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1. Generalized Scheme of Indirect Measurements

Figure 1.

The apparatus used in any measurement consists of a sequence of
stages. Measurement theory asserts that, although the early stages of
the apparatus may behave quantum mechanically, the later stages must
be classical. There is no universally accepted definition of classical. We
shall regard a stage as classical if the quantum mechanical uncertainties
of subsequent stages have no significant influence on the overall accuracy
of the measurement. First stages, which behave quantum mechanically,
interact with a system under test reversibly. These stages were called
Quantum Read-out System (QRS) or quantum transducer. The classical
part of the measuring device may be called register. Interaction between
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the QRS and the register is irreversible.1 In the register the so called

”dequantization” of the signal takes place, that is a microscopic change

in the QRS produces a macroscopic change in the register. Generalized

scheme of measurement can be represented by the following figure 1 [1,2].

Â is an observable being measured. Q̂(Â) is QRS’s observable changing

by Â.

Figure 2.

Example. The scheme of a charge measurement by means of an electron

beam. The LC-circuit → System. The electron beam → QRS. The

display → Register. q̂ → Â. The electron momentum p̂y → Q̂(Â).

The QRS’s interaction with the system and with the register occurs

subsequently in time. It is of importance to emphasize that at least one

stage of the measuring device interacts with the other impulsively. ρ̂1s
is the system’s initial state perturbed through interaction of QRS with

the system. This state is always mixed.

1 If this is not the case it could be prepared the state of system in which the
uncertainty relation is not valid.
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Figure 3. System state evolution during measurement.

ρ̂(Ãj) is the system’s states after the classification of system in ac-
cordance to the results of the measurements. In case of the exact mea-
surement of A the state ρ̂s(Ãj) would be the eigenstate |Aj〉.

The classification (separation) of the system in accordance with the
results of measurements requires a certain classical deeds. These deeds
can be performed by an experimenter or automatically.

The interaction of the system with QRS can be described quantum-
mechanically. Hamiltonian of the combined object can be represented
as

Ĥ = Ĥs + Ĥi + ĤQ, (1)

where Ĥs depends only on the system observables and is called Hamil-
tonian of the system; ĤQ is known as Hamiltonian of QRS. Hamiltonian

of interaction Ĥi contains cross-terms.

The goal of measurement may be the value of an observable Â that
is related to: 1) the non-perturbed state of the system; 2) the state
perturbed by measurement; and at the following moment:
a) t = 0,
b) 0 < t1 < τ ,
c) t > τ .

Also the goal of measurement may be to prepare a new state of the
system.

Each of the goals requires a specific initial state of QRS in order to
obtain the least error of estimation.
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The essential results which is necessary to emphasize in our discus-
sion can be illustrated by the simplest example of measurement.

Example. Measurement of a free mass position.

In order for such a measurement to take place it is sufficient for QRS
to interact with the mass in accordance to the Hamiltonian Ĥi = α(t)xY
for a certain time τ . (It can be Ĥi = α(t)f(x̂)Ŷ as well). Here x̂ is the
position operator, Ŷ is a certain operator of QRS, α(t) is the coupling
function. We will consider α(t) = α0 for 0 ≤ t ≤ τ , otherwise α = 0.

The QRS can be represented by a free particle M . For the simplest
solution we take

Ĥ = p̂2/2m+ α(t)x̂Ŷ + P̂ 2/2M

where P̂ and Ŷ are, respectively, the momentum operator and the posi-
tion operator of the QRS.

This Hamiltonian is not practicable but permitted by the theory.
In order to realize such an Hamiltonian it is necessary to compensate a
positive rigidity due to the coupling between the S and QRS by means
of additional negative rigidity.

Working in the Heisenberg picture we obtain

a) dx̂/dt = p̂/m ,

b) dp̂/dt = −αĤ ,

c) dŶ /dt = P̂ /M ,

d) dP̂ /dt = −αx̂.

(2)

For M sufficiently large Ŷ can be considered constant during the inter-
action. We call it Ŷ0. Sor for 0 < t < τ we have from (2)

a) x̂(t) = x̂0(t)− αŶ0t2/2m ,

b) p̂(t) = p̂0(t)− αŶ0t.

c) P̂ (τ) = P̂0 − α
∫ τ

0

x̂(t)dt

= P̂0 − αx̂0(τ/2)τ − α2Ŷ0τ
3/6m

= P̂0 − αx̂(τ/2)τ − 7α2Ŷ0τ
3/24m.

