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ABSTRACT. We discuss various early attempts to deduce the high-
est chemical element of the periodic system by means of quantum-
theoretical considerations, an area still of interest to some physicists.
The first attempts in this tradition employed the Bohr-Sommerfeld
atomic model, the criterion for Z,,q., being that the velocity of a
K-electron must not exceed the velocity of light. Other attempts,
from the 1920s and 1930s, utilized the idea of a fundamental con-
stant of time duration which, if it exists, must be smaller than the
minimum period of revolution of an atomic electron. Finally we
mention some speculative ideas of applying Eddingtonian theory for
the same purpose.

RESUME. Nous discutons quelques lointaines tentatives de déduire
quel est le dernier possible élément chimique de la table périodique
sur la base de considérations théoriques quantiques, un sujet encore
intéressant pour quelques physiciens. Les premiéres tentatives dans
cette tradition utilisérent le modéle atomique de Bohr-Sommerfeld,
le critere pour individualiser Zmaz, étant donné que la vitesse d’un
électron K ne peut pas exéder celle de la lumiére. D’autres ten-
tatives des anneés 20 auxr années 30 se basérent sur l’idée d’une
unité fondamentale d’intervalle de temps qui, au cas ot il existerait,
devrait étre plus petit que la moindre période de révolution d’un
électron dans ’atome. Finalement nous citons quelques spéculations
sur Uapplication de la théorie d’Eddington dans le méme but.

Two articles in this journal recently discussed the limit of the pe-
riodic table due to the electrodynamic instability of atoms with a large
number of electrons. P.Kundu [1] argued that Z,,,, is given by the in-
verse fine structure constant (o~ = ca 137) and found it significant
that the atomic mass number of the first forbidden element (Z = 138)
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happens to be exactly 3/2 of the mass number of uranium. Similarly,
N.I.Nijegodorov [2] discussed the speed of a K-electron in multi-electron
atoms and argued by means of the Dirac eqation that the last (hypothet-
ical) hydrogen-like atom in the periodic table must have atomic number
Z = 136. The author mentioned several other physicists who, since the
1960s, have discussed the question of the final element in the periodic
system.

It is the purpose of the present note to point out that neither is
this question new at all, nor are the methods discussed by Kundu and
Nijegodorov. In fact, the problem was discussed in a quantum theoretical
perspective since the early 1920s. Apart from serving as a historical
reminder of this fact, we believe that a brief discussion of some of the
early attempts may have interest in its own right. We end the paper by
briefly pointing out the present interest in the so-called electrodynamic
instability of super-heavy elements, a feature that can only be treated
by means of relativistic quantum mechanics.

1. Methods based on ordinary quantum theory

Speculative attempts to determine the maximum number of chemi-
cal elements predate quantum atomic theory. The early attempts, which
date back to 1884, were mostly based on numerological reasoning con-
cerning the periodic system [3]. Being scarcely more than guesswork,
they need not concern us here. Yet it is of interest to note that detailed
calculations of the maximum number of electrons were also carried out
for pre-quantum atomic models. Thus, in J.J. Thomson’s atomic model
no more than 471 electrons can be in equilibrium [25].

The first quantum theoretical treatment of the problem may have
been due to the Norwegian astrophysicist Svein Rosseland [4], working at
Bohr’s institute in Copenhagen, who responded to a suggestion [5] that
radioactivity might be caused by the perturbations of orbital electrons
coming very close to the nucleus. Within the framework of the so-called
old quantum theory, Rosseland pointed out in 1923 that according to
Sommerfeld’s relativistic theory the shortest distance from the nucleus
to an elliptically moving electron will be attained for electrons with az-
imuthal quantum number k£ = 1 and be approximately given by

ag
r =

2,2
—2Z(1 aZ)
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Here ay is the Bohr radius (= i%/me?) and « is the fine structure con-
stant, o = €2/he. In conformity with the notation of the 1920s, the
orbit of an electron is characterized as ny with n the principal quantum
number and k the azimuthal quantum number (k = ¢+ 1). Since r will
diminish with increasing Z, and the nuclear size will increase, Rosseland
concluded that there would exist an upper limit for Z. Although he
did not calculate this limit, he found it unlikely that there would exist
elements with atomic numbers much larger than 92. Rosseland stressed
the tentative nature of his suggestion by adding that ”our knowledge
of nuclear structure is probably far too scanty to permit of any definite
conclusions concerning these questions at present.” Writing in 1923, be-
fore quantum mechanics and the discovery of the neutron, his cautious
attitude was wise.

