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ABSTRACT. By constructing a two particle wave function (for two
fermions) we discuss possible probes to both gauge boson compos-
iteness and violations of the exclusion principle using discrete time
Quantum theory.

RÉSUMÉ. Après avoir construit une fonction d’onde à deux partic-
ules (pour deux fermions), nous discutons des tests possibles à la fois
du caractère composite du boson de jauge et de violations du principe
d’exclusion en utilisant une théorie quantique à temps discret.

Introduction.

Many of the central problems of particle physics may be well hid-
den beneath a scale that cannot be probed by ordinary experiments
or present high energy accelerators. One of those problems is the ori-
gin of Lorentz invariance and the possible grainy and discrete nature of
space and time at small scales. Finkelstein has suggested that space-time
emerges from the primitive structure of a quantum net where continu-
ous space-time and conventional field theory emerge after passing to
an averaging process [1]. Wheeler [2] has also suggested such discrete
ideas with the known physics of the continuum being rooted in a com-
binatoric sequence of yes-no choices. In a practical sense both Snyder
[3] and t’Hooft [4] have suggested the presence of a discrete space-time
latice to eliminate the divergences in field theory and quantum grav-
ity. In order to better understand the evaluation of path intervals T.D.
Lee has introduced a discrete time variable in order to dispense with
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the arbitrary value of the measure in path integrals [5]. On very fun-
damental grounds Bombelli et. al. have adopted a novel approach to
the fundamental structure of space-time, they have through algebra and
topology derived the Lorentz signature (+1,−1,−1,−1) starting with a
discrete causal set of points [6]. A slightly different path to discreteness
has been pioneered by Caldirola where he replaces time derivatives by
discrete time differences in both the equation of radiation reaction and
quantum theory [7,8]. The fundamental reason for this stems from the
belief that at some scale there exists a microscopic uncertainty principle
forbidding the response of a particle’s wave function arbitrarily close to
the point of application of the Hamiltonian. Recami has reasoned that
this uncertainty principle emerges from the fact that each particle has
its own sense of time (particles microuniverse) and the interaction of the
particle with the world of synchronous observers generates a width in
response time that we perceive as a discrete time interval leading to a
microscopic uncertainty principle for the response time in the frame of
synchronous observer [9]. The Lie Admissible structure of the Caldirola
approach has been discussed by Santilli et. al. [10] with interactions
carried by the isotopy of the theory. We have applied this approach to
electron spin resonance [11], electron spin polarization precession [12]
and spectral shifts in hydrogen [13] for the discrete time difference case.
For the case of discrete spatial differences we have studied neutron in-
terferometry suggesting a range of discrete spatial lengths that may be
measured [14]. We have also applied the Caldirola approach to the case
when quantum numbers within a particle might be hidden and the dis-
crete temporal effects alone can probe these hidden quantum numbers
[15]. In combination with the central limit theorem we have also pro-
posed a method for looking for compositeness in the lepton spectrum
using discrete time difference spin polarization precession [16]. In the
following note we propose to study two fundamental questions, can dis-
crete time difference quantum theory be used to probe the composite
structure of gauge bosons and secondly if there are any violations of the
exclusion principle for the constituent (preons) of gauge bosons can dis-
crete time quantum theory probe for these violations. With regard to
the composite structure of gauge bosons (w+, w−, z), the measured val-
ues of the magnetic dipole moment and the electric quadrapole moment
of (w+, w−, z) can be used to probe for deviations from standard model
predictions of these quantities, these deviations are also suggestive of a
composite gauge boson structure [17,18]. In what follows we discuss a
simple model of gauge boson composite structure and discuss how the
structure may be probed using discrete time quantum theory.
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With regard to the exclusion principle there have been modifications
to the usual statistics that allow for more than one fermion in a sym-
metric state or more than one boson in an anti-symmetric state, such
modifications termed parastatistics have been discussed by Greenberg
et. al. [19,20] and Greenberg [21]. The approach of the above authors
is to modify the usual commutation and anti-commutation relations to
include tri-linear relations that generate the violations to the exclusion
principle. Jannussis et al. [22], Santilli [23] and Myung et. al. [24]
have also discussed violations of the exclusion principle within the con-
text of hadronic mechanics. The exclusion principle has been well tested
for atomic physics with extremely small violations being allowed from
a study of atomic levels [25], however for weak interactions in elemen-
tary particle phenomena relatively poor tests exist to test for its validity
[26]. The great interest in bosonization in field theory [27] may suggest
that particle statistics are related to topological dynamics that may vi-
olate causality. In other words a fermion’s topological structure (spin
structure) may feel another fermion’s topological structure over space
like intervals and we just use this fact in a phenomenological manner to
construct symmetric or anti-symmetric wave functions. If discrete time
effects exist in nature we suggest that they may be a probe to test for vi-
olations of the exclusion principle by basically suggesting that over short
time intervals a fermion structure or boson structure may be uncertain.
This would allow for a small fraction of a two fermion system to have
a symmetric wave function. We study this possibility and look for ob-
servable consequences of a state of mixed symmetry within the context
of discrete time quantum theory.

