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ABSTRACT We consider a deformed Heisenberg-Weyl algebra de-
pending on two parameters, Q and q. The special case q = 1
corresponds to the Q-algebra introduced by Arik and Coon and
Kuryshkin, while for Q = 1/q one recovers the usual q-deformed alge-
bra. The main properties of this two-parameter algebra are discussed
by a non-standard approach, based on noncanonical commutation
relations among the generators. We show that the two-parameter

commutation rules of the creation and annihilation operators Â, Â+

can be obtained from Q-analysis by means of a Bargmann realiza-

tion. The explicit expressions of Â, Â+ are derived by a bosoniza-
tion procedure. The Fock representation is considered, leading to
a non-canonical commutation relation between position and mo-
mentum operators. The quantum group SU(2)Q,q, obtained by a
noncanonical Jordan map of the generators, is briefly discussed. Fi-
nally, the time-evolution of the two-parameter deformed oscillator is
found by exploiting the connection between deformed algebras and
Lie-admissible algebras.

RÉSUMÉ On considère une algèbre déformée de Heisenberg-Weyl
qui dépend de deux paramètres, Q et q, dotée de relations de com-
mutation non canoniques entre les générateurs. Les principales pro-
priétés de cette algèbre sont étudiées, en particulier ses réalisations
de type Bargmann et de type boson, le groupe quantique associé
SU(2)Q,q, et l’évolution temporelle Lie-admissible de l’oscillateur
déformé à deux paramètres.
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Introduction

Quantum group theory started and developed in the last decade.
The literature on this topic is presently more and more growing, so that
it is very difficult to exhaustively account for all the papers which appear
almost every day. An excellent synopsis as well as a historical review can
be found in ref.[1], to we also refer the reader for the relevant literature
on the subject.

Let us only recall that, after the pioneering (and largely ignored)
papers by Arik and Coon [2] and Kuryshkin [3], quantum groups were
recognized as the symmetries naturally arising in the study of integrable
systems in statistical mechanics and quantum field theory (ruled by the
Yang-Baxter equations) [4-6]. Then, their mathematical properties have
been thoroughly investigated [7]. The main algebraic structure of quan-
tum groups is the q-deformed algebra, that mathematically is a Hopf
algebra [8]. q-deformed algebras allow the introduction of q-deformed os-
cillators and therefore, by a straightforward generalization of the Jordan-
Wigner-Schwinger representation, the construction of deformations of
the standard Lie groups [9]. q-deformed algebras are also involved in the
study of parastatistics [10-12].

Since 1981, many aspects of the q-deformation of an oscillator alge-
bra have been investigated by Jannussis and collaborators [10,11,13,14].
In particular, they realized (as early as 1981) [10] that the standard form
of the commutation relation for a Q-harmonic oscillator [3]

ÂÂ+ −QÂ+Â = Î (1.1)

(where Qε(−1,∞), Q 6= 0) corresponds to a (λ, µ) mutation algebra [15],
i.e. a special case of a Lie-admissible algebra [16]. A Lie-admissible Q-
algebra [14,17] is obtained when considering an operator Q̂ (instead of a
number Q) in the commutation relation, thus getting1

(Â, Â+) ≡ ÂÂ+ − Â+Q̂Â = Î . (1.2)

Moreover, in ref.[10] a generalization of Q-algebra has been given in the
form

ÂÂ+ −QÂ+Â = f(n̂) (1.3)

1 The connection between q-deformed algebras and Lie-admissible algebras is
easily seen by noting that both of them involve a deformation (lifting) of the
enveloping algebra, that, in turn, leads to a deformation of the corresponding
Lie products.
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where n̂ is the usual number operator (n̂ | n〉 = n | n〉) satisfying the
standard commutation rules

[Â, n̂] = Â ; [Â+, n̂] = −Â+ (1.4)

and the function f(n̂) is a suitable (smooth) function. If

f(n̂) = qn̂ (1.5)

we get a deformed algebra depending on two parameters Q and q [14].
We shall name it a (Q, q)-algebra, or a two-parameter quantum group2.

