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Rest frame compatible wave mechanics II
wave equations and fields

Denis B. McConnell

P.O. Box 59, Group 12, RR 1C, Winnipeg, MB R3C 2E4, Canada

ABSTRACT. The relationships between the rest-frame-compatible
(RFC) particle waveforms and equations of the Klein-Gordon and
Dirac types is explored. It is observed that these equations, which
apply to de Broglie waves in quantum mechanics, have similar forms
for RFC waves, but do not specify the RFC components individu-
ally, instead giving their product. Wave equations are also obtained
corresponding to the “carrier” parts of RFC waveforms; these equa-
tions are inferred to have quantum mechanical analogues yielding
the momentum eigenvalues of the particle.

Using the RFC picture, it is found possible to develop a wave-
mechanical description of an experiment of the type proposed by
Einstein, Podolsky and Rosen, that provides a logical explanation
for the apparently paradoxical results.

RÉSUMÉ. On examine, dans le cas d’une particule, les relations
entre les formes ondulatoires compatibles avec le référentiel propre
(RFC) et les équations des types Klein-Gordon et Dirac. On ob-
serve que ces équations, qui s’appliquent aux ondes de de Broglie
en la mécanique quantique, ont des formes semblables dans le cas
des ondes RFC, mais ils ne précisent pas les éléments RFC indi-
viduellement, donnant leur produit à la place. En outre, on obtient
des équations d’ondes qui correspondent aux éléments “porteurs” des
formes ondulatoires RFC; on en déduit que ces équations ont des
analogues en la mécanique quantique qui donnent les valeurs propres
d’impulsion de la particule.

A l’aide de la représentation précédente, c’est possible de donner
une description, quant à la mécanique ondulatiore, d’une expérience
du type proposé par Einstein, Podolsky et Rosen, qui fournit une
explication logique des résultats apparemment pardoxaux.
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1. Introduction.

In an earlier work [1], it was shown that a new particle representa-
tion can be developed that has a number of attractive properties. Three
of these are: the free particle can be associated with a stable wave packet
in all Lorentz frames; the “collapse of the state function” need not ap-
pear in the description of particle behaviour; and the representation can
be made fully relativistic. The formalism also implies the existence of
another type of matter wave, termed the carrier wave, which is not de-
tectable in most experiments on systems of atomic dimensions.

An extended form of de Broglie’s hypothesis was proposed as the
basis for the particle concept; the hypothesis identifies a massive particle
in its rest frame with a stable standing-wave packet. This packet trans-
forms, in frames moving with respect to the rest frame, to produce a
stable packet composed of de Broglie waves combined with carrier waves
of very short, nearly constant wavelength.

In this paper, the approach is augmented to accommodate electro-
magnetic fields, and the relationship between the resulting rest-frame-
compatible (RFC) particle waveforms and relativistic wave equations is
explored. It is inferred from this relationship that the Klein-Gordon and
Dirac equations are represented in the RFC picture, not only as they ap-
pear in quantum mechanics with de Broglie wavefunctions as solutions,
but also with carrier wavefunctions as solutions.

As an illustration of its utility, the RFC wave picture is used to
develop a causal description of an Einstein-Podolsky-Rosen (EPR) type
experiment. The description provides a logical explanation of the appar-
ently paradoxical results of the experiment.

For clarity, we use the term “de Broglie waves” to apply generically
to the particle waves described by conventional quantum mechanics, and
“RFC waves” in refering to the waves of the RFC picture. We also reserve
the word “trajectory” for the pathway of a particle in space-time, and use
“path” for the curve followed in space. Also, the term “state function”
will include spinors where necessary.

As discussed in reference [1], the RFC approach assumes that be-
tween interactions, a free stable particle in any reference frame occupies
a fixed trajectory, and has fixed attributes (mass, charge, momentum,
spin state, etc.), that are well defined in all inertial reference frames,
including its rest frame. These free-particle attributes are those com-
patible with the interactions terminating its trajectory.
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2. RFC waveforms and world momentum vectors.

