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ABSTRACT. It is shown that, at the conceptual level, statistical
(ensemble) entropy of an arbitrary many-body equilibrium system
can be attributed a universal randomness interpretation by demon-
strating the equivalent nature of an arbitrary statistical entropy vari-
ation and the corresponding one of classical ideal gas. The concep-
tual level consists in making use of certain well known postulates
and some of their consequences that can be regarded as necessary
conditions for the applicability of present-day statistical mechanics
to the explanation and quantitative description of (quasi)equilibrium
thermodynamic phenomena.

RESUME. On montre, au niveau du concept, que l’entropie statis-
tique d’un système à plusieurs corps arbitraire, en équilibre, peut
être dotée d’une interprétation aléatoire universelle en démontrant
l’équivalence d’une variation arbitraire de cette entropie statistique
avec la variation correspondante pour un gaz parfait. Se placer au
niveau conceptuel revient à se servir d’un certain nombre de postu-
lats bien connus et de leurs conséquences qui peuvent être regardés
comme des conditions nécessaires d’application de la mécanique
statistique actuelle à l’explication et à la description quantitative des
phénomènes de quasi-équilibre thermodynamique.

1. Introduction

It is well known that physical intuition connects the concept of en-
tropy of a given thermodynamic (macroscopic) system with the some-
what vague concept of randomness, or disorder. However “physically
evident”, the universality of the said interpretation of entropy is some-
times put to doubt [1] on the basis of the argument that entropy is not
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a property of the given physical system itself but of the thermodynamic
experiments one performs on it. That is, entropy is defined in each
particular case by specifying the pertinent parameters determining the
thermodynamic state of our system. These parameters (and their num-
ber) are different in the various experiments, so one should avoid general
statements in regard to entropy that could prove meaningless.

Such a standpoint does not seem very clear. Indeed, any thermo-
dynamic parameter, say temperature, can be represented as a function
of a specific set of parameters for a given experiment. Still, the concept
of temperature is hardly made more vague (or more anthropomorphic
[1] –as it is a derivative of entropy) by this fact. Evidently, the concept
of equilibrium entropy and the related concept of randomness deserve
a more careful analysis as well. It will be shown in this paper that a
general interpretation of entropy variation as variation of randomness of
microscopic state distribution is possible in a well defined sense. The
generality of the said viewpoint on entropy and its variation will be of
the same degree as that attributed, say to temperature : in analogy to
the case of an ideal-gas thermometer which can measure, in principle,
the temperature of an arbitrary thermodynamic system, the statistical
description of an ideal-gas heat bath permits the attribution of a uni-
versal meaning of randomness variation to the entropy variation of an
arbitrary thermodynamic system, as we shall see.

The ideology of this paper makes it possible to concentrate prac-
tically all attention on the variant of statistical mechanics employing
classical mechanics as the fundamental microscopic picture underlying
phenomenological (quasi)equilibrium thermodynamics. [As we are in-
terested here in static and indefinitely slow processes and magnitudes
only, the explicit specification ”(quasi)equilibrium” or ”(quasi)static”
will sometimes be omitted hereafter.]

The consideration below will rest on well known ensemble postulates
of classical statistical mechanics, the Liouville theorem, and certain con-
sequences of these. The general randomness interpretation of entropy
will emerge from the discussion of an ”entropy conservation law” of a
purely dynamic nature, operating in an adiabatically isolated combined
system that contains as its subsystem any thermodynamic system of
interest.
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2. Preliminary remarks of equilibrium ensemble postulates and
consistency requirements

Let us recall first the following definitions. A thermodynamic Nz-
body system z (Nz → ∞) is called isolated if it exchanges no en-
ergy of any kind with external bodies, adiabatic if energy exchange is
due only to the variation of well defined macroscopic external fields
a = {aj}(j = 1, . . . , k), and closed if energy exchange is not effected
via material contact, i.e. particle exchange. (Open systems in material
contact with the ambience will not be necessary for our consideration).