Inspired by Rosseland’s argument, Niels Bohr stated the same year
without proof that an electron in an ny orbit would fall into the nucleus
if Z/k > 1/a = 137, which he saw as indicating ”an understanding
of the limitation of the atomic number of existing elements” [6]. For
k =1, this means that Z < 137. Whether Bohr considered super-heavy
elements a possibility is doubtful, but in 1922, in his Nobel address,
he wrote down the complete electron configuration (in terms of ny) of
the hypothetical inert gas with Z = 118 [7]. Bohr’s remark can be
understood by following the elaboration by Arnold Sommerfeld [8], who
used the relativistic energy expression he had derived for a hydrogen-like
atom in 1915. Introducing the radial quantum number n, = n — k, the
energy E depends on the quantum numbers by

—1/2
E a2 Z?
mc [nr + kQ _ 04222}

For a circular orbit (n =k, n, =0)

E

1 = Tz

In order that the energy shall remain real, and hence could be ascribed
a physical meaning, one must have that

1-a?(Z/k)*>0 or fork=1, Z<1/a=137

For k > aZ, electrons of momentum p move in rotating elliptic
orbits with a perihelion motion given by the real quantity
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v =1-(2¢%/*)/p* =1~ (k/aZ)?

Sommerfeld proved that if £ < aZ the motion would not be ellipti-
cal, but the electron would instead perform a spiral motion around the
nucleus, approaching it with almost the speed of light. For k = 1,7 =
137 would therefor be the limit between allowed, elliptical orbits and for-
bidden, spiralling orbits. In 1924 (before the introduction of spin), half
integral azimuthal quantum numbers were assumed to exist in higher
atoms. If k = 1/2, the limit will be about 68, which obviously poses a
problem. However, Sommerfeld suggested that if the perturbations of
the other electrons were taken into account the limit might possibly be
raised to 92.

Of course Sommerfeld’s treatment is highly schematic, leaving out,
as it does, screening effects due to the other electrons and the modifica-
tion of the inverse-square law of force expected at very small distances
from the nucleus. This was pointed out by Walter Kossel, among others,
in 1928 [9]. Kossel suggested that the attractive magnetic forces between
the K-electrons squeezed together near the nucleus might determine the
highest value of Z. The question of what constitutes, in principle, the
last element of the periodic system was well known and often discussed
in the old quantum theory [10].

When Sommerfeld’s relativistic extension of Bohr’s theory was re-
placed by the Dirac equation, the first solutions for a one-electron system
showed that the energy expression for the lowest bound state remained
unchanged, although the permitted values and the meaning of the quan-
tum numbers were now somewhat different [11,12]. The first physicist to
provide an exact solution for the Dirac equation applied to one-electron
atoms, Walter Gordon, commented on the problem of a highest Z [13;
see also 14]. As a purely mathematical requirement in order to solve the
Dirac equation for a nuclear charge Ze, he found that 1 — %22 > 1/4,
meaning that the maximum Z is \/§/2a or about 119. In Gordon’s
treatment, screening corrections due to the presence of other electrons
were not taken into account. In general, also within the Dirac theory
the lowest permitted energy goes towards zero when Z approaches 137
from below, and it becomes imaginary when Z > 137. A point nucleus
with Z > 137 cannot support the lowest bound electron.

Within the framework of the relativistic wave equation also the effect
of a finite nuclear size has been considered, but with a result opposite to
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that obtained by Rosseland in 1923. In fact, if the central charge distri-
bution is not point-like, the attractive potential deviates from and is less
singular than a pure Coulomb potential, with the result that the critical
value for Z becomes larger. We refer to the detailed treatment of Popov
[15]. It is worth pointing out that in ordinary, non-relativistic quantum
mechanics there is no ”collapse to the centre”. This phenomenon is a
consequence of introducing, in one way or another, the special theory of
relativity.

2. Methods based on minimum-time hypothesis

In the late 1920s, there appeared several ideas of a smallest time
interval, i.e., a fixed minimum duration AT below which time measuring
would have no meaning. This general idea, of wich is given a detailed
account in [16], was developed by many physicists, including de Broglie
in a study of 1932 [17]. If durations are limited by AT, so is the period of
revolution for a K-electron and then its velocity. And since the velocity
is determined by the nuclear charge, this implies a maximum atomic
number. In the simple (non-relativistic) Bohr theory we have :

v = Zca and r=h/mv
Assuming AT = h/mc? the condition is
27r /v > h/mc?

which, with the expressions for v and r substituted, leads to the old
result Z < 137. In a even simpler way, it follows from v = Zca and
v < ec.

