
Annales de la Fondation Louis de Broglie, 19, n◦3, 1994 161
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ABSTRACT. The one-dimensional Fermi gas with g/x2 pair interac-
tion potential is studied by the approximating hamiltonian method
determining the reduced approximating hamiltonian which can be
proved to be thermodynamically equivalent to original system one
in thermodynamical limit and while the reduced parameter tends to
zero.

RÉSUMÉ. On étudie un gaz de Fermi à une dimension avec
un potentiel d’interaction des paires en g/x2 par la méthode de
l’hamiltonien approché. On détermine un hamiltonien réduit dont
on montre l’équivalence thermodynamique au système initial à la
limite thermodynamique quand le paramètre réduit tend vers zéro.

1 Introduction

In recent years different problems of statistical mechanics have been
succesfully solved by the approximating hamiltonian method [1-3] which
main idea is to choose by any way a thermodynamical equivalent approx-
imating hamiltonian for some model. The thermodynamical equivalence
of hamiltonians H1 and H2 is assumed as the following condition for
associated free energy functions:

f [H1]− f [H2] = − θ
V
· ln Sp e−βH1 +

θ

V
· ln Sp eβH2 = Cte (1)

where V is the system volume, β = 1
θ is the inverse absolute temperature.

This work demonstrates the usage of the approximating hamiltonian
method to investigate the one-dimensional Fermi gas with g/x2 pair



162 A.R. Kazaryan, A.M. Kurbatov, V.V. Timoshenko

potential, where x is the distance between particles, and concretizes the
results obtained in [4].

1 - Statement of problem.

The spectrum of the fermi system hamiltonian (we assume hereafter
− 1

2 < g = Cte in order to prevent any collapse [6])

Hg = −
N∑
i=1

∂2

∂x2
i

+ g ·
∑
i<j

1

(xi − xj)2
(2)

has been shown in [5] to be identical up to a constant to one of the hamil-
tonians having the following form in second quantization representation

Hλ =
∑
k

(k2 − µ)a+
k ak − λ

π

L
·
∑
k,k′

|k − k′|a+
k aka

+
k′ak′ (3)

where L is the length of the one-dimensional system; ak, a
+
k are creation

and annihilation Fermi operators, {ak, a+
k′} = aka

+
k′ +a

+
k′ , ak = ∆(k−k′);

µ is the chemical potential, the momenta of particals k = 2πm/L belong
to the quasidiscrete set, m ∈ Z, Z is the set of integer number, λ =
(1/2)(1−

√
1 + 2g) = Cte > 0.

But that coincidence of spectra means the thermodynamical equiv-
alence of Hg and Hλ in accordance with [1]. In this thesis we are going
to investigate the more general system described by the hamiltonian

Γ =
∑
k

(k2−µ)a+
k ak−λ

π

L
·
∑
k,k′

|k−k′|a+
k aka

+
k′ak′−ν·

∑
k

(|k|+1)a+
k ak (4)

where the inserted “sources” ν ·
∑
k(|k|+ 1)a+

k ak do not break the orig-
inal system symmetry [3] contrary to the standard technics [2] of the
approximating hamiltonian method.

We are going to use the approximation hamiltonian method to deter-
mine the quadratic approximating hamiltonian which will be proved to
be thermodynamicaly equivalent to [4] in the limit L→∞, L/N = Cte,
where N is the number of particles. All proofs will be provided for
ν = Cte > 0 and then ν will be put equal to zero after the thermody-
namic limit transition.

2 - The thermodynamical equivalence of reduced hamiltonians.
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Let us first consider the reduced problem with the following hamil-
tonian:

Γα = τ −λπ
L

∑
k,k′

|k− k′|e−α(|k|+|k′|) ·nknk′ − ν
∑
k

(|k|+ 1)e−α|k|nk (5)

L is the length of the one-dimensional system, α > 0 is the reduced
parameter, τ =

∑
k εka

+
k ak is the free fermion hamiltonian, nk = a+

k ak
is the occupation number operator.

Let the approximating hamiltonian be

Γα0 (C) = τ − λπ
L
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) · (nk · Ck′ + nk′ · Ck

− Ck · Ck′)− ν
∑
k

(|k|+ 1)e−α|k|nk·
(6)

Γα0 (C) is depending on numeric number of parameters (Ck).