In the last few years, multiparameter quantum groups have been
considered independently by some authors [18-20] (besides the present
ones) [14,21,22], in view of their applicability to a number of concrete
physical models. In refs.[18-20] quantum algebras with many (in par-
ticular, two) deformation parameters are discussed in the framework of
standard Heisenberg commutation relations with canonical form. How-
ever, we have recently stressed [23] the deep connection existing between
q-deformed groups and noncanonical commutation rules [24-25]. The pe-
culiar and remarkable feature of our “noncanonical” approach to quan-
tum algebras is that the parameter of the q-deformation turns out, in
general, to be a function of the physical constants characterizing the sys-
tem considered [23,26]. As is well known, relativistic as well as quantum
mechanics can be looked upon as “deformations” of classical mechanics,
corresponding to the deformation parameters β = v/c and S/h̄. There-
fore, in our opinion, the use of noncanonical commutation relations may
reveal itself useful in the achievement of one of the ultimate goals in
quantum group theory: understanding the very physical nature and ori-
gin of the deformation parameters and, possibly, connecting them with
some new fundamental, dimensional physical constants. This point is
also strictly related to the Lie-admissible nature of q-deformed algebras
[cf. eq.(1.2), (1.3) above], on account of the possible capability of Lie-
admissible theories to describing interactions structurally more general
(e.g. of nonpotential, non-Hamiltonian type) than the Lie theories [27].

The aim of this paper is just to discuss some properties of two-
parameter quantum groups in the noncanonical approach. In sect.2 we

2 Clearly, for Q = 1
q

one gets the usual q-deformed algebra, and for q = 1 the

Q-algebra of Kuryshkin [3]. In the following, the harmonic oscillators corre-
sponding to the above cases will be referred to, respectively, as a q-deformed
oscillator and a Q-oscillator.
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show that the (Q, q) algebra can be derived from Q-analysis [28] by a
Bargmann differential realization of the operators Â, Â+. The bosoniza-
tion of those operators is discussed in sect.3, and their Fock represen-
tation is obtained by explicitly imposing a noncanonical commutation
relation between position and momentum. The eigenvalues of the cor-
responding (Q, q) harmonic oscillator are also found. Sect.4 provides an
example of a two-parameter quantum group, SU(2)Q,q, first introduced

in ref.[14]. In sect.5 we derive the time-evolution of the operators Â, Â+

and x̂, p̂ by exploiting the already quoted connection between deformed
algebras and Lie-admissible algebras. Sect.6 concludes the paper.

Q-Analysis and Bargmann realization of a (Q, q) algebra

The relation between Q-analysis [28] and quantum groups has been
investigated by some authors [13,29-31]. Essentially, the commutation
relation of the Q-deformed algebra is realized in terms of the operators
x,DQ, where DQ is the Q-derivative

DQ =
1

x

QxD − 1

Q− 1
(2.1)

with D = d
dx being the usual derivative operators.

We shall proceed in an analogous way. Firstly, let us define a two-
parameter derivative operator DQ,q as follows. Consider a differentiable
function ϕ(x), and two points Qx and qx on the x-axis. We have

ϕ(qx)− ϕ(Qx)

x(q −Q)
≡ DQ,qϕ(x) =

1

x

qxD −QxD

q −Q
ϕ(x) (2.2)

where

DQ,q =
1

x

qxD −QxD

q −Q
=

1

x

QxD − qxD

Q− q
= Dq,Q (2.3)

is just the (Q, q) derivative operator (symmetric under the exchangeQ↔
q). From the definition (2.3) we easily get the following commutation
relations

DQ,qx−QxDQ,q = qxD (2.4)

Dq,Qx− qxDq,Q = QxD (2.5)

which are changed into each other for Q↔ q and viceversa.
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If we put x = y
q or x = y

Q (Q, q 6= 0) in eq.(2.2), the two-parameter
derivative DQ,q reduces to the usual one-parameter Q-derivative:

ϕ(Qx)− ϕ(qx)

x(Q− q)
=

ϕ(Qq y)− ϕ(y)

y(Qq − 1)
=

ϕ(λy)− ϕ(y)

y(λ− 1)
(2.6)

The above scale transformation can be given a physical meaning by
noting that, under suitable transformations, the q-deformed harmonic
oscillator is changed into the Q-harmonic oscillator [14].