(3)
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The equations (3c) can be rewritten as follows

a) x̂0(τ/2) = P̂0 − P̂ (τ))/ατ + αŶ0τ
2/6m ,

b) x̂(τ/2) = P̂0 − P̂ (τ))/ατ + 7αŶ0τ
2/24m ,

(4)

where
a)x̂0(τ/2) = x̂(0) + p̂(0)τ/2m

is the position operator in a non-perturbed state at t = τ/2.

b)x̂0(τ/2) = x̂(0) + p̂(0)τ/2m− αŶ0τ2/8m (5)

is that in a perturbed state.

Measuring P̂ (τ) with a r.m.s. errour ∆P̃ we can estimate the value
of x0(τ/2) and x(τ/2).

If P̂0 is non correlated with Ŷ0 we have the following r.m.s. error of
the estimation of the position x0(τ/2)

(∆x̃0)2 = (1/ατ)2[(∆P̃0)2] + (ατ2/6m)2(∆y0)2, (6)

where (∆P0)2, (∆y0)2 are dispersions corresponding to the initial state
of QRS. As soon as (∆P0)2(∆y0)2 ≥ h̄2/4 minimizing the right-hand
part of (6) with respect to ατ we obtain

∆x̃0 ≥ (h̄τ/3m)1/2 (7)

It is the so called standard quantum limit of the position’s measurement
error.

This limit can be beat by means of an appropriate correlation among
P̂0 and ŷ0. Let be

P̂ (0) = P̂ 0 − ατ2ŷ0/6m (8)

where P̂ 0 is non-correlated with ŷ0. This correlation can be produced
by means of a field such as the field of an electron lens. In this case we
have from (4)

(∆x̃0)2 = [(∆P̃ )2 + (∆P̃ 0)2]/(ατ)2 → 0 (9)

if ατ →∞.
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Analogous picture takes place in case of the estimation of x(τ/2) if
P̃ (0) = P̂ 0 − 7ατ2ŷ0/24m.

Consequently the correlation helps us to remove the back action of
the meter from the position’s estimate. Nevertheless one cannot elimi-
nate this action from the very position.

The equation (3a) gives us the variance of the position perturbance
at time τ/2

∆x̃(τ/2) = ατ2∆y0/8m (10)

As it follows from (2b) the momentum’s variance is increased by

∆p̃(τ) = ατ∆y0 (11)

The momentum perturbance originates a position perturbance also for
the period following the measurement (t > τ) and changes its variance
for t� τ by

∆x̃(τ) = ατt∆y0/m (12)

Leaving out of account an uncertainty of the initial momentum p(0) we
obtain from (10), (12) that an overall dispersion of the position at time
t� τ is equal to

(∆x(t))2 = (∆x̃0)2 + (∆x(t))2 ≥ 2∆P 0∆y0t/m ≥ h̄t/m (13)

Therefore a result of a subsequent measurement of a free particle’s posi-
tion cannot be predicted more precisely than [3] (h̄t/m)1/2 (V. Bragin-
sky, Yu. Vorontsov, 1974).

The limiting error (13) is known as the standard quantum limit as
well.

This limiting error of prediction was widely discussed by physicists
in connection with the problem of gravity waves detection because this
unprediction of position leads to a limit for sensitivity of force detection
[4].

Quantum theory tells us that if an observable Â2 does not commute
with Â1 then the measurement of Â1 leads inevitably to unpredictable
perturbance of the variable Â2. In case of free evolution of a particle we
have

[x̂(t1), x̂(t2)] = ih̄(t2 − t1)/m. (14)
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Thus we are led to the conclusion: it is impossible to prepare a state of
a free particle in which its position is entirely predictable at certain time
t2 by measuring of the position at time t1 < t2.

This desired state can be performed if after the first position’s mea-
surement an appropriate correlation between x̂(t) and p̂(t) is produced
by means of a classical field like a focusing field.

2. Continuous Position’s Measurements (Monitoring of Posi-
tion)

Above we have discussed the measuring process in which only one
particle serves as QRS. This measurement is not of practical interest. In
real measuring process a flow of particles (or quasiparticles) is used such
as electrons, photons, etc. In this case the force of the back action may
be written as follows [2]

F̂ba(t) =
∑

F̂j(t− tj) (15)

where F̂j(t − tj) is the force of the back action of one of the particles.