We will assume in what follows that we can obtain wave equations
in the RFC picture in a manner analagous to a method used in quan-
tum mechanics. This method is adapted from reference [2], and involves
identifying relativistic invariants of the world momentum vectors associ-
ated with the RFC waves. To make the identification, we adopt complex
exponentials for the RFC waves, associating terms of the exponents with
the world momenta of the counter-propagating complex waves. We then
construct RFC wave equations, using the standard definitions of the
quantum mechanical operators of the Schrödinger representation.

Based on the arguments presented in reference [1], we adopt the
following complex exponential, counter-propagating waves to represent
a free particle moving at velocity v along the z-axis:

G = Z[exp−iγK(1 + β)(ct− z) + exp−iγK(1− β)(ct+ z)] (1)

≡ Z[g→ + g←] , where β = v/c , and K = mc/h̄.

This is equivalent to assuming that a particle can be associated with the
following combination of real and complex travelling waves:

G =2Z{cos γK(ct− βz) cos γK(βct− z)
− i sin γK(ct− βz) cos γK(βct− z)}

=Z exp{−iγK(ct− βz)}. cos γK(βct− z).
(2)

That is, the de Broglie wave in G is complex, while the carrier wave is
real. We then write the world momenta for the forward and backward
waves, g→ and g←, in analogy to the world momenta used in quantum
mechanics for de Broglie waves. That is, g→ and g← have the associated
4-momentum vectors:

{P0→,−P→} , and {P0←,−P←} (3)

In the case of the free particle of equation (1), these momenta are:

P0→ = γKh̄(1 + β); P0← = γKh̄(1− β);

P→ = γKh̄(1 + β); P← = −γKh̄(1− β).

In the general case, the derivatives of g→ and g← are related to the
components of the world momenta by:

ih̄∂kg→ = Pk→g→, ih̄∂kg← = Pk←g←, where k = 0, 1, 2, 3.
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These derivatives are then identified with the Schrödinger operators for
the components of the world momenta of g→ and g←, again in analogy
to the same association with de Broglie waves in quantum mechanics [2].

As is evident from a comparison of equations (1) and (2), the particle
energy and momentum are given by:

E =
1

2
[E→ + E←], and P =

1

2
[P→ + P←] , (4)

where E→ = cP0→ and E← = cP0←.

3. Klein-Gordon type equations.

In exploring the relations of the RFC particle waveforms to the
quantum mechanical wave equations and their solutions, we start from
the relativistic invariant from which the original Klein-Gordon equation
can be obtained. A similar invariant is then applied to RFC waves; the
resulting wave equation is found to provide information only about the
product of the components of the RFC particle waveform. We will refer
to the RFC wave equations obtained in this case as the “RFC analogues”
to the original equations.

4. RFC analogue to the Klein-Gordon equation.

The original Klein-Gordon equation for a massive particle can be
obtained by substituting the Schrödinger operators for the components
of the particle world momentum, Pk, in the invariant relation:

[Pk + (q/c)φk][P k + (q/c)φk] = (mc)2 , (5)

where the world momentum components for the particle are identified
as:

Pk = mcuk − (q/c)φk , with k = 0, 1, 2, 3.

Here, uk are the covariant components of the particle 4-velocity: uk =
dxk/ds; q is the charge; and φk are the components of the electromag-
netic 4-potential,{−V,Ax, Ay, Az}, at the location of the particle [2]. Us-
ing the metric:

grt =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , and the Schrödinger operators,
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the operator equation corresponding to equation (5) becomes:

grt[ih̄∂r + (q/c)φr][ih̄∂t + (q/c)φt]Ψ = (mc)2Ψ (6)

a form of the Klein-Gordon equation, whose scalar solutions, Ψ, represent
quantum mechanical states of spinless particles.

From an examination of equation (4), it is easy to show that, if we
assume the corresponding relation between the RFC world momenta and
the electromagnetic potentials, there should be an invariant expression
directly analagous to equation (5) for RFC waveforms:[

1

2
(P→k + P←k) + (q/c)φk

] [
1

2
(P→k + P←k) + (q/c)φk

]
= (mc)2. (7)

Making the Schrödinger operator substitutions gives the relation:

grt[ih̄∂r + (q/c)φr][ih̄∂t + (q/c)φt](G→G←) = 4 (mc)2(G→G←), (8)

where G→ and G← are to represent general RFC waveforms.

