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ABSTRACT. We show the possibility of defining in a simple way a
generalized Kaluza constraint for (4 + N) -dimensional spacetimes
with torsion resembling the original Kaluza constraint on the multi-
dimensional metric. The somewhat intriguing conclusion is reached
that the application of this generalized constraint leads directly to
the dimensional reduction of a first order action in a very general
multidimensional model with non-vanishing torsion. Consequences
of this result are investigated.

RÉSUMÉ. On montre la possibilité de définir simplement une liai-
son généralisée de Kaluza pour espace-temps à 4+N dimensions avec
torsion ressemblant la liaison originelle de Kaluza sur la métrique
multidimensionelle. On arrive à la conclusion que l’application de
cette liaison généralisée mène directement à la réduction dimen-
sionelle d’une action de premier ordre dans un modèle multidimen-
sionel tres généralisé avec torsion. On évalue les consequences de ce
résultat.

1. Introduction.

It is well known that the so-called Kaluza-Klein theory was worked
out in the 20s [1,2] in order to unify gravity and electromagnetism in
a common 5- dimensional geometrical scheme. Since the first years,
however, Klein [2] and de Broglie [3] saw a natural link between the 5-
dimensional theory and the quantum behaviour of the microscopic mat-
ter as prescribed by the new wave mechanics. Klein’s article is histori-
cally analysed in an interesting paper by Bergia et al. [4]; De Broglie,
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on the other hand, asserted the validity of an equivalence principle in
five dimensions, the role of which was recently discussed in refs.[5,6],
and studied a 5- dimensional covariant wave equation leading to a 4- di-
mensional projection in form of a Klein-Gordon equation with (minimal)
electromagnetic coupling.

The original Kaluza-Klein theory was further developed by Ein-
stein, Bergmann, Jordan and Thiry [7-9] in a 5-dimensional context.
More recently multidimensional extensions were elaborated by ”adding”
a non-Abelian Lie group to the usual 4-dimensional spacetime (see, for
instance, the early proposals in refs.[10-13] and definite mathematical
formulations in refs.[14,15]). This approach leads to interesting con-
sequences for the physics of the fundamental interactions. Recently,
moreover, following an Einstein- Bergmann approach, Bergia et al.[16]
discussed the possibility that metrical fluctuations in the fifth dimension
can supply a physical subquantum background for quantum mechanics.
A modification of the quantum evolution equation determined by multi-
dimensionality has been also envisaged [17]. In particular, these papers
bear witness to the relevance of studies about Kaluza- Klein theories
even for the foundations of quantum mechanics.

Even if the modern approach to Kaluza-Klein theories is that of the
so- called spontaneous compactification [18-20], we want to stress that an
euristic ”Ansatz” can still turn out to be helpful in a formal preliminar
treatment of new extensions.

In the 80s, several theorists started working on multidimensional
models of the Kaluza-Klein type in spacetimes with non-vanishing tor-
sion [21-36]. Most of these articles deal with very specific models char-
acterized by precise requirements on the form of torsion.

The only papers dealing with a general framework for multidimen-
sional theories with torsion are those listed in refs.[22,33]. In this note,
taking up and somewhat extending their treatment by a general and
more explicit formalism, it is our aim to show the possibility of defining
in a simple way a generalized Kaluza constraint for extended spacetimes
with torsion extending in a very natural way the original Kaluza con-
straint on the (4 + N)-dimensional metric γ. The somewhat intriguing
conclusion is reached that the simple application of this generalized con-
straint leads to the dimensional reduction of a first order action in a
very general multidimensional model with non-vanishing torsion. At
this stage, the role of the generalized Kaluza constraint is especially for-
mal and euristic. Nevertheless it enables us to obtain a general metrical
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model even with non-vanishing torsion in the usual four dimensions and
it provides a general background in which new compactification mecha-
nisms could be analysed.