The force F̂j(t − tj) acts in the interval −τj < t − tj < 0, where τj is a
duration of the interaction of this particle with the system.

A result of an approximate measurement of an observable Â(t) may
be represented as a result of an exact measuring of sum Â(t) + Âa(t),
where Âa(t) is a certain operator of the measuring device. In the above
considered example Âa(t) was represented by P̂0(t)/ατ

In order to calculate a measuring error of position one can used the
following equivalent scheme.

Figure 4. Equivalent scheme of position measuring.
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It has been deduced [2] that in the case of stationary position mea-
suring, the spectral density of the random functions Fba(t) and xa(t)
obey

SF (ω)Sx(ω)− |SFx(ω)| ≥ h̄2/4 + h̄ω|ImSFx(ω)| (16)

where SFx(ω) is a cross-correlation of F̂ba(t) and x̂a(t) and ImSFx(ω)
is the imaginary part of it. (Yu. Vorontsov, F. Khalili, 1982).

The simplest formula SFSx ≥ h̄2/4 was deduced in 1976 by R.P
Giffard.

The output signal of the register is classical. Thus the classical
theory of optimum estimation can be used to estimate a value of the
variable of interest. In order to ascertain a quantum limit for the mea-
suring error on a linear system it is sufficient to make a classical analysis
of the equivalent scheme taking into account the equation (16). (See for
details [2]).

It turns out than a r.m.s. error of estimation of a time average
coordinate of a free particle obeys the inequality

∆xτ ≥ [(SFSx)1/2τ/m]1/2 ≥ (h̄τ/2m)1/2 (17)

(It was assumed that SFx ≡ 0, SF (ω) = SF , Sx(ω) = Sx).

An estimation error of a free particle’s momentum under the same
conditions obeys the inequality

∆pτ ≥ [(SFSx)1/2m/τ ]2 ≥ (h̄m/2τ)1/2 (18)

The amplitude a0, the real (X̂1) and imaginary (X̂2) parts of the complex
amplitude of a harmonic oscillator can be estimated in this way with the
following imprecisions

∆ã0 ≥ [(SFSx)1/2m/ω0]1/2 ≥ (h̄/2mω0)1/2 (19)

∆X1 = ∆X2 ≥ (h̄/2mω0)1/2. (20)

3. Quantum Nondemolition (Nonperturbation) Measurements
(QND) [1-3,5,6]

Quantum nondemolition measurement of an observable N is such
that the back action of QRS on the system under measuring has no
impact on the results of the first and subsequent measurements of this
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observable. Such measurements are called back-action-evading measure-
ments as well.

QND observables are those which can be measured, in principle, by
QND means. N̂ is a QND observable, if and only if, when the system is
evolving freely in the Heisenberg picture, N̂(t) commutes with itself at
the different moments of time

[N̂(tj), N̂(ti)] = 0 (1)

This condition is satisfied, in particular, by motion integrals. In case
of a free particle the energy and momentum are conserved and thus
are QND observables. For a harmonic oscillator the QND observables
are the energy, the real (X̂1) and imaginary (X̂2) parts of the complex
amplitude

a)
X̂1 = x̂(t) cosω0t− [p̂(t)/mω0] sinω0t,

b)
X̂2 = x̂(t) sinω0t+ [p̂(t)/mω0] cosω0t. (2)

Evolution of QND observables during QND Measurements
[2,7,8]

There are two types of QND observables. Some of QND observables
can be free from the influence of the back action even during the interac-
tion of the system with the QRS. Others are perturbed unpredictably in
the interval of the interaction but are restored to its original value when
the interaction is turning off. In the latter case a certain observable
N̂1(t) is conserved during the interaction and is equal to the observable
N̂(t) of the free system.

Such non-canonical QND observables as velocity, kinetic energy and
others functions of generalized velocity are bound to be perturbed in-
evitably in a process of interaction between a system and QRS. If this
would not be the case one could prepare such states of the system in
which the uncertainty relation is violated. This conclusion may be ex-
plained thus. When the momentum is measured, the uncertainty of the
coordinate should increase. A random variation of the coordinate can be
caused by motion with an indeterminate velocity during a known time
or motion with a determinate velocity during an indeterminate time.
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However, if velocity could be monitored (tracked) its uncertainty at any
moment should be equal to zero.

