope Â admits a consistent infinite-dimensional basis, which
resolves Problematic Aspect [7] (see the isotopic lifting of the Lorentz
group of ref. [24]). The equivalence between the isoheisenberg equation
[3.4] and the isoschrödinger’s one [3.5] is predictable from the preserva-
tion of the associative character of the isomodular action H ∗ ψ, and it
was explicitly proved in ref. [26]. This avoids Problematic Aspect 8. Fi-
nally, Problematic Aspect 9 cannot be eliminated by hadronic mechanics
(or any other generalized theory for that matter), because of the univer-
sal character of the isolinear theory [22]. In fact, hadronic mechanics
is formally linear at the abstract, realization-free level, yet intrinsically
nonlinear. We are now sufficiently equipped to prove the following.

Proposition 1: All Weinberg’s nonlinear equations [1.9] in their
explicit form (but not Weinberg’s nonlinear theory) are a particular case
of isoschrödinger’s equation [3.5]

Proof - Except for the positive-definiteness, T > 0, the functional
dependence of the isotopic operator remains completely unrestricted in
hadronic mechanics. As such, T can have the most general possible non-
linear and well as nonlocal dependence on all possible local variables and
quantities.

T = T (t, r, p, ψ, ψ∗, ∂ψ, ∂ψ∗, . . .), Î = (t, r, p, ψ, ψ∗, ∂ψ, ∂ψ∗, . . .)
(3.7)

Eq. [3.5] can then be written

i
∂

∂t
ψ = H ∗ ψ = HTψ = H(t, r, p)T (t, r, p, ψ, ψ∗, ∂ψ, ∂ψ∗, . . .)ψ (3.8)

This results in the most general possible nonlinear equations not
only in the quantities ψ,ψ∗, and all their possible derivatives, but also
in the variables t, r, p, as well as in the most general possible nonlocality
in the same variables. The admittance of Weinberg’s equations [1.9] as
a particular case then follows. Q.E.D.

Note the use in Proposition [1] of the differentiation between “Wein-
berg’s nonlinear equations” and “Weinberg’s nonlinear theory” made in
Sect. [2] after Problematic aspect 9. In fact, hadronic mechanics can
include the explicit form of Weinberg’s “equations”, but evidently not
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Weinberg’s “theory”, because the former has an associative envelope,
while the latter has a more general nonassociative envelope. As an in-
cidental note, the condition T > 0 is needed only in the particular case
T = G. In the general case of hadronic mechanics in which T 6= G, only
the isotopic element G of the isohilbert space must be positive-definite,
but the isotopic element T of the enveloping algebra needs to be only
nonsingular and Hermitean. In closing, the reader should note that the
isotopic algebra Â remains associative, the isofield Ĉ remains a field,
and the isohilbert space κ̂ remains a Hilbert space. Thus, the structure
of hadronic mechanics, as characterized by the isotopic liftings

A =⇒ Â C =⇒ Ĉ and κ =⇒ κ̂ (3.9)

is such that all distinctions between quantum mechanics and hadronic
mechanics cease to exist at the abstract, realization-free level by con-
struction [18, 23]. It is this ultimate unity that, on one side, guarantees
the mathematical consistency of hadronic mechanics as a genuine cov-
ering of quantum mechancis, and, on the other side, implies the lack
of existence of a structural nonlinearity which survives at the abstract
level. Needless to say, the physical consistency of hadronic mechanics in
the arena of its intended applicability (interior problem of strong inter-
actions) is far from being established at this time and, in actuality, its
study is just at the beginning.
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