This paper is structured as follows: in section 2 we introduce some
geometrical notations on a principal fibre bundle representing our ex-
tended spacetime. In section 3 we ”translate” the original Kaluza con-
straint on a 5-dimensional metric in our general formalism for a (4+N)-
dimensional extended spacetime and perform the usual dimensional re-
duction of standard multidimensional unified theories. In section 4 the
generalized Kaluza constraint is defined and its application to the di-
mensional reduction of a first order action with torsion is accurately
described. Finally, in the last section, several comments are made on
the consequences of the result previously presented.

2. Some geometrical notations.

In this section we introduce some elements of the general formalism
that we adopt in order to deal with multidimensional theories and the-
ories with torsion. For a complete treatment of this geometrical subject
one can see refs.[37,15,5,38].

The two fundamental elements of our geometrical treatment are a
principal fibre bundle with a rule of horizontality (bundle connection),
representing our extended spacetime, and a non-vanishing torsion on the
usual spacetime as well as on the internal dimensions. In our notations
about indices of tensorial quantities defined on a D-dimensional extended
spacetime, capital italic indices refer to the whole manifold (that is to say
M,N, . . . = 1, . . . , D), Greek ones refer, as usual, to the four dimensions
of ordinary spacetime (µ, ν, . . . = 1, . . . , 4) and small italic ones refer to
the remaining N = D − 4 dimensions (i, j, ... = 5, ..., D).

On a generical D-dimensional Riemann-Cartan manifold UD, in a
basis {eM}M=1D , we can define torsion as

S(eM, eN) =
1

2
(5eM

eN −5eN
eM + [eM, eN] )

=
1

2

(
ΓMN

P − ΓNM
P + cMN

P
)
eP = SMN

PeP.

(1)

As one can see by eq.(1), in a more usual holonomic basis torsion is
simply the antisymmetric part of connection. It is not difficult to prove
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that the most general form of the connection coefficients in a Riemann-
Cartan manifold is

ΓMN
P = Γ

◦
MN

P −KMN
P (2)

where Γ
◦

is the well-known Levi-Civita connection and

KMN
P = −SMN

P − SPMN + SN
P
M (= −KM

P
N ) (3)

is the so-called contortion tensor.

Our extended spacetime is a principal fibre bundle (MD, π,M4, G),
where MD and M4 are two differentiable manifolds,π is a map (the so-
called ”projection”)

π : MD −→M4 (4)

with rank 4 at each point, and G is a compact and semi- simple Lie
group.

We can define a bundle connection such that, ∀p ∈MD, the tangent
space in p is decomposable in two subspaces, a horizontal subspace Hp

and a vertical subspace Vp:

Tp(MD) = Hp ⊕ Vp (5)

Through this property we are able to decompose every vector field in its
horizontal and vertical parts; in short, the bundle connection supplies a
rule of horizontality. In particular, if we choose 4 fields Vµ:

Vµ = ∂µlocally (6)

as a basis of M4, and N left-invariant fields Vi as a basis of the Lie
algebra L (G) of the non-Abelian Lie group G, then a basis of vector
fields on MD is {

V̂µ, V
∗
i

}
, µ = 1, . . . 4, i = 5, . . . D, (7)

where
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V̂µ = (V 1
µ , V

2
µ , V

3
µ , V

4
µ , 0, . . . , 0︸ ︷︷ ︸

N

) (8)

are the horizontal liftings of the fields Vµ and V∗i are the N fundamental
fields of the Lie algebra χ(MD), induced by the Vi of L (G). (We remark
that ∀p ∈ MD the fields V∗i are tangent to the fibre of x = π(p) and
therefore they are vertical). The commutation rules relating to the basis
(7) are

[
V̂µ, V̂ν

]
= cµν

kV∗k = −FµνkV∗k, (9)[
V̂µ,V

∗
i

]
= 0, (10)[

V∗i ,V
∗
j

]
= cij

kV∗k = −fijkV∗k, (11)

As far as the metric on our D-dimensional principal fibre bundle is
concerned, we choose a non- degenerate metric γ with signature D − 2
(that is the further N dimensions are space-like). The application of the
Kaluza constraint to γ determines its final form.