Example. Let us consider the following interaction

Ĥ = p̂2/2m+ ap̂Ŷ + P̂ 2/2M. (3)

Consequently, we have
dp̂/dt = 0, (4)

i.e. the generalized momentum p̂ is conserved. On the other hand, the
velocity is

dx̂/dt = p̂/m+ aŶ (t), (4a)

i.e. the velocity is perturbed during the interaction. Nevertheless the
velocity is restored as the interaction is turning off (a = 0).

On the other hand, the Hamiltonian (3) can be rewritten as follows

Ĥ = p̂20/2m− x̂Ŷ (da/dt) + a2x̂2/2M − ax̂P̂ /M + P̂ 2/2M. (5)

Consequently, we have

dx̂/dt = p̂0/m , dp̂0/dt = ȧŶ + a ˆ̇Y , i.e. (d/dt)(mˆ̇x− aŶ ) = 0.
(6)

In this case the generalized momentum p̂0 is equal to a kinetic momentum
and thus is not conserved during the interaction. But the same value
(mˆ̇x− aŶ ) that in the first case is conserved.

4. Conditions of realization of QND measurements [2]

Generalized condition of QND measurements can be formulated as
follows. In order for the QND measurement of a certain QND observable
N̂ to take place, it is necessary and sufficient that the QRS carries after
the interaction with the system an information about the N̂ and no
information about observables that do not commute with N̂ .

This condition is satisfied, in particular, by the following Hamilto-
nian of interaction

Ĥ = ĤS + αN̂Ŷ + Ĥa (7)

It is generally believed that such an Hamiltonian is the necessary condi-
tion of the QND measurement. But strictly speaking such an Hamilto-
nian is a sufficient but not a necessary condition of the QND measure-
ment.
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Let as consider an example. In order to realize the QND mea-
surement of X̂2 one can us an interaction which is characterized by the
interaction Hamiltonian Ĥi = αx̂(t)Ŷ if the duration of the interaction
is equal to one half period of oscillations. In this case the overall change
of the momentum of the QRS will be equal to∫ π/ω

0

x̂(t)dt =

∫
(X̂1 cosωt+ X̂2 sinωt)dt = X̂22/ω, (8)

i.e. the QRS gets as a result an information only about the X̂2.

Nondemolition measurement of the energy of a harmonic os-
cillator [2,9]

Let us consider the scheme in fig. 5.

Figure 5. Harmonic oscillator.

Here the LC-circuit is the system under measuring. The QRS is rep-
resented by the mechanical oscillator (M,k) attached to movable parts
of the inductor and of the capacitor. One can do so that it will be

1/L(Ŷ ) = (1 + αŶ )/L0 , 1/C(Ŷ ) = (1 + αŶ )/C0 (9)

where L0, C0 are the nonperturbed values of the circuit’s parameters.

Consequently, we obtain

Ĥ = (p̂2/2L0+ q̂2/2C0)[1+αŶ ]+Ĥa = (n̂+1/2)h̄ω0[1+αŶ ]+Ĥa, (10)

where n̂ is the number operator,and ω0 = (1/L0C0)1/2. In this case we
have

dn̂/dt = 0,
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i.e. number of quanta remains fixed when the QRS is evolving. How-
ever, the frequency depends on the coordinate operator of the QRS and
therefore is an operator itself:

ω̂ = ω0(1 + αŶ ). (11)

Accordingly, what does not change during the measurement process is
not the current energy of the resonator, but the quantum number n.

Also we have

ih̄dp̂y/dt = [p̂y, Ĥa] + Ĥ0[p̂y, αŶ ], (12)

where Ĥ0 = (n̂+ 1/2)h̄ω0 is the operator of the oscillator’s unperturbed
energy.

Measuring p̂y one can estimate values of Ĥ0 and n̂. After the mea-
surement the original value of the frequency can be restored, and, con-
sequently, one can restore the initial energy.

Analyzing this scheme we have found, that the possibility of energy
measurement of a conserved lumped circuit with an error

∆H0 < h̄/τ

(τ is the duration of the measurement) does not contradict the principles
of quantum mechanics. (In frames of validity of nonrelativistic theory).