Note that G→ and G← appear as the product, (G→G←), in the
solutions to equation (8). Hence neither this equation, nor its associated
Dirac equation, permit determination of G→ or G← individually. This is
to be expected; in the absence of fields, G→ and G← have zero length, so
only combinations of G→ and G← could be described by wave equations
with a mass term.

Note also that for the free particle of equation (1), the solution
(G→G←) has the form:

(g→g←) ∼ exp−2iγK(ct− βz),

with twice the exponent of the free-particle de Broglie wave solution,Ψ,
of the original Klein-Gordon equation (6). (Also, since the RFC analogue
wave equation is of the same form, it presents the same difficulties as
those perceived in the original, with regard to the interpretation of its
operators and solutions [3,5].)

An examination of the range of conditions for which equation (8)
is valid shows that, like the original, it retains its validity for stable
bound states, that is, it has solutions for states in which the momentum
eigenvalues are imaginary, with the time-dependent portion periodic, so
that the particle energy can be a real, conserved quantity. Hence there
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is a kinematically acceptable Klein-Gordon type wave equation (8) for
bound and unbound states in the RFC picture.

From the relation between the quantum mechanical free-particle
solution,Ψ, and the free-particle solution for (G→G←), it is reasonable
to infer that solutions of the RFC analogue Klein-Gordon equation are
equivalent in information content to the corresponding solutions of the
original equation. If this is true, (G→G←) provides essentially the same
information as the quantum mechanical wavefunction regarding proba-
bilities and physical properties of possible states of spinless particles, plus
some information regarding the RFC waves involved. We will explore
this inference further in section 5.

5. Dirac equation.

Using the procedure of reference [2], we can obtain the RFC ana-
logue of the Dirac equation. That is, using Γ-factors, whose multiplica-
tion rules are:

ΓrΓt + ΓtΓr = −2grt.1,

we can write coupled linear operator equations for the solutions,
(G→G←), which are now assumed to comprise 4-component spinors,
describing the states of a spin-1/2 particle.

In this way, assuming the equivalence of the quantum mechanical
and RFC analogue representations, we obtain the RFC analogue Dirac
equation:

Γr(∂r + iεφr)(G→G←) = 2K(G→G←), (9)

where ε ≡ −q/(h̄c). The Γ-factors can be chosen to be:

Γr =
√

2

[
0 σr

σr∗ 0

]
, where

σ0 =
1√
2

[
0 1
−1 0

]
, σ1 =

1√
2

[
−1 0
0 1

]
,

σ2 =
1√
2

[
i 0
0 i

]
, σ3 =

1√
2

[
0 1
1 0

]
,

and the asterisk denotes complex conjugate.

In the previous section, it was deduced that the solutions to the RFC
analogue Klein-Gordon equation contain the same information as in the
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original quantum mechanical equation, along with information regarding
the RFC waves comprising the particle. To support this conjecture, we
will compare the quantum mechanical and RFC solutions of the Dirac
equation for an unbound state, the free particle, and for a bound state,
the ground state of the hydrogen atom.

(1) The Free Dirac Particle

In this case, the RFC analogue Dirac equation is

Γr(∂r)(G→G←) = 2K(G→G←). (10)

The solutions can be expressed as:

(G→G←)i = Xui exp−2iγK(ct− βz) in positive-energy states, (11a)

and, = Xui exp +2iγK(ct− βz) in negative-energy states, (11b)

where ui are spinors, and i = 1, 2 in (11a); 3, 4 in (11b).

If we define g→′ and g←′ to have exponents of the opposite sign to
those of g→ and g← in equation (1), it is apparent that the exponential
parts of (G→G←)i are compatible with the following RFC waveform:

Gi = Z(g→ + g←) vi and Z(g→′ + g←′) vi (12)

for positive- and negative-energy states, respectively, where vi are the
corresponding free-particle spinors in the RFC picture.

Now if we substitute M = 2m in equation (10), the form of the
equation corresponds to that of the original Dirac equation, and the free-
particle solutions should also be identical in form. For example, if we
choose i = 1, and let X be a constant, we should have the corresponding
free-particle solution to the original Dirac equation:

(G→G←)1 = X exp−2iγK(ct− βz).