3. The dimensional reduction of a generalized Riemannian
gravitational action.

In order to implement physics on a geometrical background like that
just outlined, in a theory without matter fields it is sufficient to write an
action for the multidimensional spacetime continuum. A usual choice is
represented by (z ∈MD)

A
◦
g = const.

∫
R
◦

(det γMN )
1
2 dDz (12)

(the Lagrangian is that of general relativity in 4 +N dimensions). It is
interesting to see how constraints on the geometry allow the dimensional
reduction of this action.

In the original 5-dimensional Kaluza theory, he assumed that one
can find local coordinates on the Riemannian manifold V5 such that

∂5γMN = 0. (13)
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This constraint (the so-called Kaluza constraint) leads to restrict the
metric γ to the form (x belongs to the usual Riemannian spacetime V4):

γMN =

 gµν + aµaν aµ
aν φ(x)

 (14)

The further application of the Klein constraint

∂Mγ55 = 0 (15)

leads to the well-known Kaluza-Klein metric, with a constant γ55 com-
ponent. Here we apply the Kaluza constraint only, so dealing with
metrics of the Jordan- Thiry type such as (14). In the lifted system

∂̂M = (V̂µ, ∂̂5) = (∂µ − aµ∂5, ∂5), γ reads as

γ̂MN =

 gµν(x) 0
0 φ(x)

 (16)

Here and afterwards the symbol ̂ denotes quantities referring to lifted
systems. We stress that the Kaluza constraint on the multidimensional
metric γ uniquely determines the 4-dimensional metric: gµν = gµν(x).

In the more intrinsic language of the general formalism outlined in
the previous section, the Kaluza constraint on a (4 + N)-dimensional
metric γ reads as

LV ∗
i
γ = 0 (i = 5, . . . , D = 4 +N) (17)

where L denotes the Lie derivative. The further constraint of the γ
-orthogonality condition

γ̂µi = γ(V̂µ, V
∗
i ) = 0 (18)

and the restriction to a Killing-Cartan bi-invariant vertical metric (for
which fijk is totally antisymmetric), lead to work with

γ̂MN =

 gµν(x) 0
0 φ(x) δij

 (19)
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in the lifted system (V̂µ, V
∗
i ). At this point one can make the geome-

try of the Riemannian principal fibre bundle (VD, π, V4, G) completely

explicit, deriving the connection coefficients Γ̂
◦ P
MN , the curvature tensor

R̂
◦Q
MNP , the Ricci tensor R̂

◦
MN and the curvature scalar R̂

◦
in the lifted

system (we use the symbol ◦ over quantities built in terms of the Levi-
Civita connection and with vanishing torsion). We are interested in the

form of R̂
◦

(= R
◦

, as it is scalar); it reads

R̂
◦

=R
◦ (4) − 1

4
φFρµ

i F ρµi +
N

4
φ−1

−N5̂◦
µ

5̂◦ µ lnφ+
N(1−N)

4

(
5̂◦
µ

lnφ
)(
5̂◦ µ lnφ

) (20)

where R
◦
(4) is the curvature scalar in the usual 4- dimensional Rieman-

nian spacetime and 5̂◦ is the Riemannian covariant derivative in the lifted
system.

Since φ = φ(x), in the right-hand side of eq.(20) there is only
one term showing a dependence on the internal dimensions: it is the
quadratic term in F . Actually, however, one can show [15] that F is
decomposable in terms of a ”Yang-Mills field strength” F and the el-
ements of the adjoint representation matrix of the group G, as follows
(x ∈ V4, y ∈ G):

Fµν
k(x, y) = Fµνn(x)D−1n

k(y) (21)

If one also consider that

δkn = Di
kD

j
n δij (22)

then the quadratic term in F can be replaced by

−1

4
φFµνk Fµνm δkm (23)