We denote the free energy function associated with the approximat-
ing hamiltonian as fα0 (C) and write Bogolubov’s inequality [2] with the
following notations:

< · · · >T̃=
Sp (. . . e−βT̃ )

Sp e−βT̃

< · · · >0,α=
Sp (. . . e−βΓα

0 )

Sp e−βΓα
0

, fT̃ = − θ
L
· ln Sp e−βT̃

T̃ = τ − ν
∑
k

(|k|+ 1)e−α|k|nk :

λ
π

L2

∑
k,k′

|k − k′|e−α(|k|+|k′|) · (2 < nk >T̃ ·Ck′ − CkCk′) ≤

≤ fT̃ − f
α
0 (C) ≤

≤ λ π
L2
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) · (2 < nk >0,α ·Ck′ − CkCk′)

(7)

It can be seen that 0 ≤ fα0 (C)− fT̃ if (Ck | ∀k Ck ≤ 2). Taking in mind
fα0 (0) = fT̃ we have as result that if (Ck | ∀k 0 < Ck < 2) the continious
function fα0 (C) has his absolute minimum at the “point” where

∀k δf
α
0 (C)

δCk
= 0 (8)
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it’s necessary to emphasize that [8] uses variational derivatives because
parameters Ck are momentum (wave number) functions. Let’s denote
hereafter the condition [8] as

δfα0 (C)

δC
= 0 (9)

We need the following:

Lemma. If real numbers ηk realize

∀f
∑
k

|f − k|ηk = 0

where f and k belong to the quasidiscrete set f = 2πl/L, k = 2πm/L ,
l and m are integers, then for arbitrary k, ηk = 0.

Proof. Using the representation of f and k we denote

ηk = η(
2πm

L
) = ψm :∑

k

|f − k|ηk =
2π

L

∑
m

|l −m|ψm = S(l) , ∀l S(l) = 0

S(l + 1) =
2π

L

∑
m

|l + 1−m|ψm ,

S(l)− S(l + 1) =
2π

L

∑
m

(|l −m| − |l + 1−m|) · ψm

=
2π

L

∑
m

sgn(m− 1− 1

2
) · ψm

where the sgn function

sgn(x) =

{
1 if x > 0
0 if x = 0
−1 if x < 0

By analogy

S(l − 1)− S(l) =
2π

L

∑
m

(|l − 1−m| − |l −m|) · ψm

=
2π

L

∑
m

sgn(m− 1 +
1

2
) · ψm
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Since S(l − 1)− S(l)− (S(l)− S(l + 1)) = 0,

2π

L

∑
m

(sgn(m− l +
1

2
)− sgn(m− l − 1

2
) · ψm =

2π

L
· 2ψl = 0

It’s true for arbitrary l, thus

∀f f =
2πl

L
ψl = ηf = 0

The lemma is proved.

We are ready now to prove the following statement.

Theorem 1.
δfα0 (C)

δC
= 0

if and only if
C = (Ck|∀kCk =< nk >0,α)

Proof. It is easy to see that if < nf >0,α= Cf

δfα0 (C)

δCk
= −2λπ

L2

∑
f

e−α(|k|+|f |)|k − f |(< nf >0,α −Cf ) = 0 (10)

Let denote ηf = 2λπ
L2 · e−α|f |(< nf >0,α −Cf ), than according to Lemma

∀fηf = 0, i · e· < nf >0,α= Cf

The theorem 1 is proved.

Let fα be the free energy function of the model system (4). The
Bogolubov inequality for fα and fα0 (C) is

λ
π

L2

∑
k,k′

|k − k′|e−α(|k|+|k′|)· < (nk − Ck)(nk′ − Ck′) >0,α

≤ fα0 (C)− fα

≤ λ π
L2
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) < (nk − Ck)(nk′ − Ck′) >α

(11)

where

< . . . >α=
Sp (. . . e−βτ

α

Sp e−βτα
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Since fα0 (C) has the absolute minimum at the “point” (in accor-
dance with Theorem 1)

σα = [σαk |∀kσαk =< nk > Γα0 (σαk ) =< nk >0,α] (12)

the inequality [11] may be transformed as follows:

0 ≤ fα0 (σα)− fα ≤ fα0 (C)− fα

≤ λπ
L
·
∑
k,k′

|k − k′|e−α(|k|+|k′|)· < (nk − Ck)(nk′ − Ck′) > α (13)

Let C =< nk >α, then [13] may be rewritten as:

0 ≤ fα0 (σα)− fα ≤ fα0 (< nk >α)− fα

≤ λ π
L2
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) < nknk′ >α − < nk >α< nk′ >α

(14)
We estimate the right side of (14) using the operator

U =
1

L

∑
k

(|k|+ 1)e−α|k|nk

Then

λ
π

L2
·
∑
k,k′

|k − k′|e−α(|k|+|k′|)[< nknk′ >α − < nk >α< nk′ >α]

≤ λ π
L2
·
∑
k,k′

(|k|+ 1)(|k′|+ 1)e−α(|k|+|k′|)

[< nknk′ >α − < nk >α< nk′ >α]

= λπ(< U2 >α − < U >2
α= −λπθ

L
· ∂

2fα

∂ν2

(15)

And now we are ready to prove the asymptotical equality of the free
energy functions associated with the reduced model hamiltonian and
approximating one if the free energy function of approximating system
is taken at the “point” of absolute minimum.
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Theorem 2.