1
0

cPz/(Mc2 + E+)
0

 (13)

Here, we use the Dirac α-matrices [3] instead of the Γ’s, Pz is propor-
tional to the z-derivative of (G→G←) and E+ to the time-derivative of
(G→G←) for positive-energy solutions. For (G→G←)1 :

cPz = 2h̄γKβc and E+ = +2h̄γKc.
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Substituting these values in equation (13) reduces the spinor in (G→G←)1
to one of the quantum mechanical spinor solutions of the Dirac equation
for a free particle. Hence we can express the spin-1/2 RFC free-particle
waveform with this spin state as:

G1 = Z(g→ + g←).


1
0

cPz/(mc
2 + E+)

0

 (14)

where now Pz and E+ refer to the particle momentum and energy, as
in the corresponding quantum mechanical spinor. The same procedure
can, of course, be applied to the other spinor solutions, giving all the
original spinors.

(2) The State Functions of the Hydrogen Atom

As another example, we compare the state functions of the hydrogen
atom in the RFC and quantum mechanical pictures.

In the usual procedure for obtaining the hydrogen state functions,
they are assumed to be of the form:

Ψnks =
zs
r
Yk exp−(iEt+ Pr)/h̄, s = 1, 2, (15)

where zs are real power series in r whose terms are characteristic of the
energy levels, Yk is the angular dependence term, and s distinguishes
the two spinor components of each state function. The magnitude of k
is 1/2 plus the total angular momentum quantum number, j.

As in the free particle case, we can retain the original form for the
solutions of the RFC analogue wave equation for the hydrogen atom if we
substitute 2m for m in the original equation. The only resulting changes
from the original solutions, other than in multiplicative constants, are
that the exponent of the final term in equation (15) is doubled and the
terms of Zs increase; all other terms remain the same. The ratio of
the spinor components remains unchanged, so the RFC spinors in the
solutions (G→G←) are those of the original state functions.

Hence the analogue Dirac equation yields the products, (G→G←),
which for an electron bound in the hydrogen atom is similar in functional
dependence to the original solutions except that the term in the expo-
nential is doubled and the series terms increase, and comprises the same
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spinors. For a free particle, the term in the exponential of (G→G←) is
also twice that of the corresponding de Broglie wavefunction, and is com-
patible with the use of the G in equation (1) to represent a free spin-1/2
particle, when combined with the spinors of the quantum mechanical
solution.

These observations support the previous inference that for bound
and unbound particles, the solutions (G→G←) carry the same physi-
cal information as the solutions to the original equation, combined with
some information regarding their forward and backward RFC compo-
nents.

6. RFC Analogue Equations For Carrier Waves

There also exist RFC analogue wave equations similar to those ob-
tained above, which involve the carrier wave component of the RFC
particle, through quotients of G→ and G←.

Examination of equation (1) shows that, under the previous as-
sumptions, there should also exist invariant expressions for the world
momenta of a particle that involve quotients of G→ and G←. These
invariants will be seen to be simply related to the those obtained for the
product (G→G←), in that the difference, rather than the sum, is taken
of the world momentum components:[

1

2
(P→k − P←k) +

q

c
φk

] [
1

2
(P→k − P←k) +

q

c
φk
]

= −(mc)2 (16)

The corresponding operator equations, the RFC analogue Klein-Gordon
equations for carrier waves, are:

grt[ih̄∂r + (q/c)φr][ih̄∂t + (q/c)φt](G→/G←) =−4(mc)2(G→/G←)

grt[ih̄∂r + (q/c)φr][ih̄∂t + (q/c)φt](G←/G→) =−4(mc)2(G←/G→) (17)

We will proceed directly to the corresponding analogue Dirac equations,
to examine their solutions.