As a consequence of the application of the Kaluza constraint, the

curvature scalar R
◦

depends solely on x ∈ V4 and the action (12) results
dimensionally reduced. In fact
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det γ̂MN = φN det gµν (24)

and, if the ipervolume of the internal space G is finite, A
◦
g reads as

A
◦
g = const′

∫ [
R
◦ (4) − 1

4
φFµνkFµνnδkn +

N

4
φ−1 −N5̂◦

µ

5̂◦ µ lnφ

+
N(1−N)

4

(
5̂◦
µ

lnφ
)(
5̂◦ µ lnφ

)]
φ

N
2 (det gµν)

1
2 d4x

(25)

4. The generalized Kaluza constraint and the dimensional re-
duction of a theory with non-vanishing torsion.

In this section we consider a Riemann-Cartan multidimensional
manifold endowed with the structures of principle fibre bundle and con-
nection. So we deal with (UD, π, U4, G) and a multidimensional met-
ric of a Jordan- Thiry type, like (19), that is we impose the Kaluza
constraint on the metric. Moreover, we choose a totally antisymmetric
torsion on the manifold UD; in such a way

KMN
P = −SMN

P (26)

The geometry of our manifold is completely determined by these
choices; in particular the relation (2) holds and the curvature scalar

R̂(= R) reads as

R̂ = R
◦
− K̂P

MNK̂MN
P (27)

Let us go from geometry to physics! It is natural to maintain a first
order action principle in our Riemann-Cartan framework, through the
choice of

Ag = const.

∫
R (det γMN )

1
2 dDz (28)

for the extended spacetime continuum and

Am = const.

∫
Lm(ψ, ∂ψ, γ, ∂γ, S)dDz (29)
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for a matter field ψ interacting with the Riemann- Cartan spacetime
background. In a standard way, by varying Ag+Am with respect to met-
ric and torsion one can derive the field equations of the theory outlined.
In the following we do not consider this problem, nor particular matter
fields which can make the dimensional reduction of Am straightforward.
On the contrary, we dwell upon the research of a general condition for
the dimensional reduction of Ag.

Let us now come to the essential point. In the previous section we
have seen that the application of the Kaluza constraint on the multidi-
mensional metric leads to its independence from the internal coordinates
and to the dimensional reduction of Ag. Now, as a formal analogy, we
consider a ”Kaluza” constraint on the D- dimensional contortion, requir-
ing

LV ∗
i
K = 0 (i = 5, . . . , D = 4 +N), (30)

and testing the physical benefits of its application in our framework.

If X, Y, Z are vector fields defined on UD, from the Leibniz rule in
the definition of Lie derivative for fields [5] the following decomposition
holds:

LV ∗
i
K =V∗i (K(X, Y, Z ))−K ([V∗i , X] , Y, Z)

−K (X, [V∗i , Y] , Z)−K (X, Y, [V∗i , Z]) = 0

(i = 5, . . . , D)

(31)

Substituting the horizontal liftings V̂µ and/or the fundamental
fields V∗i to X, Y and Z in (31), and applying the commutation rules
(10-11), one obtains:

V∗i K̂µνρ = 0, (32)

V∗i K̂µνj − fijk K̂µνk = 0, (33)

V∗i K̂µjk − fijn K̂µnk − fikn K̂µjn = 0, (34)

V∗i K̂jkl − fijn K̂nkl − fikn K̂jnl − filn K̂jkn = 0, (35)

If one keeps in mind the fundamental relation [15,5]
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V∗i D
n
j = fij

kDn
k , (36)

it is not difficult to verify that general solutions of eqs.(32-35) are re-
spectively (x ∈ U4, y ∈ G):

K̂µνρ = K̂µνρ(x), (37)

K̂µνj = hµνp(x)Dp
j (y), (38)

K̂µjk = h′µpq(x)Dp
j (y)Dq

k(y), (39)

K̂jkl = h”pqr(x)Dp
j (y)Dq

k(y)Dr
l (y). (40)

Here Dj
i are the usual elements of the adjoint representation matrix.

The first remark on eqs.(37-40) is that, as the Kaluza constraint on
γ uniquely determines the 4-dimensional metric g, analogously here the
Kaluza constraint on KMNP uniquely determines the contortion Kµνρ =
Kµνρ(x) in the ordinary spacetime.