According to Henry Flint and Owen Richardson [18, 19], h/mqc?
should be understood as a minimum proper time, which led them to a
smaller value of Z,,,4,.. Their argument, based on the Bohr atomic theory
mixed in a somewhat obscure manner with elements of special relativity,
was as follows. The period of revolution, measured in the electron’s
proper time, must be larger than the postulated minimum time interval

2nr v2 h

v 2" mpc?

Introducing in this inequality 7 = h/muv with m expressed relativistically
by myg leads to :
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v? v?

¢
1-— C72 > 0*2 or v < ﬁ

That is, Flint and Richardson claimed that the velocity of orbital elec-

trons could not exceed 71% of the velocity of light. Accepting this result,

it follows immediately from v = Zca that Z < (av/2)~! or Z < 97.

This was a result that seemed reasonable at the time, but of course
it built on the then obsolete Bohr-Sommerfeld model. In 1934, Walter
Glaser and Kurt Sitte reconsidered it in the light of Dirac’s quantum
mechanical theory of the electron, but keeping to the hypothesis of a
minimum time interval [20]. In Dirac’s theory there is no definite dis-
tance or velocity of the electron (a fact which Nijegodorov [2] seems
to ignore), but it is possible to find the quantum mechanical analogies.
Using the standard formulae for the average values of r=2 and dx;/dt,
Glasser and Sitte found that

v = Zecw (as in the Bohr theory)

and

- [m] Vo - 2202 - V1 Z2a2

Using the criterion that the period of revolution 27r/v has to exceed
h/mc?, they found the maximum atomic number to be Z = 90.5 £ 0.5.
Given the existence of uranium this number is too small, of course, but
Glaser and Sitte argued that the effects of the second K- electron would
result in a correction that would increase the number, probably to 92.

As mentioned by Glaser and Sitte, Flint and Richardson’s condi-
tion that v < ¢/ v/2 can be obtained also by requiring that the de Broglie
wavelength for a bound electron must always exceed de Compton wave-
length. Le.

h 1112 h

mov 2" mgc

Glaser and Sitte, and also Flint and Richardson, considered their re-
sults to constitute support of the hypothesis of a minimum time interval
[16].
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3. Eddingtonian attempts

The mentioned examples show that it is possible to obtain reason-
able values for the maximum atomic number in very different ways, us-
ing atomic models that are more or less adequate and special hypotheses
that are more or less justified. Given the popularity in some quarters of
Arthur Eddington’s ambitious attempt to bridge cosmology and quan-
tum mechanics it is not surprising that also this theory [21] may be used
to yield a result.

For example, in 1932 V.V. Narlikar applied Eddington’s unortho-
dox theory to argue that the highest possible number of electrons in an
atom is 92 [22]. According to Eddington’s E-algebra, the magic number
137 (or 136 +1) represented the number of degrees of freedom of a two-
particle system. Assuming a one-to-one correspondence between degrees
of freedom and independent wave-functions this may (by means of the
Pauli exclusion principle) be interpreted as meaning that the maximum
number of electrons is 137. Narlikar may have felt that 137 was an un-
realistically large atomic number. At any rate, he modified Eddington’s
analysis so that the number 137 was reduced to 92, and from this he
concluded that ”there can be no element beyond uranium”.

After the war - and after the discovery of the first transuranium
elements - a spanish physicist, D. M. Masriera, used the same theory to
obtain the number of [23]. Masriera, who had advanced the hypothesis
in Spanish four years earlier, concluded that 96 was the number of pos-
sible single wave equations of nuclear particles. We shall not be further
concerned with these ideas, far away from mainstream physics as they
were and are.

4. Conclusion

It has been shown that attempts to deduce the highest element in
the periodic system by means of considerations from quantum theory go
far back in time and were discussed as early as the 1920s. The examples
we have mentioned are far from exhaustive. The general ideas underlying
the work of Nijegodorov [2] and the authors he discusses are essentially
the same as those found in, e.g., Bohr and Sommerfeld. Given the many
papers on this subject, and the fact that one may arrive at reasonable
results for Z,,4, in so many different ways, it seems doubtful if the upper
limit of the periodic table can be deduced in a justified manner from
atomic physics. Presently there is good reason to believe that, whatever
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the value of Z,,,., it is not a question of the electronic structure but
of the instability of the nucleus for super-heavy elements. If this is the
case, calculations of the electron configuration for hypothetical super-
heavy atoms, such as Z = 137, lose much of their relevance.

All the same, calculations of the mentioned kind and of the ”elec-
trodynamic limit” for artificially produced unstable super-heavy atoms,
including Z > 137, are still of considerable interest, namely, in the area
of strong fields in quantum electrodynamics. In fact, in ”quasi-atoms”
formed in heavy ion collisions objects with Za > 1 have been studied,
albeit with a lifetime of only 10729 second [24].
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