An uncertainty of the frequency ω during the measuring will cause
the increase of phase uncertainty by the amount

∆̃ϕ̇ = ∆

∫ τ

0

ω̂(t)dt ≥ 1/2∆ñ (13)

Also the following equation takes place

∆H̃ · ∆̃H/H0 ≥ h̄/2τ (14)

where ∆H = ∆ñh̄ω0 is the r.m.s. measuring error of the energy, H0 =
(n+1/2)h̄ω0, ∆̃ is the uncertainty of the energy perturbation during the
measuring.

The equation (14) can be rewritten as follows

∆H̃ ≥ (h̄/2τ)(ω0/∆̃ω) (15)
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where ∆̃ω = ∆̃ϕ/τ is a perturbation uncertainty of the frequency aver-
aged over τ .

Consequently, a necessary condition of the measuring of the oscilla-
tor energy with the error ∆H̃ < h̄/τ is such an initial state of QRS that
the relative uncertainty of the frequency will be above 0, 5.

During the energy measurement of a nonconservative oscillator a
change of relaxation time of the oscillator takes place. As a result it is
not possible to measure the energy with an error under h̄/τ∗0 where τ∗0
is a relaxation time of the free oscillator [2].

Nondemolition Measurement of the Energy of Electromagnetic
Waves

The energy of an electromagnetic wave in a volume V in a nondis-
persive substance is equal to

H =

∫
(1/8π)(εE2 + µH2)dV =

∫
(εµ/8π)(E2/ρ+ ρH2)dV (1)

where ρ = (µ/ε)1/2. The equation (1) tells us : in order for the nonde-
molition measurement of the energy to take place QRS must change the
permeabilities ε and µ simultaneously and by such means that the value
ρ remains fixed. In this case velocity (v = 1/(εµ)1/2) and frequency
(ω = 2πv/λ) of the wave will be changing but the number of quanta (n)
and the wave length (λ) remain fixed. Up to now it does not spell out
how such a measurement can be realized.

Before we proceed let us note an important result due to the theory
of relativity. The variance of the change of the wave frequency at such
a measurement is

∆ω = 2π∆v/λ < 2πc0/2λ = ω0/2

i.e. ∆ω/ω0 < 1/2.

Consequently, the error of the measuring of the energy of an elec-
tromagnetic wave cannot be under h̄/τ .

This resolution can be obtained by other mean. During the mo-
mentum measurement the perturbation of the conjugate coordinate must
take place such that ∆̃x ≥ h/2∆p̃. Since in this case ∆̃x = ω∆̃v < τc0/2
and the wave energy H = pc0, we have

∆H̃ ≥ h̄/τ
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This result contradicts that which was obtained from the analysis of the
energy measurement on lumped circuits. The contradiction is resolved
by the difference of the relations between momentum and energy in the
first and in the second objects.

The method of energy measurement based on the optical Kerr’s
effect [10-12] is not the QND one. It is quasi-QND [13].

5. Detection of an external Action on the System

In experimental physics many phenomena are studied through so
called test bodies (TB). Observing a change of a state of the TB, an
experimenter obtains an information about fields which act on the TB.
In this way, in particular, the problem of detection of force action on TB
is solved. A process of detection consists of three stages. At the first
stage one prepares a certain state of the TB. Subsequently, the system
evolves. At the third stage, a suitable measurement is carried out and
from its result using a certain criterion one decides whether the force has
acted on the TB or not.

In order to ascertain an ultimate quantum limit for a probability
of a wrong detection of the force we shall consider the case of a pure
initial state of the TB. We shall designate : the initial state of the
TB as |Ψ(0)〉, the Hamiltonian and the unitary transformation operator
which correspond to the free evolution of the TB as Ĥ0 and as Û0(t),
respectively, and those which correspond to the evolution in presence of
the force action as Ĥ1 and as Û1(t).

The TB’s state at time t can transform into

|Ψ0(t)〉 = Û0(t)|Ψ(0)〉 , or into |Ψ1(t)〉 = Û1(t)|Ψ(0)〉.

It is known [1] that the quantum limit for the average probability of an
error in discrimination of two states (|Ψ1〉 and |Ψ0〉) is described by the
equation [14]

Pw.d. = [1− (1− 4ζ0ζ1|γ|2)1/2], (1)

where ζ0, ζ1 are the a priori probabilities of the states |Ψ0〉, |Ψ1〉, respec-
tively ; |γ| = |〈Ψ0|Ψ1〉|.