The representation of the commutation relations (2.4) and (2.5) in
Fock space can now be achieved by means of a Bargmann realization
of the creation and annihilation operators as differential operators, i.e.
setting

x = z; Â+ = z; Â = DQ,q; n̂ = z∂z . (2.7)

Then, we straightforwardly get the following relations

ÂÂ+ −QÂ+Â = qn̂ ; (2.8)

ÂÂ+ − qÂ+Â = Qn̂ ; (2.9)

[Â, n̂] = Â ; [Â+, n̂] = −Â+ (2.10)

For Q = 1/q, the first two equations give exactly the well-known
commutation relations of the q-deformed harmonic oscillator, i.e.

ÂÂ+ − 1

q
Â+Â = qn̂ ; ÂÂ+ − qÂ+Â = q−n̂ . (2.11)

which provide the connection between q-oscillators and quantum groups
[32].

We therefore see that Q-analysis allows us to define in a natural
way a (Q, q)-deformed algebra.

Bosonization of the operators Â, Â+

We want now to find a boson realization of the annihilation and
creation operator Â, Â+ obeying the commutation rule (2.8).
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Let us apply the bosonization method [10,11] and seek Â, Â+ in the
form

Â = F (n̂+ 1)â ; Â+ = â+ F (n̂+ 1) , (3.1)

where â, â+, n̂ = â+â are boson operators, satisfying the usual commu-
tation relations.

Then, it is not difficult to show that

Â =

√
[n̂+ 1]Q,q
n̂+ 1

â ; Â+ = â+
√

[n̂+ 1]Q,q
n̂+ 1

(3.2)

where

[α]Q,q =
Qα − qα

Q− q
=

qα −Qα

q −Q
. (3.3)

Because the operators Â+Â and â+â commute, they have the same basis
|n〉 (i.e. the usual Bose basis in Fock space).

From (3.2) it is easy to get the relations

ÂÂ+ = [n̂+ 1]Q,q ; Â+Â = [n̂]Q,q ; (3.4)

[Â, Â+] = [n̂+ 1]Q,q − [n̂]Q,q . (3.5)

{Â, Â+} = ÂÂ+ + Â+Â = [n̂+ 1]Q,q + [n̂]Q,q . (3.6)

Moreover

Â|n〉 =
√

[n]Q,q |n− 1〉 ; Â+|n〉 =
√

[n+ 1]Q,q |n+ 1〉 ; (3.7)

Â+Â|n〉 = [n]Q,q|n〉 . (3.8)

Let us consider the Fock representation of Â, Â+:

Â =

√
1

λh̄

(√
mω x̂+ i

p̂√
mω

)
;

Â+ =

√
1

λh̄

(√
mω x̂− i p̂√

mω

)
(3.9)
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where λ is a scale factor to be determined. Then, by eq.(3.5) the com-
mutator of x̂, p̂ reads

[x̂, p̂] = i
λh̄

2

(
[n̂+ 1]Q,q − [n̂]Q,q

)
=

= iλh̄
(Qn̂+1 − qn̂+1

Q− q
− Qn̂ − qn̂

Q− q

) (3.10)

The Hamiltonian of the two-parameter deformed oscillator is therefore
given by

Ĥ =
p̂2

2m
+
m

2
ω2x̂2 =

λh̄ω

4

{
Â, Â+

}
=

=
λh̄ω

4

(
[n̂+ 1]Q,q + [n̂]Q,q

)
.

(3.11)

The corresponding energy eigenvalues are

En =
λh̄ω

4

(
[n+ 1]Q,q + [n]Q,q

)
. (3.12)

We want now to find the explicit expression of the scale factor λ.
This will be accomplished by imposing that the commutator (3.10) takes
the form of a non-canonical commutation relation, namely

[x̂, p̂] = ih̄
(

1 + Ĥϕ(Ĥ)
)

(3.13)

where ϕ(Ĥ) is an arbitrary hermitian operator function of the Hamilto-
nian [24,25,10]3

To this aim, let us rewrite eq.(3.11) as

Qn̂(Q+ 1)− qn̂(q + 1) =
4Ĥ(Q− q)

λh̄ω
. (3.14)

A solution of the above equation for n̂ can be found in the form of a
power series:

n̂ = no +
4Ĥ(Q− q)

λh̄ω
n1 +

[4Ĥ(Q− q)
λh̄ω

]2
n2 + . . .