2. Composite Structure of Gauge Bosons and Discrete Time
Quantum Theory.

We begin our analysis by modeling the internal structure of a gauge
boson by the non-relativistic hamiltonian for two preons (spin 1/2) in an
infinite potential well in the presence of an external magnetic field as,

H = M0C
2 +

P 2
1

2m
+
P 2
2

2m
+

e

m
Sz1B +

e

m
Sz2B + gS1 · S2 (2.1)

here the preons have heavy masses (m) so as to justify the non-relativistic
approximation. Such a non-relativistic model of gauge bosons has been
previously discussed by Grosser et. al. [28]. Also Sz1 and Sz2 are spin
operators for the two fermions each of charge e = e0/2, (e0 = electronic
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charge), P1, P2 are momentum operators, B = external z component
magnetic field and M0C

2 is rest energy parameter relative to which the
gauge boson has excitation energy due to the motion of the preons and
the spin-spin coupling specified by g. The gauge bosons coupling to the
external magnetic field is specified by the terms containing B in Eq.(2.1).
For the discrete time modified Schrodinger equation we have (Ref. 10)

[
− h̄2

2m

∂2

∂x21
− h̄2

2m

∂2

∂x22
+

e

m
(Sz1 + Sz2)B + g(S1 · S2) +M0c

2
]
ψ

= ih̄
[ψ(t+ τ

2 )− ψ(t− τ
2 )

τ

] (2.2)

(τ = discrete time interval), (ψ = total wave function).

We separate the equation for a spin up state (for both fermions) by
writing

ψ = U(x1, x2)ααT (t) (2.3)

here α = spin up for one fermion, β = spin down for one fermion).
Eq.(2.2) and Eq.(2.3) give

[
− h̄2

2m

∂2

∂x21
− h̄2

2m

∂2

∂x22
+M0C

2
]
U(x1, x2) = E1U(x1, x2) (2.4)

and [ e
m

(Sz1 + Sz2)B + gS1 · S2

]
αα = E2αα (2.5)

with

ET (t) = (E1 + E2)T (t) = ih̄

[
T (t+ τ

2 )− T (t− τ
2 )
]

τ
(2.6)

We further separate Eq.(2.4) as

[
− h̄2

2m

∂2

∂x21
− h̄2

2m

∂2

∂x22
+M0C

2
]
U1(x1)U2(x2) = E1U1(x1)U2(x2) (2.7)

and

− h̄2

2m

∂2

∂x21
U1[

1

U1
] = α2 (2.8)

− h̄2

2m

∂2

∂x22
U2[

1

U2
] = β2 (2.9)
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with
E1 = α2 + β2 +M0C

2 (2.10)

We next choose the fermions to be confined to within (0, L) with V =∞
for x1, x2 < 0, x1, x2 > L. This gives

E1 = M0C
2 +

n21h
2

8mL2
+

n22h
2

8mL2
(n1 6= n2) (2.11)

U1(x1) =

√
2

L
sin

n1πx1
L

, U2(x2) =

√
2

L
sin

n2πx2
L

(2.12)

Also, Eq.(2.5) gives

E2 =
e

m
(h̄B) +

gh̄2

4
(2.13)

where S1, and S2 are spin 1/2 operators for particle 1, 2 respectively.