If parameters (Ck) are the solution of the self-consistent equality
(9) then the hamiltonians Γα0 (C) and Γα at 0 < ϕ ≤ ν are thermody-
namically equivalent in the limit L→∞, LN = Cte and

lim
L→∞

|f [Γα0 (C)− f [Γα]| = 0 (16)

Proof. Let denote the solution of the self-consistent equality as (σα) and
rewrite once more the inequality (14) using the estimation (15)

0 ≤ fα0 (σα)− fα ≤ fα0 (< nk >)− fα

≤ λ π
L2
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) < nknk′ > − < nk >< nk′ >

≤ −λπθ
L
· ∂

2fα

∂ν2

(17)

Taking in mind

0 ≤ −∂f
α

∂ν
=< U >α=

1

L

∑
k

(|k|+ 1)e−α|k| < nk >α≤ Ω1(α) = Cte

we integrate the product ∂2fα

∂ν2 · ν:

−
∫ ν1

ν0

ν
∂2fα

∂ν2
· dν = −ν ∂f

α

∂ν
|ν1ν0 +

∫ ν1

ν0

∂fα

∂ν
· dν ≤ (ν1− ν0) ·Ω1(α) (18)

According to the mean-value theorem with ν1 = ν + 2l, ν0 = ν + 1

−
∫ ν+2l

ν+1

ν
∂2fα

∂ν2
· dν = −∂

2fα

∂ν2
(ξ) · 1

2
[(ν + 2l)2 − (ν + 1)2] (19)

where ν + 1 ≤ ξ ≤ ν + 2l. Joining (18) and (19) we have

0 ≤ −∂
2fα

∂ν2
(ξ)· ≤ Ω1(α)

ν + 3
2 l

If l tends to zero

|∂
2fα

∂ν2
| ≤ Ω2(α) = Cte (20)
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at arbitrary ν ≥ ϕ > 0 and this estimation does not depend on the
system length L. Going back to (17) we obtain

0 ≤ f [Γα0 (σα)]− f [Γα] ≤ λπθ

L
· Ω2(α)

Hence Theorem 2 is proved.

3 - Transition to the limit of the reduce parameter.

The problem with the hamiltonians (4) and (5) becomes the original
one when the reduce parameter α tends to zero. Thus let us to prove
two additional theorems.

Theorem 3.
lim
α→0

lim
L→∞

|f [Γα]− f [Γ]| = 0 (21)

Proof. The Bogolubov inequality for the free energy functions of
the hamiltonians (4) and (5) is

−λπ
L
·
∑
k,k′

|k − k′|[1− e−α(|k|+|k′|)]· < nknk′ >

− 1

L

∑
k

(|k|+ 1) < nk >

≤ f [Γ]− f [Γα]

≤ −λπ
L
·
∑
k,k′

|k − k′|[1− e−α(|k|+|k′|)] < nknk′ >α

− 1

L

∑
k

(|k|+ 1)e−α|k| < nk >α≤ 0

(22)

where < · · · >α=0=< · · · >. Since limits L→∞ exist and

λ
π

L
·
∑
k∞,k′

|k − k′|[1− e−α(|k|+|k′|)]· < nknk′ >

−−−−−−→
L→∞

λ

4π

∫
−∞
|k − k′|[1− e−α(|k|+|k′|)]· < n(k)n(k′) > dkdk′ ,

1

L

∑
k

(|k|+ 1)e−α|k| < nk >

−−−−−−→
L→∞

1

2π

∫ ∞
−∞

(|k|+ 1)e−α|k| < n(k) > dk
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it is necessary to prove that

lim
α→0

λ

4π

∫ ∞
−∞
|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > ·dkdk′ = 0 (23)

and

lim
α→0

ν

2π

∫ ∞
−∞

(|k|+ 1)(1− e−α|k|) < n(k) > ·dk = 0 (24)