RFC Analogue Dirac Equations for Carrier Waves

Under the previous assumptions, we can also use the Γ-factors
to write linear operator equations for the components of the spinors
(G→/G←) and (G←/G→) representing the carrier wave components of
a spin-1/2 particle.
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The resulting RFC analogue Dirac equations for carrier waves can
be expressed as:

Γr(∂r + iεφr)(G→/G←) = 2iK(G→/G←),

and Γr(∂r + iεφr)(G←/G→) = 2iK(G←/G→) (18)

In the case of the free particle, φr = 0. With the definitions of
G→ and G← of equation (1), the two quotients appearing in equations
(18) are mutually reciprocal complex exponentials. Since the equations
are linear, we can combine them to produce real solutions for the free
particle case, supporting the choice of waveform in equation (1), which
has a real carrier-wave component. It is easy to show that the solutions
are the quantum mechanical spinors for the free Dirac particle with E
and cP interchanged, multiplied by the carrier waveform of equation (2).

The quantum mechanical equivalent of equations (18) the eigenvalue
equation for cP , given values of E, for a spin-1/2 Dirac particle. In the
formalism of reference [3], it can be written for a free particle as:

{E(α.r) + iβmc2}Φp = cPΦp , (19)

where r is unit vector in the direction of motion, and Φp is the momentum
spinor of the free particle.

This pattern would be repeated in the case of the electron bound in
the hydrogen atom; the corresponding RFC analogue carrier wave equa-
tion has as solutions the imaginary momentum eigenvalues correspond-
ing to the stable states of the atom. That is, applying the quantum
mechanical equivalent of equations (18) to the hydrogen atom would re-
sult in the momentum eigenfunctions, along with an expression for the
momentum eigenvalues, which are, approximately:

(cP )2 ≈ −{αmc2}2/[(µ+ s)2 + α2] , (20)

where α is the fine-structure constant and µ+ s is the highest exponent
of the power series in r of the wavefunction for a particular state. Con-
verting these to energy values would give the standard expression for the
hydrogen energy eigenvalues [3]:

E2 = {mc2}2(µ+ s)2/[(µ+ s)2 + α2]. (21)
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Hence we infer that whenever there is an eigenvalue equation for de
Broglie waves in a bound or unbound system, there is a corresponding
eigenvalue equation for the carrier waves in that system, whose eigen-
values are the momenta complementary to the energy eigenvalues found
for the de Broglie waves. That is, there are quantum mechanical wave
equations for the particle momentum eigenfunctions, that are directly
analagous to the carrier wave equations of the RFC picture.

7. RFC analogue Dirac equation for de Broglie waves

If we now return to the RFC analogue Dirac equation for (G→G←),
we can use its solutions to give the de Broglie wave part of the RFC
waveform. As noted in Section 5, these solutions are consistent with the
choice of waveforms of equation (1). Hence we can write down the wave-
forms for the Dirac particle using the formalism of reference [3], with the
g→ and g← of equation (1) supplemented by their counterparts, g′→ and
g′←, with exponents of the opposite sign. Using the representation based
on Dirac γ matrices in the usual coordinate system, the eight indepen-
dent RFC solutions can be combined so that forward and backward pairs
have spin components +1/2h̄ and −1/2h̄ along the z-axis (the effects of
the carrier equations have been absorbed in A, B, C and D):

G1 = A(g→ + g←)


1
0

cPz/(mc
2 + E+)

0

 ; (22a)

G2 = B(g→ + g←)


0
1
0

−cPz/(mc
2 + E+)

 ; (22b)

G3 = C(g→′ + g←′)


cPz/(mc

2 − E−)
0
1
0

 ; (22c)

G4 = D(g→′ + g←′)


0

−cPz/(mc
2 − E−)

0
1

 ; (22d)
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where now Pz, E− and E+ refer to the particle momentum and energy,
with

g→ = exp{−iγK(1 + β)(ct− z)} ; g← = exp{−iγK(1− β)(ct+ z)} ;

g→′ = exp{+iγK(1 + β)(ct− z)} ; g←′ = exp{+iγK(1− β)(ct+ z)} .

Equations (22) include a set of waves (g→′ and g←′) for which the
energies of the waves, that is the eigenvalues of the time component of
the Schrödinger operator, are negative. (This is to be expected from the
method of obtaining the RFC analogue Dirac equation.) Since the phys-
ical particle energy is the algebraic sum of the wave energies (equation
4), it also becomes negative for these solutions, under the assumptions
made. Hence the same questions arise here, in connection with the non-
positive-definite energy (and the positive-definite charge) of the parti-
cle, as those encountered in connection with the original Dirac theory
[3,4,5,6].