For the solution of Eq.(2.6) we have for the temporal part of the
wave function

T (t) = Ce−
2
τ [sin

−1 (E1+E2)τ

2h̄ ]it (2.14)

For the total anti-symmetric wave function in the two fermion (preon)
state representing the internal structure of the gauge boson we have for
(Sz = 1)

ψ =
2

L

1√
2

[sin
n1πx1
L

sin
n2πx2
L

− sin
n1πx2
L

sin
n2πx1
L

]

× (ααe−
2
τ [sin

−1 (E1+E2)τ

2h̄ ]it)

(2.15)

where

E+ = E1 + E2 = M0C
2 +

n21h
2

8mL2
+

n22h
2

8mL2
+
eh̄B

m
+
gh̄2

4
(2.16)

In a similar manner for the state S2 = −1 we have

ψ =
2

L

1√
2

[sin
n1πx1
L

sin
n2πx2
L

− sin
n1πx2
L

sin
n2πx1
L

]

× (ββe−
2
τ [sin

−1 (E−τ
2h̄ ]it)

(2.17)

where

E− = M0C
2 +

n21h
2

8mL2
+

n22h
2

8mL2
− eh̄B

m
+
gh̄2

4
(2.18)
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and for Sz = 0 we have

ψ =
2

L

1√
2

[sin
n1πx1
L

sin
n2πx2
L

− sin
n1πx2
L

sin
n2πx1
L

]

× ((
αB + βα√

2
)e−

2
τ (sin

−1 E0τ

2h̄ )it)

(2.19)

where

E0 = M0C
2 +

n21h
2

8mL2
+

n22h
2

8mL2
+
gh̄2

4
(2.20)

To study gauge boson spin polarization precession in an external mag-
netic field B we choose the initial state to be such that

〈Sx〉t=0 = h̄

the Sx = h̄ state at t = 0 that is a linear combination of Eq.(2.15),
Eq.(2.17) and Eq.(2.19) is

ψ =[
αα

2
+
ββ

2
+

1

2
(αβ + βα)]

1√
2

[sin
n1πx1
L

sin
m1πx2
L

− sin
n2πx2
L

sin
n2πx1
L

]
2

L

(2.21)

Defining

a1 = +
2

τ
sin−1

(E+τ

2h̄

)
for Sz = 1 from Eq.(2.16)

a2 = +
2

τ
sin−1

(E+τ

2h̄

)
for Sz = −1 from Eq.(2.18)

a3 = +
2

τ
sin−1

(E0τ

2h̄

)
for Sz = 0 from Eq.(2.20)

(2.22)

we have for any time t using the linear combination corresponding to
Eq.(2.21) at time t

ψ = [
ααe−ia1t

2
+
ββe−ia2t

2
+

(αβ + βα)e−ia3t

2
]

× (
1√
2

2

L
[sin

n1πx1
L

sin
n2πx2
L

− sin
n1πx2
L

sin
n2πx1
L

])
(2.23)
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For the x component spin polarization at time t we use Eq.(2.22),
Eq.(2.23) and Sx = Sx1

+ Sx2

〈Sx〉 =

∫ L

0

∫ L

0

ψ+(Sx1 + Sx2)ψ dx1dx2 (2.24)

In Eq.(2.22) if

a1 '
E+

h̄
, a2 '

E−

h̄
, a3 '

E0

h̄
(2.25)

in the limit of τ → 0 then Eq.(2.23) gives

〈Sx〉 = h̄ cos(
eB

m
)t (2.26)

which is the usual expression for the expectation value of 〈Sx〉 for a spin
one particle composed of two spin 1/2 preons simultaneously precessing
with the same rate about a z component magnetic field. For Eq.(2.26)
to agree with the formula for a gauge boson of (mass Mw), charge ee =
1.6 × 10−19 coul., of spin 1 precessing about a z component magnetic
field we must set 2m = Mw, (e = ee/2). This essentially states that the
effective preon mass must be about 1/2 the value of the composite gauge
boson mass (Mw) since the standard model predicts the precession rate
to be [29]

ω =
eeB

Mw
, (ee = electronic charge )