In general, however, the other components of contortion depend on
y ∈ G too. Only if G is Abelian (so that its adjoint representation is the

identity), then K̂MNP = K̂MNP (x) ∀M,N,P = 1, . . . , D.

Therefore, in the case of real physical relevance (non-Abelian G) the
Kaluza constraint on contortion does not lead to its total independence
from internal coordinates.

Nevertheless, we can obtain an important and non- trivial result as
a consequence of the application of the constraint (30). In fact, keeping
in mind the fundamental formula (36) and the property of bi- invariance
of the vertical metric, it is not difficult to prove that

V∗i (K̂MNP K̂
MNP ) = 0 ∀M,N,P = 1, . . . , D

∀i = 5, . . . , D.
(41)

Eq.(41) shows that terms square in contortion depend only on x ∈ U4,
being constant on the fibre of x ∀p ∈ π−1(x) ⊂ UD.

In such a way the curvature scalar in eq.(27) depends only on x ∈ U4,

thanks to the properties of R
◦

and to the further constraint (30). As a
direct consequence, the action (28) is automatically dimensionally re-
duced. Actually, the set of the Kaluza constraints (17) and (30), added
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to the condition (18) and to the bi-invariance of γij , forms a ”general-
ized Kaluza constraint”, representing a sufficient condition for the di-
mensional reduction of first order multidimensional actions with torsion
for the extended spacetime continuum.

5. Comments.

In this paper we have adopted a very general and explicit formalism.
In this framework, from a pure formal analogy with the classical Kaluza
constraint on the metric, the dimensional reduction of Ag is directly
obtained. At this stage, the role of the generalized Kaluza constraint is
especially formal and euristic: for example, it must be tested in cases
of matter fields of physical relevance (the general case of field equations
derived varying first order Ag with torsion, independent of the internal
dimensions, has already been treated elsewhere [33]). Moreover, also the
possibility that our geometrical model provides the background for new
compactification mechanisms is under investigation.

It is interesting to point out two other features of the geometrical
scheme previously outlined that make it well founded. First of all, rele-
vant phisics can be implemented in our scheme, because it reveals a basic
property of a physical theory, namely the metricity condition is valid; in
fact

5P γMN = 5◦ P γMN +KPM
RγRN +KPN

RγMR

= KPMN +KPNM = 0.
(42)

Notice that the result (42) is critically derived from the total anti-
symmetry of the contortion (torsion) tensor.

Moreover, even if one finds in literature assertions about the incom-
patibility between the presence of torsion in the 4-dimensional spacetime
and the validity of the equivalence principle (see ref.[39] for a recent ex-
ample), one can show that in general this statement is not true and that
in particular our geometrical scheme allows the validity of the equiva-
lence principle in the ordinary spacetime. The general problem is faced
by von der Heyde [40] and Gogala [38]: their treatment shows that the
incompatibility exists if one considers a coordinate basis, and not a more
general anholonomic basis, on the spacetime. Actually, the restriction
of the equivalence principle to holonomic bases takes a ”non locality” in
the geometrical scheme, which is contrary to the local character of the
principle [40].
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Obviously, we can consider an anholonomic basis on U4 in our
scheme, simply through a change in the commutation rule (9), which
becomes [

V̂µ, V̂ν

]
= cµν

ρV̂ρ − FµνkV∗k. (43)

As a consequence, Γ
◦ ρ(4)
µν looses its symmetry in the lower indices, but the

decomposition formulae of the geometrical quantities characterizing our
extended spacetime do not change. In particular eqs.(20) and (27) hold.
Moreover, in a coordinate basis, the totally antisymmetric torsion intro-
duced in the geometrical scheme previously described does not modify
the geodesic equation.

In conclusion, the general formalism outlined in sections 2 − 3 has
induced to introduce a Kaluza constraint on the contortion in a natural
way. We have shown the direct geometrical and physical consequences
and the potentialities of this constraint and, in general, of this geomet-
rical scheme.
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