8. Massive Dirac particle in the RFC picture.

As described, for example, in reference [3], we can interpret the
negative-energy solutions (g→′ and g←′) of a free particle for v << c
as representing states with the opposite charge and positive energy, the
massive free anti-particle. Hence we can characterise a massive free Dirac
particle or anti-particle moving at speeds much less than c by a linear
combination of G1 and G2 of equations (22), i.e., both P and E reversed
in sign for an anti-particle.

9. Construction of the wave packet.

As described in reference [1], the RFC particle can be localized
in a wave packet, using a function of space variables to modulate the
standing wave in the rest frame. (Assuming that the particle is stable,
the function should not be time-dependent.) The modulating function
selected is the Gaussian, which, when included in the expression for G,
gives:

G = exp−a2(z − vt)2(G1 +G2) , (23)

with a being constant in a given inertial frame [1].

We now examine a version of the EPR experiment [7] that was
analysed in reference [8]. In this case, we need not distinguish particles
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from anti-particles, so the spinors along the z-axis (a selected space
orientation) can be represented simply by:[

1
0

]
or

[
0
1

]
.

10. Analysis of the EPR experiment

In the type of EPR experiment studied here, a system with zero
total angular momentum, composed of two massive spin-1/2 particles,
breaks up in a process that does not disturb the correlation of the spins
of the particles [8]. The particles then separate an arbitrarily great dis-
tance before spin component measurements are performed on both, for
a chosen orientation of the spins in space. In principle, the particles can
separate so far that the measurements could be completed before a light
signal could traverse the distance between the particles. In this case,
from the conventional viewpoint, no information about the values mea-
sured could be exchanged by the particles in the time interval between
the measurements.

Quantum theory predicts that the measurements will show the spin
correlation to persist, regardless of the particle separation distance or
the orientation chosen for the measurements. While the RFC picture
makes the same prediction, the additional information about the under-
lying mechanism leads to the use of RFC state functions different from
the corresponding quantum mechanical ones to describe the system be-
haviour.

(1) Quantum Mechanical Description

The quantum theory uses a coherent superposition of spin compo-
nent eigenfunctions to represent the spin state of the pair of free particles
after breakup of the spin-0 system [8]. We denote the free-particle region
of space as that in which the magnetic field, H, of the Stern-Gerlach de-
vices used to measure the spin components has a value less than δ, the
value above which the spin state function would be significantly affected.
If we denote as Ψ(σ) the spin part of the state function for particles 1
and 2 in the free-particle region, we have:

Ψ(σ)[free, H < δ] =
1√
2

([
1
0

]
1

[
0
1

]
2

−
[

1
0

]
2

[
0
1

]
1

)
. (24)
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In the deflection region, where H > δ, the spin state function, Φ(σ), is
a space-dependent sum of these eigenfunctions:

Φ(σ)[defl., H > δ] = (
1√
2

)

{
exp(iµ)

[
1
0

]
1

[
0
1

]
2

+ exp(iε)

[
1
0

]
2

[
0
1

]
1

}
,

(25)
where µ and ε are independent functions of the space coordinates. That
is, the fields are considered to have the effect of multiplying the separate
terms of the spin state function by uncontrollable, independent phase fac-
tors. The particles do not have separable spin state functions until the
result of one spin measurement is known. Hence in the quantum mechan-
ical picture, only one of the particles (the “last” to be measured) ever
has an independent spin state function, upon collapse of the 2-particle
spin state function following the “first” spin measurement.

(2) RFC Description

In the RFC picture, the information about the results of both spin
measurements is available everywhere on the trajectories of both par-
ticles, by virtue of the counter-propagating waves and their associated
spins. Hence we are free to consider each particle to be in the spin com-
ponent eigenstate that is compatible with both the correlation constraint
and the spin measurement.

