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ABSTRACT. Spherical cavities with internally trapped electromag-
netic fields are considered as wave-corpuscular models of extended
spin-0 particles. It is shown that radiation imprisoned inside a uni-
formly moving cavity undergoes conversion into a non-linear system
of time-like and space-like waves which form a non-dispersive wave
packet travelling at a group velocity equal to that of the moving cav-
ity. The Mackinnon and Klein-Gordon wave equations for inner and
outer fields associated with trapped radiation have been derived.

RÉSUMÉ. Des cavité sphériques avec champ électromagnétique
piégé sont considérées comme des modéles onde-corpuscle de par-
ticules étendues avec spin-0. On montre que la radiation enfermée
dans la cavité en mouvement subit une conversion en un systéme
non linéaire d’ondes de type spatial et de type temporel, qui forment
un paquet d’ondes non-dispersif, se mouvant avec une vitesse égale
á celle de la cavité. Les équations de Mackinnon et de Klein-Gordon
pour les champs associés avec la radiation piégée sont déduites de
ces considérations.

1 Introduction

The fundamental equations of classical and quantum mechanics such
as the Hamilton-Jacobi equation or the Klein-Gordon and Dirac equa-
tions are based on the Newton’s concept of the mass point, and in the
quantum domain, on the point particle notion. This useful approxi-
mation leads however to the unphysical effects of infinite self-energy
and self-field, so the Dirac distribution or the renormalization procedure
must be used to obtain the equations correctly describng the observed
properties of material objects.
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In order to avoid these complicated and abstract operations sev-
eral models have been proposed [1-10] treating elementary particles as
extended structures and not point-like objects. In particular, an electro-
magnetic approach has been developed [11-13] in which rectangular cavi-
ties with internally trapped radiation are considered as wave-corpuscular
models of massive particles, as they very well reproduce fundamental
properties of the ordinary matter, e.g. inertiality, mass quantization,
non-point character, three-dimensional spatial extension and time-like
kinematical characteristics [12].

The above concept assumes a rectangular geometry of extended par-
ticles, however, this stands in distinct contradiction to our intuitive ex-
pectations and standard conceptualization attributing to all particles a
spherical geometry rather than a rectangular one. In view of the above,
it would be desirable to construct in the electromagnetic framework, a
more real and adequate model of extended particles, which would take
into account not only their wave-corpuscular character but also spherical
geometry.

The first suggestion in this respect comes from de Broglie [14], who
considered electron as a superposition of two spherically symmetrical
waves, a converging and a diverging one, both having phase velocity
equal to the velocity of light. The de Broglie’s concept was developed by
Mackinnon [15-18], who, on the basis of the phase connection principle,
has constructed a non-dispersive wave packet which does not spread
with time and constitutes the particle-like solitary wave. Jennison [9]
has shown that the Mackinnon’s soliton represents a massive particle of
a sharp and finite boundary, and is entirely consistent with the model of
the electromagnetic phase-locked cavity [6,7]. According to this concept
the origin of inertia of all finitely bounded material particles lies in the
echo effect for feedback process occuring for c-velocity waves, that is
intrinsic to phase-locked particles [9]. Considering the wave-corpuscular
phenomena occurring in phase-locked cavities, it has been demonstrated
[11,12] that trapped radiation undergoes conversion into a system of
time-like and space-like waves which lock to form the non-linear wave
propagating as a luminal-type excitation. In the corpuscular picture
it may be interpreted as a photon conversion into a bradyon-tachyon
compound whose particle constituents trap each other in a relativistically
invariant way yielding a photon-type particle.

This short review of the most important concepts in the field sug-
gests that the best theoretical framework for construction of extended
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particle models is an electromagnetic approach [6-10] enriched by the
tachyonic theory of elementary particle structure [19-23]. In this paper
we propose to consider in the aforementioned framework a relativistic
wave-corpuscular model of extended spin-0 particles treated as spherical
cavities with internally trapped electromagnetic fields. It will be shown
that such a model is consistent with the well-known theoretical results in
the field and predicts for example, (i) the presence of the matter waves of
second kind (D-waves) in the spectrum waves associated with the cavity
(particle) interior, (ii) the formation of a non-linear non-dispersive wave
packet (C-wave) by the fields trapped inside a moving cavity, and (iii)
the appearance of the bradyonic and tachyonic constituents in the mass
spectrum associated with imprisoned radiation.