+
[4Ĥ(Q− q)

λh̄ω

]k
nk + . . .

(3.15)

3 In general, we can have [24] [x̂, p̂] = ih̄ f(Ĥ) of which (3.13) is, of course, a

special case.
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After putting expansion (3.15) in eq.(3.14) we note that the constant
term is exactly the relation from which we can determine no, i.e.:

Qno(Q+ 1) = qno(q + 1) . (3.16)

We get

no =
ln q+1

Q+1

ln
(
Q
q

) . (3.17)

By replacing the expression (3.15) of n̂ in the commutator (3.10), and
re-arranging the different terms, we obtain finally

[x̂, p̂] =
i

2
λh̄
{Qno(Q− 1)− qno(q − 1)

Q− q
+

4Ĥ(Q− q)
λh̄ω

y1+

. . .+
[4Ĥ(Q− q)

λh̄ω

]k
yk + . . .

} . (3.18)

The above commutator just takes the form (3.13) if

λ

2

[Qno(Q− 1)− qno(q − 1)

Q− q

]
= 1 . (3.19)

On account of eq.(3.16), (3.19) becomes

λqno

Q+ 1
= 1 . (3.20)

Due to the symmetry of (3.16) (and all equations (3.4)-(3.12)) under the
exchange Q↔ q, we have also

λ = (Q+ 1)q−no = (q + 1)Q−no . (3.21)

Then, from eq.(3.17), we get eventually

λ = (Q+ 1)q−
ln

q+1
Q+1

ln(Q/q) . (3.22)

It is now easy to check that the above relations reduce to the correspond-
ing ones for the Q-oscillator (q = 1;λ = Q + 1) and for the q-deformed
oscillator (Q = 1/q;λ = q1/2 + q−1/2).
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For further reference, let us explicitly write the final expressions of
Â, x̂, p̂ and Ĥ for the two-parameter noncanonical oscillator.

We have

Â =

√
1

h̄(Q+ 1)
q(1/2)[ln(

q+1
Q+1 )/ln(Q/q)]

(√
mωx̂− i p̂√

mω

)
; (3.23)

x̂ =

√
h̄(Q+ 1)

2mω
q−(1/2)[ln(

q+1
Q+1 )/ln(Q/q)] (Â+ + Â) ; (3.24)

p̂ = i

√
mh̄ω(Q+ 1)

2
q−(1/2)[ln(

q+1
Q+1 )/ln(Q/q)] (Â+ − Â) ; (3.25)

Ĥ =
(Q+ 1)h̄ω

4
q−[ln(

q+1
Q+1 )/ln(Q/q)] ([n̂+ 1]Q,q + [n̂]Q,q) . (3.26)

The noncanonical SUQ,q(2) quantum group

The two-parameter generalization of the SU(2) group, based on
noncanonical commutation relations among the generators, has been first
introduced in ref.[14]. Let us briefly sketch its main features, in order to
give an explicit example of a (Q, q) noncanonical quantum group.

Consider two independent oscillators with mutually commuting op-
erators Âi, Â

+
i (i = 1, 2) and number operators n̂i. The Jordan-Wigner-

Schwinger map for Ĵ+, Ĵ−, Ĵz gives

Ĵ+ = Â+
1 Â2 ; Ĵ− = Â+

2 Â1 ; Ĵz =
1

2
(n̂1 − n̂2) (4.1)

Moreover, we have

[Ĵ+, Ĵ−] = [2Ĵz]Q,q =
qn̂1Qn̂2 −Qn̂1qn̂1

q −Q
(4.2)

From the above relations we get

Ĵz =
1

2lnQ
arcsinh

q − q−1

2(q −Q)