This limit can be achieved by an optimal measurement that is pre-
dicted by the quantum theory of detection. In the case under consider-
ation we have

|γ| = |〈Ψ(0)|R̂(t)|Ψ(0)〉| (2)



Standard and non standard quantum limits . . . 447

The operator R̂ = Û+
0 Û1 obeys the equation

ihdR̂/dt = Ĥ0
i R̂, (5)

where
Ĥ0
i = Û+

0 (Ĥ1 − Ĥ0)Û0. (5)

The operator R̂(t) is similar to the scattering operator which is used in
the interaction representation.

Representing R̂(t) in the form

R̂(t) = eiϕ̂(t), (6)

we obtain

|γ|2 = |
∫ ∞
∞

eiϕdΦ(ϕ)|2 (7)

where Φ(ϕ) is the probability’s distribution function for the eigenvalues
of the operator ϕ̂.

Diverse functions Φ(ϕ) can give us |γ| = 0. In case of an optimal
initial state |ψ(O)〉opt we have obtained [2]

|γ| = cos2 ∆ϕ if ∆ϕ < π/2 , 0 if ∆ϕ > π/2 (8)

The optimal state is that in which |γ| = 0 by a minimal value of ∆ϕ.
Such a state is characterized by the following distribution of the proba-
bility density of ϕ

W (ϕ) = [δ(∆ϕ− π/2) + δ(∆ϕ+ π/2)]/2 (9)

Let us consider the important particular case such that the operator
Ĥ0
i (t) obeys the following equation

[[Ĥ0
i (t1), Ĥ0

i (t2)], Q̂] = 0 (10)

where Q̂ is any operator. This condition is fulfilled when a classical force
acts on TB. We proved the formula

ϕ̂(t) = −h−1
∫
Ĥ0
i (t′)dt′ (11)
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In case of detection of the classical force F (t) which acts for a time τ̃ we
have

Ĥ0
i (t) = F (t)x̂0(t) (12)

and therefore

ϕ̂(t) = h̄−1
∫
F (t)x̂0(t)dt (13)

where
x̂0(t) = Û+

0 (t)x̂(O)Û0(t). (14)

The formula (13) brings out a way to achieve a maximal value of the ∆ϕ
if the function F (t) is known.

Unfortunately, it is close to impossible to realize the optimal state
|Ψ(0)〉opt. Therefore we will consider a more practicable states which are
characterized by the following function

W (ϕ) = α exp(−ϕ/2σ)[1 + f(ϕ)], (15)

where f(ϕ) is a finite-order polynomial, σ and α are parameters.

The distribution of the form (15) occurs, for example, when the
classical force acts on an harmonic oscillator that has been prepared in
one of the following states: in a coherent state (f(ϕ) ≡ 0), in a squeezed
state (f(ϕ) ≡ 0), in a state with given energy ((1 + f(ϕ)) is the Hermite
polynomial.

In order to ascertain a limit for the sensitivity of detectability we
shall consider the case of ∆ϕ < 1 and σ < 1. In this assumption it was
obtained from (13) and (15)

|γ|2 ≈ 1− (∆ϕ)2 (16)

Therefore, if ζ0 = ζ1 = 1/2 it follows from (1) and (16)

Pw.d. ≈ (1−∆ϕ)/2 (17)

The equation (17) enables us to ascertain a quantum limit for a force
detection sensitivity (FDS). We shall regard as the FDS such an ampli-
tude of the force by which the Pwd amounts to a value established by
the experimenter (the so called a threshold of detectability).

Considering some examples we will suppose that the threshold is
equal to Pwd ≈ 0, 25. This Pwd takes place when the signal equals with
a variance of the fluctuation.
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Example 1.

F (t) = F0, 0 < t < τ̃ , 0 otherwise . (18)

It follows from (13), (17) that in this case the FDS is equal to

F0τ̃ = h/2∆x (19)

where

∆x = ∆(1/τ̃)

∫
x0(t)dt (20)

a) If TB is represented by a free particle of mass m we have ∆x =
∆x(τ̃ /2). To illustrate the equation (19) we will answer the fol-
lowing question. Let us assume that we have a divergent beam of
particles. At what time must the force act on this beam along axis
x to get the minimal Pw.d. ?