2 General formulation

In order to realize the above program, let us consider a spherical
cavity of an internal radius a, which has perfectly conducting walls and
a charge-free interior. If we assume that TE wave is excited inside cavity,
its field components {Eφ, Hθ, Hr} propagate according to the Maxwell
equations [24]

c−2∂2tE +∇×∇×E = 0, (1)

c−1∂tH +∇×E = 0. (2)

The first of the mentioned equations and its solutions can be given [24]
in the explicit form{

c−2∂2t −
[
∂2r + r−2

(
sin θ−1∂θ sin θ∂θ − sin θ−2

)]}
rEφ = 0, (3)

Eφ = E0(µnlr)
−1Rnl(µnlr)Θ(θ)1l exp[iµnlct], (4)

where n, l = 0, 1, 2..., µnlc is the resonator frequency of the TEn,l,m
wave, Θm

l (θ) denotes the associated Legendre polynomials with m =
±1, whereas Rnl(µnlr) are the spherical Bessel functions of the order 1

2
satisfying[

∂2r + µ2
nl − l(l + 1)r−2

]
Rnl(µnlr) = 0, Rnl(0) = 0. (5)

Having the solutions for Eφ, the remaining field components can be easily
calculated by making use of the equation (2)

Hr = iE0l(l + 1)(µnlr)
−2Rnl(µnlr)Θ(θ)l exp[iµnlct], (6)

Hθ = −iE0(µnl)
−2r−1∂rRnl(µnlr)Θ(θ)1l exp[iµnlct]. (7)
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The explicit values of the resonator frequency can be determined by
imposing on electric field the boundary condition Eφ(a) = 0 leading to

µnl =
xnl
a
, (8)

where xnl denotes the n-th root of the spherical Bessel function
Rnl(µnla) = 0. In the simplest case of the TEn,0,0 wave we have

Rn0(µn0r) = sin(µn0r), (9)

so from (8) one obtains

µn0 =
nπ

a
, (10)

and the electric field Eφ can be given as

Ψn00(t, r) = E0
sin(µn0r)

µn0r
exp[iµn0ct]. (11)

It is easy to verify that the magnetic components Hr and Hθ associated
with TEn,0,0 wave take the form

Hr = 0, Hθ = −iE0
cos(µn0r)

µn0r
exp[iµn0ct]. (12)

Inspection into (12b) reveals that Hθ, having normal orientation relative
to the cavity surface, satisfies the boundary condition ∂rrHθ(a) = 0
giving the same values of the resonator frequency as (10).

3 Lorentz transformed electromagnetic fields

So far our considerations have concerned the electromagnetic struc-
ture of the cavity at rest characterized by the solutions (11). It is in-
teresting to note that wavefunction (11) is not only solution of (1), but
also satisfies the wave equation

sin(µn0r)

µn0r
exp[iµn0ct] = 0, (13)

r =
√
x2 + y2 + z2, (14)
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with d’alembertian
≡ c−2∂2t −∆ = ∂µ∂

µ, (15)

expressed in terms of the Cartesian coordinates. So in order to obtain
the suitable solutions and the corresponding wave equation describing
fields associated with the cavity moving in the +x-direction at a velocity
v = cβ = dx/dt (relative to the labolatory frame), one may apply to (13)
the Lorentz transformation

ct −→ ct− xβ√
1− β2

, x −→ x− βct√
1− β2

y −→ y, z −→ z, (16)

yielding the result

sin[µn0r(v)]

µn0r(v)
exp[

iµn0(ct− βx)√
1− β2

] = 0, (17)

r(v) =
√

(x− βct)2/(1− β2) + y2 + z2. (18)

A detailed analysis of (17) reveals that the Lorentz transformed fields
associated with the moving cavity satisfy the following equations

Ψn00(t, r) = 0, Ψn00(t, r) = χn0(t, r)ψn00(t, r), (19)(
+µ2

n0

)
χn0(t, r) = 0, χn0(t, r) = exp[i(kµx

µ)], (20)(
−µ2

n0

)
ψn00(t, r) = 0, ψn00(t, r) =

sin[µn0r(v)]

µn0r(v)
, (21)

∂µχn0(t, r)∂µψn00(t, r) = 0, (22)

kµ ≡ {µn0(1− β2)−1/2, 0, 0, µn0β(1− β2)−1/2}, (23)

from which (20a) and (21a) have identical form as the time-like and
space-like Klein-Gordon equation for a particle endowed with rest mass
µ0
nl = µnlh̄c

−1.

The obtained above results may be accounted for by assuming that
a non-zero rest mass

µ0
nl =

h̄xnl
ca

, (24)

may be attributed to trapped radiation [12], which depends on the mode
characteristics n, l, and the cavity dimension a. Needless to mention that
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the mass µ0
nl associated with the imprisoned fields is quantized, in full

accordance with the results of Jennison and Drinkwater [6] and Jennison
[7].

A look into (19)-(22) additionally reveals that the derived equations
are consistent with the tachyonic theory of elementary particle structure
[19-23] and the two-wave particle model [25-35], so χn0 and ψn00 waves
may be identified with the ordinary subluminal de Broglie wave (B-
wave) and the superluminal matter wave of the second kind (D-wave),
whose superimposition yields a Ψn00 wave propagating as luminal-type
excitation.