(
qn̂1Qn̂2 − qn̂2Qn̂1

)
=

=
1

2lnq

[
arcsinh

(q − q−1
q −Q

sinh
n̂1 − n̂2

2
ln

q

Q
e

n̂1+n̂2
2 lnQq

)] (4.3)
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and the following non-canonical commutation relations for Ĵ+, Ĵz:

[Ĵz, Ĵ+] =
1

2lnQ

{
arcsinh

[ q − q−1
2(q −Q)

(qn̂1Qn̂2 − qn̂2Qn̂1)
]
−

− arcsinh
[ q − q−1

2(q −Q)

(
qn̂1−1Qn̂2+1 − qn̂2+1Qn̂1−1

)]} . (4.4)

The above commutator can be given the form

[Ĵz, Ĵ+] = [Ĵz(n̂1, n̂2)− Ĵz(n̂1 − 1, n̂2 + 1)]Ĵ+ . (4.5)

Analogously, we have, for Ĵ−, Ĵz:

[Ĵz, Ĵ−] = −Ĵ−[Ĵz(n̂1, n̂2)− Ĵz(n̂1 − 1, n̂2 + 1)] . (4.6)

In the basis |j,m〉, with n1 = j +m,n2 = j −m we find

Ĵz|j,m〉 =
1

2lnQ
arcsinh

(q − q−1
q −Q

sinhm ln
q

Q
ej lnQq

)
|j,m〉 (4.7)

Ĵ+|j,m〉 =
√

[j +m+ 1]Q,q · [j −m]Q,q|j +m+ 1, j −m− 1〉 (4.8)

Ĵ−|j,m〉 =
√

[j +m]Q,q · [j −m+ 1]Q,q|j +m− 1, j −m+ 1〉 (4.9)

Of course, for Q = 1 we recover the usual relations of the SU(2)Q group
and for Q = 1/q those of the deformed SU(2)q group [9]. The reader is
referred to refs.[14] for a more detailed discussion.

Lie-admissible time evolution for (Q, q) oscillators

We have already stressed in the introduction the connection between
quantum groups and Lie-admissible algebras. In this section, we want to
show that Lie-admissible theory allows to derive in a straightforward way
the time-evolution of the operators of the (Q, q) deformed oscillator[21]4.

It is well known that the standard Heisenberg equations of motion
are no longer valid for operators obeying non-canonical commutation

4 The problem of the dynamical evolution of the Q-oscillator was solved in
an analogous way in ref.[11]. Some preliminary considerations for q-deformed

oscillators have been previously forwarded by the present authors [21].
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relations. If, however, the commutation relations are in the form of the
product of a Lie-admissible algebra, like eqs.(1.2) or (1.3), it has been
shown by Santilli [27] that the following generalized Heisenberg equations
hold:

ih̄
∂Â

∂t
= (Ĥ, Â) (5.1)

where ( , ) is the Lie-admissible bracket

(Ĥ, Â) = ĤT̂ Â− ÂR̂Ĥ . (5.2)

In the above equations, Ĥ is the usual Hamiltonian (describing
conservative forces) and T̂ , R̂ are suitable operators (supposed to rep-
resent in general, nonconservative interactions). The case T̂ = R̂ and
ĤT̂ 6= T̂ Ĥ corresponds to the so-called Lie-isotopic case.

The integrated form of (5.1), when the operators Ĥ, T̂ , R̂ are time-
independent, is given by [27]

Â(t) = exp
( it
h̄
R̂Ĥ

)
Â(0)exp

(
− it
h̄
ĤT̂

)
. (5.3)

Let us apply eqs.(5.1)-(5.3) to the creation and annihilation operators of
the (Q, q)-deformed oscillator. A comparison of eq.(5.2) with (2.8) (see
also eq.(1.2)) shows that, in this case

T̂ = Î ; R̂ = QÎ . (5.4)

The Hamiltonian Ĥ is that of the two-parameter oscillator, eqs.(3.11),
(3.26). We get, from (5.3), on account of (5.4):

Â(t) = exp
( it
h̄
QĤ

)
Â(0)exp

(
− it
h̄
Ĥ
)

=

= exp
{
itω

(Q+ 1)

4
λQ
(

[n̂+ 1]Q,q + [n̂]Q,q

)}
Â(0)·

· exp
{
−itω (Q+ 1)

4
λ
(

[n̂+ 1]Q,q + [n̂]Q,q

)}
.