According to formula (19) the latter the action, the less the Pw.d..

b) TB is represented by an harmonic oscillator (mass m, frequency ω0).

Let be ω0τ̃ � 1. Then in case of a coherent initial state |ψ(0)〉 we
obtain the following FDS

F0τ̃ =
√
h̄mω0/2 (21)

If the initial state is an eigenstate |n〉 of the number operator and n� 1
we have

F0τ̃ =
√
h̄mω0/2n (22)

Prof. V.B. Braginsky was the first to obtain the equations (21) and (22)
when he had been considering certain methods of force detection [15].

Example 2.

F (t) = F0 sin Ωt if 0 ≤ t ≤ τ̃ , 0 otherwise .

a) This force acts on a free particle.

Let be Ωτ̃ = 2Kπ(k = 1, 2 . . .) . In terms of the formula (13) we
obtained

F0τ̃ = h̄mΩ/2∆p (23)
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where ∆p is the variance of particle’s momentum. Subsequently, in case
of action of this force on a divergent beam the FDS does not depend on
the acting moment.

b) The force acts on an harmonic oscillator and ω0 = Ω. In this case
we obtain

F0τ̃ = h̄/∆X2 (24)

where ∆X2 is the variance of the imaginary part of the complex
amplitude. In the coherent state ∆X2(c) = (h̄/2mω0)1/2. In n-state

(|n〉)∆X2(n) = h̄n/2mω0)1/2. Also it can be ∆X2 � ∆X2(c) in a
squeezed state.

It is of interest to emphasize that the minimum-uncertainty state
∆x∆p = h̄/2 has no advantage over other Gaussian’s pure states. Nev-
ertheless, the optimum measurement that is required to minimize the
detection error depends on the initial state |ψ(0)〉 of TB and of the
waveform of force. An optimal observable Â which must be measured is
given by the relation

Â = Û1|ψ(O)〉〈ψ(O)|Û+
1 − Û

+
0 |ψ(O)〉〈ψ(O)|Û+

0 .

6. Relation between Measurement Error and Uncertainty of
Perturbation

It is known that in general case the uncertainties of any observables
Â and B̂ are related by the following equation [16]

(∆A)2(∆B)2 ≥ h̄2|〈C〉|2/4(1− r2) (1)

where r is the coefficient of correlation among A and B at the given state
of the system,

Ĉ = [Â, B̂]/ih̄

The Heisenberg’s relation is the particular case of the uncertainty rela-
tion (1) with the condition that Ĉ = 1, r = 0.

The values ∆A and ∆B are not related to the measuring errors.
To test the validity of the equation (1) it is necessary to perform a large
number of exact measurements of : A,B,C, (AB+BA) on different parts
of an ensemble of systems in the given state. Nevertheless it is commonly
believed that the measurement error (∆Ã) and the uncertainty of per-
turbation (∆B̃) are related by the same equation (1). To justify this
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opinion they give the example of the momentum perturbing the position
measurement. They obtain

(∆x̃)2(∆p̃)2 ≥ h̄2/4 (2)

Analyzing this problem we have obtained that this opinion is valid only
if C is not an operator and r = 0 [2].

The perturbing uncertainty (∆B̃)2 is determined by the equation

(∆B̃)2 = (∆B)21 − (δB)20 (3)

where (∆B)0, (∆B)1 are the uncertainties of B respectively at the ini-
tial state (ρ0) and at the mixed state (ρ1) (which takes place after the
interaction of QRS with the system), i.e. (∆B̃)2 is the change in the
dispersion of B due to the interaction of the system with QRS. (∆B̃)2

can be negative. In case of [[B̂, Â], Â] = 0 we have obtained

(∆Â)2(∆B̃)2 ≥ h̄2/4〈|Ĉ|2〉 6= h̄2/4|〈Ĉ〉|2. (4)

For example, on measuring the free particle’s energy it should be

(∆H̃)2(∆x̃)2 ≥ (h̄/2m)2〈p̂2〉. (5)

If
[[B̂, Â]Â] 6= [[Â, B̂]B̂],

we obtain
(∆Ã)2(∆B̃)2 6= (∆Ã)2(∆B̃)2. (6)

In the particular case we have

(∆x̃)2(∆H̃)2 6= (∆H̃)2(∆x̃)2. (7)
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