Also, since it has been long known that either a chiral symmetry or super
symmetry must protect composite particles from acquiring large masses
it is not unnatural that two preons, each of mass Mw/2 can bind together
through hypercolor type binding forces to generate a composite mass of
approximate value Mw. These binding factors due to hypercolor type
forces are all lumped into M0C

2 in Eq.(2.1). We also expect the other
terms in Eq.(2.1) to produce excitation energies that are small compared
to M0C

2 since the known uncertainty in the mass of the gauge bosons
is small. In Eq.(2.24) we will thus approximate

m ' Mw

2

Eq.(2.24) gives for the composite system

〈Sx〉 =
h̄

2
cos(a1 − a3)t+

h̄

2
cos(a3 − a2)t (2.27)
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〈Sx〉 =
h̄

2
cosω1t+

h̄

2
cosω2t (2.28)

where ω1 = a1 − a3, ω2 = a3 − a2. Expanding ω1, ω2 using Eq.(2.22),
the expansion

sin−1x ∼= x+
x3

3!

and Eq.(2.16), Eq.(2.18) and Eq.(2.20) we have for the average x spin
polarization

〈Sx〉 =
h̄

2
cos(

eB

m
t+

τ2

24h̄3
(E3

+ − E3
0)t)

+
h̄

2
cos
(eB
m
t+

τ2

24h̄3
(E3

0 − E3
−)t
) (2.29)

We thus expect two terms in the x spin polarization that vary according
to Eq.(2.29). A careful study of the time dependence of the x spin po-
larization precession along with a comparison with Eq.(2.29) could serve
to place limits on the discrete time interval as well as the parameters
M0C

2, g in Eq.(2.16), Eq.(2.18) and Eq.(2.20). A deviation of the spin
polarization precession rate from

ω =
eeB

Mω

would be a positive signature for both gauge boson compositeness as well
as discrete time effects in quantum theory.

We now turn to the question of how the Pauli Principle might be
violated for a two fermion bound state, it turns out that for a symmetric
spin state, the spin polarization precession rate is insensitive of whether
the spatial state is symmetric or anti-symmetric. However, if a two
fermion state is in a state of mixed symmetry

ψ = A((

√
2

L
)2 sin

n1πx1
L

sin
n2πx2
L

− (

√
2

L
)2 sin

n1πx2
L

sin
n2πx1
L

(ααe−( 2
τ sin−1 E+τ

2h̄ )it)

+A((

√
2

L
)2 sin

n1πx1
L

sin
n2πx2
L

+ (

√
2

L
)2 sin

n1πx2
L

sin
n2πx1
L

(ααe−( 2
τ sin−1 E+τ

2h̄ )it)
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we would find the effective size of the two fermion system (representing a
gauge boson) would be different than the pure total anti-symmetric state.
Also for electric dipole transitions the expectation value of the operator
between two states where one state is in a state of mixed symmetry
is different than when the final and initial states are both in an anti-
symmetric state. Thus if other input data could be used to place limits
on M0, g and L then a study of electric dipole transitions of gauge
bosons from one state to another could test for the presence of Exclusion
Principle violations. It is also important to point out that the standard
model of

SU(3)C × SU(2)L × U(1)Y

only allows for a magnetic dipole moment and electric quadrapole mo-
ment of the ω+, ω− (Ref. 17). If more elaborate composite models
could be constructed then a calculation of the electric dipole moment of
a two fermion system and magnetic quadrapole moment could be made
and compared with experimental deviations from the Standard model
prediction for the ω+, ω−, γ vertex interaction.

3. Conclusion.

Our simplified model of a gauge boson as being a composite of
two fermions in a potential well has at least led to a provisional test
for both compositeness and discrete time effects in gauge boson polar-
ization precession experiments. Since the exclusion principle has been
poorly tested for weak interactions, a study of internal transitions of
gauge bosons with final and initial states having mixed symmetry might
suggest experimental situations where comparison with experiment can
be made. As mentioned in the introduction, the exclusion principle is
well tested for Atomic physics, however in the domain of weak, strong
and possibly super-strong interactions it might be violated. Transition
rates, effective radii and binding mechanisms are all sensitive to a state
of mixed symmetry and possible discrete time effects might reveal vio-
lations of the exclusion principle that otherwise lay hidden beneath the
dull phenomenalogical world of the continuum.
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