In the particle picture it may be interpreted as a photon conversion
into a bradyon-tachyon system whose particle constituents trap each
other in the relativistically invariant way yielding a photon-type parti-
cle. As the tachyonic component has the co-latitudal (θ), azimuthal (φ)
as well as radial (r) degrees of freedom, it can move on the surface of a
sphere whose centre coincides with the bradyonic constituent, however,
the radial degree of freedom enables the tachyon to travel also between
infinitesimally close spherical surfaces. In view of the above, such a
bradyon-tachyon system created in the spherical cavity, structurally re-
sembles a hydrogen-type (H-type) compound.

It is interesting to note that equations indentical to the (19)-(22)
ones have been obtained by Mackinnon [15-18], who has constructed,
with a particular superimposition of de Broglie waves, a wave packet
which does not spread with time and constitutes a particle-like solitary
wave. Gueret and Vigier [37] have shown that such a soliton wave fol-
lows the geodetics in the external gravitational field, so it behaves as
a singularity of the gravitational field, i.e. as a test particle. Because,
the Mackinnon soliton is endowed with a 3-dimensional spatial extension
and inertia property [16,17], it has been proposed as a wave-corpuscular
model of extended massive particles [18,35,36]. Let us recall additionally
that in the M(1, 1) space, the propagation of Ψn00 wave is governed by
the non-linear propagation law [26,37], so it may be interpreted in the
framework of the non-linear wave hypothesis [31,32,34] as C-wave involv-
ing B- and D-waves as the internal spectrum waves associated with the
cavity interior.

From the context of the presented considerations a clear, and con-
sistent with our knowledge in the field, wave picture of the spherical
cavity interior emerges. Namely, the radiation trapped inside the cavity
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undergoes a conversion into the plane time-like wave χn0 and the space-
like ψn00 one which lock to form a solitary photon-like wave Ψn00. Such
imprisoned inner fields form a non-dispersive wave packet which does
not spread with time and travels at a group velocity equal to that of the
moving cavity.

4 Particles as spherical cavities

The results obtained in the previous section indicate that electro-
magnetic spherical cavities may be employed as the extended wave-
corpuscular models of massive particles. Exploiting this idea the trapped
fields may be identified with inner (self) fields propagating in the cavity
(i.e. particle) interior (r ∈< 0, a >) as luminal-type excitation. In the
cavity exterior (r ∈ (a,∞)) the spatial propagation of the fields vanishes
and the Maxwell equation (1) reduces to the purely time-like equation(

∂20 + µ2
n0

)
exp[iµn0x

0] = 0, (25)

describing the propagation outer fields in the external cavity domain
along the x0-axis being incidentally the cavity worldline. So, in order
to obtain the wave equation governing the propagation of outer fields
associated with the cavity moving at the velocity v, one may apply to
(25) the time Lorentz transformation yielding [12,29](

+µ2
n0

)
exp[ikµx

µ] = 0, (26)

kµ ≡ {µn0(1− v2/c2)−1/2, µn0c
−1v(1− v2/c2)−1/2}, (27)

which is nothing else but the Klein-Gordon wave equation describing
propagation of time-like fields associated with a spin-0 free moving par-
ticle.

4.1 Geometrical relationships

Now, let us focus our attention on the problem of a correlation be-
tween the geometrical characteristics of spherical cavities and extended
particles. For this purpose, on the basis of the rest-mass formula (24),
one may derive the relationship

d = 2a =

(
h

µn0c

)
xn0
π
, (28)
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which under the substitution xn0 = nπ can be given as

d = nλC , (29)

where d is a cavity diameter whereas λC = h/µn0c denotes a Compton
wavelength characterizing the massive cavity at rest.

A detailed analysis of equation (29) indicates that for the funda-
mental TE100 mode, a diameter of the spherical cavity at rest is equal to
the Compton wavelength of the associated mass, and corresponds to the
width of the wave packet measured at the first zero-point of the function
Ψ100(t, a). This implies a strong correlation between the standard pa-
rameters characterizing extended particles and the geometry of spherical
cavities.