In the free-particle region, we can select the RFC state function for
particle 1 to have spin up, implying that the measurement on the particle
in detector 1 gives this result. Then we can express its (non-relativistic)
RFC free-particle state function by:

G1(t, z, σ) = Z exp−a2(z − vt)2(g→ + g←)

[
1
0

]
(26)

Further, we can ensure continuity of the value and slope of the
waves in G1 with those of the state function of the deflected particle,
F1(t, z′, σ), where z′ represents the space coordinates of the particle in
the deflection region of detector 1. Suppose that the field reaches the
value δ at the point z = L, equivalent to z′ = L′; then these continuity
requirements can be represented approximately by the relations:

G1(t, L, σ)[free, H = δ] = F1(t, L′, σ)[deflected, H = δ], and

dG1

dz
(t, L, σ)[free, H = δ] =

dF1

dz′
(t, L′, σ)[deflected,H = δ] (27)
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The quantum mechanical analysis of reference [8], synopsized in
equations (24) and (25), can then be interpreted in the RFC picture as
showing that the spin part of F is that of G multiplied by a phase factor
which is a function of z′. If we denote the spin parts of G and F by G(σ)
and F (σ) respectively, then this can be expressed for either particle as:

F (σ)[deflected, H > δ] = G(σ)[free, H < δ]. exp iα (z′), (28)

Hence we can, in principle, generate solutions to the RFC analogue
Dirac equations (9) for products of the forward and backward RFC com-
ponents of both particles that are well-behaved over the trajectories from
breakup of the spin-0 system to impact with the detectors at the end of
the flight paths in the spin measurement devices.

Note that in the RFC picture there is no collapse of the 2-particle
spin state function to a single-particle spin state as a result of the detec-
tion process, as is part of the quantum mechanical algorithm for calcu-
lating probabilities of the spin states of the particles. Rather, the spin-0
system breakup is viewed as the transformation of a 2-particle spin state
function with zero total angular momentum to a separate spin compo-
nent eigenfunction for each particle. Each eigenfunction satisfies the cri-
teria implied by the interactions at the ends of its trajectory: zero total
angular momentum, and the result of the spin component measurement.

From the form of the argument used here, it is clear that regardless
of the type of detectors used, their results would still represent con-
straints on the choice of the particle spin eigenfunctions. The RFC
picture of the experiment would be essentially unchanged.

Note also that we were obliged to choose a result of one spin mea-
surement to identify a specific spin component eigenfunction for each
particle. The experiment is describable using the RFC waveforms, but
its outcome is only predictable in the sense that the spin correlation is
required to persist regardless of the choice of orientation or time delay
for the measurements. To obtain probabilities for various outcomes of
the experiment, the quantum mechanical algorithm must be used.

11. Conclusion

In this paper, we have obtained relations between the RFC particle
waveforms and wave equations of the Klein-Gordon and Dirac types.
It was observed that the quantum mechanical wave equations for de
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Broglie waves appear to be associated with RFC waveforms, but do
not specify the backward and forward RFC components individually,
instead giving their product. Wave equations were also obtained for the
carrier-wave components of RFC waveforms, which were inferred to have
quantum mechanical analogues. The solutions to the analagous quantum
mechanical equations would give momentum eigenvalues of stable states
of a system.

It was then possible, using RFC waveforms and equations, to de-
velop a wave-mechanical description of an EPR-type experiment which
provides a logical explanation for the experimental results predicted by
quantum theory. It also became apparent, from the relation deduced
between the quantum mechanical and RFC wave equations, why con-
ventional quantum theory cannot provide this explanation.

It is noteworthy that the mechanism presented here is compatible
with an analysis by Bell of possible conditions whereby the predicted
quantum mechanical results could arise in such experiments [9].

The quantum mechanical conception of time has been the subject of
controversy since the early days of the theory [10]. The comparison of the
RFC and quantum mechanical pictures helps to clarify the significance
of the time asymmetry inherent in the quantum mechanical algorithm
used to calculate probabilities. This asymmetry is an important feature
of the algorithm, and its removal (here, in changing to the RFC picture)
impairs the capacity to estimate probabilities, as noted in reference [11].

The RFC picture can also be applied in a similar manner to explain
more elaborate EPR-type experiments, for example that discussed in
reference [12].
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