(5.5)

By taking into account the explicit expression of Â(0), eq.(3.2), we find,
after some algebra

Â(t) = exp
{
itω

(Q+ 1)

4
λ
[
Q([n̂+ 1]Q,q + [n̂]Q,q)− [n̂+ 2]Q,q−

− [n̂+ 1]Q,q

]}
Â(0) = exp(−itKn̂)Â(0)

(5.6)
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and
Â+(t) = Â+(0)exp(itKn̂) , (5.7)

where we put

Kn̂ = ω
(Q+ 1)(q + 1)

4
λqn̂ =

= ω
(Q+ 1)2(q + 1)

4
q[n̂−

ln(q+1)/(Q+1)
ln(Q/q)

] .

(5.8)

From the above relations, using the Fock representation of the op-
erators x̂(t), p̂(t) (see eqs.(3.9), (3.24), (3.25)), we obtain

x̂(t) =
1

2

(
e−itKn̂ + eit

Kn̂
q

)
x̂(0) +

i

2mω

(
e−itKn̂ − eit

Kn̂
q

)
p̂(0) (5.9)

p̂(t) =
1

2

(
e−itKn̂ + eit

Kn̂
q

)
p̂(0)− i

2
mω
(
e−itKn̂ − eit

Kn̂
q

)
x̂(0) (5.10)

It is easy to check that, for q = 1, eqs.(5.6)-(5.10) reduce to the analogous
expressions for the Q-oscillator (already derived in ref.(11)). We have,
in this case:

Kn̂ = ω
(Q+ 1)

2
. (5.11)

The time-evolution of the q-deformed oscillator are obtained from the
above equations for Q = 1/q and

Kn̂ = ω
(q + 1)2

4q
qn̂+

1
2 . (5.12)

Of course, for Q = q = 1 one recovers the well-known formulae for the
harmonic oscillator.

Moreover, it is a lenghty but easy task to check that eqs.(5.6), (5.7)
do satisfy the deformed commutation rule (2.8) at any time, namely

Â(t)Â+(t)−QÂ+(t)Â(t) = Â(0)Â+(0)−QÂ+(0)Â(0) = qn̂ . (5.13)

Conclusions

In the present paper we have introduced a deformed Heisenberg-
Weyl algebra depending on two parameters. It contains, as special cases,
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both the Q-algebra by Arik and Coon [2] and Kuryshkin [3] and the
q-deformed algebra. The commutation rules of the creation and annihi-
lation operators Â, Â+ can be derived from a straightforward generaliza-
tion of Q-derivative by means of a differential Bargmann representation.
The bosonization method has been applied to get the explicit expressions
of Â, Â+, and the corresponding Fock representation of the coordinate
and momentum operators x̂, p̂, whose commutator turns out to be non-
canonical.

We have also briefly sketched the main features of the two-parameter
SU(2)Q, q group. In this case, too, the commutation relations of the
SU(2)Q, q generators are non-canonical. The procedure we followed
could be applied, in general, to define the quantum group generated by
introducing N two-parameter deformed oscillators and using the Jordan-
Wigner-Schwinger map. In this case, however, some problems are ex-
pected to arise in connection with the actual U(N)Q, q symmetry of the
system, and with a consistent definition of the Casimir invariants [33].
We shall give a more careful discussion of this topics in a separate paper.

Needless to say, the two-parameter algebra can be used to define a
noncanonical SU(1, 1)Q,q group. Work on these lines is in progress.

Finally, we want to stress that the connection between deforma-
tion algebras and Lie-admissible algebras has allowed us to derive the
time-evolution of the two-parameter operators. This has been accom-
plished by an almost straightforward application of the Lie-admissible
Heisenberg equations introduced by Santilli [15]. This result seems to
indicate that the dynamics underlying quantum groups is , in general, of
the Lie-admissible type. Such a point can be physically seen by taking
into account that systems of q-oscillators are interacting, and that their
interactions are, in general, non-local [33].
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