4.2 Relativistic mass problem

It is obvious, that geometry of the cavity as well as the associated
mass change in the moving frame. So in order to find the suitable rela-
tions let us consider for the sake of interpretative simplicity, the propaga-
tion of inner fields (17) projected onto M(1, 1) space, which is governed
by the wave equation

sin

[
x10(x−vt)
a
√

1−v2/c2

]
x10(x−vt)
a
√

1−v2/c2

exp

[
i
x10(ct− vx)

a
√

1− v2/c2

]
= 0. (30)

Inspection into (30) reveals that the radius of the moving cavity un-
dergoes relativistic deformation and grows shorter in the direction of
motion

a 7−→ a
√

1− v2/c2, (31)

in strict connection to the transformation of the Compton wavelength

λC 7−→ λC
√

1− v2/c2. (32)

Simultaneously, the mass associated with the cavity changes according
to the equation

µ0
10 7−→

µ0
10√

1− v2/c2
, (33)
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which indicates that, on the one hand, radiation trapped in the spherical
cavity behaves as ordinary ponderable matter, and on the other, that the
relativistic mass problem may be considered in the purely geometrical
framework [12].

In the case of the de Broglie wavelength associated with the mov-
ing cavity λB = h/px, where px is the x-component of the cavity 3-
momentum, one gets

λB = λC
√
c2/v2 − 1 = d

√
c2/v2 − 1, (34)

so, it is apparent, that de Broglie wavelength measured in diffraction
experiments can give important information on the geometry of particles
considered as spherical cavities.

4.3 Geometry of a bradyon-tachyon system

Finally, let us investigate the geometrical characteristics of the
bradyon-tachyon H-type compound created inside the cavity. Because
the space-like fields associated with the tachyonic component are delo-
calized in space [23,32], one may obtain the useful information on the in-
ternal structure of the particle system calculating the radial distribution
of the tachyonic field in the space surrouding a bradyonic constituent.
Taking advantage of the well-known formula

dρ(r) = 4πr2Rn0(r)2dr, (35)

and introducing into (35) the radial function (21b), for v = 0 we arrive
at the equation

dρ(r)

dr
= 4πr2[Rn0(r)]2 = 4π

( a

nπ

)2
sin
(nπr
a

)2
, (36)

giving the probability of finding the tachyonic constituent within a spher-
ical shell of a radius r and thickness dr; that is, within a volume 4πr2dr
at the radius r. Function (36) sinks to zero at the bradyonic constituent
as well as on the cavity wall, and has n-maxima at the points

rk =

(
2k + 1

2n

)
a, k = 0, 1, 2...n− 1. (37)

It is easy to check that for the fundamental mode (n = 1) the radial
distribution (36) attains the maximum for r0 = 1

2a, so the greatest
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probability of finding a tachyon moving in the space surrounding the
bradyon is at a half of the cavity radius.

5 Conclusions

The spherical cavities with internally trapped electromagnetic fields
very well reproduce the fundamental properties of ordinary particles,
e.g. inertiality, mass quantization, three-dimensional spatial extension,
spherical symmetry and subluminal kinematical characteristics. Because
outer fields associated with such imprisoned radiation propagate accord-
ing to the Klein-Gordon equation, the spherical cavity with an excited
TE100 wave may be considered as the relativistic wave-corpuscular model
of time-like spinless particles.

The proposed approach is consistent in many points with the well-
known theoretical results in the field, and predicts for example: (i) the
presence of B- and D-waves in the spectrum states associated with the
cavity (particle) interior which is compatible with the two-wave parti-
cle model [25-35], (ii) the formation of a non-linear non-dispersive wave
packet (C-wave) by the fields trapped inside a moving cavity, in full
accordance with the non-linear wave hypothesis [30-32,34], (iii) the ap-
pearance of the bradyonic and tachyonic constituents in the mass spec-
trum associated with imprisoned radiation, which is consistent with the
extended wave-particle description of matter [30-34] and the tachyonic
theory of elementary particle structure [19-23]. Moreover, the last point
suggests the composite internal bradyonic-tachyonic structure of photons
in agreement with the model proposed by Dutheil [38-43].

In particular the proposed approach permits explaining why the
particle-like solitary wave obtained by Mackinnon, satisfies the luminal-
type wave equation, and does not satisfy the ordinary time-like Klein-
Gordon one [26,37]. The solution of the problem is simple, namely, the
Mackinnon equation governs the propagation of inner fields associated
with the cavity interior. Because the spectrum of inner fields includes
both time-like and space-like waves in the form of the non-linear super-
position its propagation is governed by the luminal Mackinnon equation.
On the other hand outer fields associated with the cavity exterior are
endowed with the time-like characteristics, so they propagate according
to the Klein-Gordon equation for massive subluminal particles. Both
of the equations are correct, however, in the two different cavity (i.e.
particle) domains.
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The presented considerations can be extended onto the TM waves
endowed with the field components {Hφ, Eθ, Er}. However, in this case
the boundary conditions [24]

Eθ(a) = 0, ∂rrHφ(a) = 0, (38)

imposed onto TMn00 wave lead to the resonator frequency

µnlc =
c(n+ 1/2)π

a
, (39)

and then the geometrical correlation given by (29) is not found.
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