The integral

λ

4π

∫ ∞
−∞

∫ ∞
−∞
|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > dkdk′

converges because of the convergence of

λ

4π

∫ ∞
−∞

∫ ∞
−∞
|k − k′| < n(k)n(k′) > dkdk′

Thus

∃R > 0

λ

4π

∫ ∫
|k|,|k′|≥R

|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > dk dk′ <
ε

2

(25)
The rest part of the integral is

λ

4π

∫ R

−R

∫ R

−R
|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > ·dkdk′

≤ λ

4π
[1− e−2αR] ·

∫ R

−R

∫ R

−R
|k − k′| < n(k)n(k′) > ·dkdk′

≤ [1− e−2αR] ·Q1

where

λ

4π
·
∫ ∞
−∞

∫ ∞
−∞
|k − k′| < n(k)n(k′) > ·dkdk′ ≤ Q1 = Cte

We must have
[1− e−2αR] ·Q1 <

ε

2
(26)
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It is true for arbitrary α > 0 if ε ≥ 2Q1 and for 1− ε/(2Q1) < e−2αR or
α ≤ −1/(2R) · ln[1− ε/(2Q1)] if 0 < ε < 2Q1. Joining (25) and (26) we
have

∀ε > 0 ∃R > 0 ∀α ≤ − 1

2R
· ln[1− ε1

2Q1
] where ε1 =

{
ε if < 2Q1

Q1 if ε ≥ 2Q1

λ

4π
·
∫ ∞
−∞

∫ ∞
−∞
|k − k′| < n(k)n(k′) > ·dkdk′ ≤ Q1 = Cte

λ

4π

∫ ∞
−∞

∫ ∞
−∞
|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > ·dkdk′ < ε

By analogy ∀νν0 ≥ ν ≥ 0

ν

2π

∫ ∞
−∞

(|k|+ 1)[1− e−α|k|] < n(k) > ·dk < ε

Going back to (22) and realizing the limit for L → ∞, L/N = Cte we
have

2ε >
λ

4π

∫ ∞
−∞

∫ ∞
−∞
|k − k′|[1− e−α(|k|+|k′|)] < n(k)n(k′) > ·dkdk′

+
ν

2π

∫ ∞
−∞

(|k|+ 1)[1− e−α|k|] < n(k) > ·dk

≥ f∞[Γα]− f∞[Γ] ≥ 0

Theorem (3) is proved. And now we can prove the main theorem.

Theorem 4.

If (σα) is the “point” of absolute minimum of the free energy func-
tion f [Γα0 (C)] = − θ

L · ln Sp e−βΓα
0 (C) then the hamiltonians

Γ = τ − λπ
L
·
∑
k,k′

|k − k′| · nknk′ − ν
∑
k

(|k|+ 1)nk (27)

and

Γα0 (C) = τ − λπ
L
·
∑
k,k′

|k − k′|e−α(|k|+|k′|) · (nk · σαk′ + nk′ · σαk )

+ λ
π

L
·
∑
k,k′

|k − k′|e−α(|k|+|k′|)σαk · σαk′ − ν
∑
k

(|k|+ 1)e−α|k|nk
(28)
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are thermodynamicaly equivalent at the limit L→∞, L/N = Cte while
the reduce parameter tends to zero, i.e.

lim
α→0

lim
L→∞

[f(Γα0 (σα))− f(Γ)] = 0 , f(Γ) = − θ
L
· ln Spe−βΓ

Proof:

lim
L→∞

f [Γ] = lim
L→∞

(f [Γ]− f [Γα0 (σα)] + f [Γα0 (σα)]− f [Γα] + f [Γ])

= lim
L→∞

(f [Γα]− f [Γα0 (σα)]) + lim
L→∞

(f [Γ]− f [Γα]) + lim
L→∞

f [Γα0 (σα)]

(29)
Since the left side of [29] does not depend on α and all the limits exist
we have

lim
L→∞

f [Γ] = lim
α→0

lim
L→∞

(f [Γα]− f [Γα0 (σα)])

+ lim
α→0

lim
L→∞

(f [Γ]− f [Γα]) + lim
α→0

lim
L→∞

f [Γα0 (σα)]

According to Theorem 2 and Theorem 3

lim
α→0

lim
L→∞

(f [Γ]− f [Γα]) = 0

lim
α→0

lim
L→∞

(f [Γα]− f [Γα0(σα)]) = 0

hence limL→∞ f [Γ] = limα→0 limL→∞ f [Γα0 (σα)] and the Theorem 4 is
proved.

Theorem 4 substantiates that we can determine the approximating
hamiltonian (22) which is thermodynamically equivalent to the model
one (3) at ν = 0. It is necessary to emphasize the importance of the
limit transitions order: the first is L→∞, α→ 0 and the second one is
ν → 0. It is in accordance with the idea of “quasi-averages” that have
been suggested in [8].

Since the approximating hamiltonian is the quadratic form of field
operators it allows in the thermodynamical limit and if the reduce param-
eter tend to zero the asymptotically exact evaluation of the free energy
function (4) associated with (2) to investigate the system behaviour.
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