The basic postulates of statistical mechanics that will be employed
by us are : Postulate P1. The (classical) probability density distribution
f of an isolated equilibrium Nz-body system z is that of the ”thickened”
microcanonical ensemble (ME), namely [2] (ch. 1.3)

fz,m(Xz) = const , H(Xz, a) ∈ [E,E + ∆E];

fz,m(Xz) = 0 , H(Xz, a) 6∈ [E,E + ∆E];

∆E � E ,

∫
fz,m(Xz)dXz = 1

[H stands above for the Hamiltonian and Xz = {pz, qz} –for the set of all
momentum (pz) and position (qz) variables of system z ; the customary
factor (Nz!h

3Nz )−1 in the definition of the phase-space volume element
will be inessential for our consideration, so we drop it and define dXz

as dp1 . . . dq3Nz . If z consists of n sorts of particles (n > 1) then, in
analogy with a = {aj}, Nz should be understood as a complex notation
{Nzi}, i = 1, . . . , n, etc. We define the constituents of matter so that Nz
be constant. This does not rule out processes as e.g. chemical reactions
in z since the molecules of z whose number may vary are regarded as
composed of the said ”elementary” constituents.]

Postulate P2. In a state of thermodynamic equilibrium any Nz-body
system z(Nz = const) is assigned an equilibrium statistical entropy given
by the information-theoretic formula [3]

Sz = −
∫
fz(Xz)lnfz(Xz)dXz, (1)

fz being the respective ensemble distribution [say, of the ME or the
canonical ensemble (CE)].
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Postulate P3. The (quasi)static adiabatic processes of phenomeno-
logical thermodynamics are described by (quasi)static statistical me-
chanics.

Some comments on the above postulates and their consequences are
necessary at this point.

A well known consequence of P1 is

C1. The density distributions of the equilibrium ensembles (grand
canonical, CE, etc) are obtainable via fz,m. For instance, if a closed
”small” system s under experimental study is in thermal contact with an
indefinitely ”big” heat bath b(b� s), then the (CE) distribution function
for s will be fs,c(Xs) ∼ exp[−H(Xs, a)/θ], where θ is the ”reduced”
temperature (= kBT ) of b and hence of the combined system s+ b.

The necessity to impart a thermodynamic sense to the statistical
entropy Sz,m of the ME [eq. (1) with Sz = Sz,m] requires the validity of
the identity

dSz,m(E,∆E, V,Nz, a) =
1

θm
(dE + PmdV −Amda) (2)

(Nz = const). The magnitudes in (2) have the usual thermodynamic
sense (say, Am = {Aj,m} is the set of generalized ”forces” corresponding
to a = {aj}) and subscript m reminds that we have to do with the ME
; analogously, subscript c will refer to CE magnitudes. In particular,
the temperature θm that eq. (2) assigns to the ME is defined as θ−1

m =
∂Sz,m/∂E.

Another consequence of P1, P2, and C1 is

C2. The equilibrium statistical ensembles (ME, CE, etc) are ther-
modynamically equivalent.

With respect to ME and CE magnitudes, say, this means that Pm,
Am, etc will differ from Pc, Ac, etc by o(Nz)-terms only [for which
o(Nz)/Nz → 0 when Nz → ∞]. In particular, extensive magnitudes

(proportional to Nz) as entropy coincide up to O(N
1/2
z )-terms [for which

limO(N
1/2
z )/N

1/2
z = const 6= 0 when Nz →∞].

Postulate P3 is sometimes explicitly formulated in the literature (cf.
e.g. [2], ch. 1.8 and [4], ch. 1.3.4) but some of its consequences do not
appear to have been paid the attention they deserve. As these will be
important for our consideration, we shall examine them here.
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Postulates P1 and P2 and eq. (2) would be of no avail in the absence
of P3. Really, their most important product –eq. (2) which combines
the first and second law of thermodynamics– must refer to quasistatic
processes since its phenomenological counterpart envisions exactly such
processes. Consequently, statistical mechanics must be capable of es-
tablishing a link between the initial and final ME states of z in a given
process. The means to achieve this is P3, so we arrive at

C3. There exist quasistatic processes which preserve the ME statis-
tical description of system z for all values of its parameters E, V,Nz, a.

If the process in z is purely adiabatic, then C3 is a direct conse-
quence of P3. If part of dE in eq. (2) is due to heat exchange between z
and an external system e, then it is system e+ z that should be treated
as adiabatic, so P3 will apply to the latter and subsystem z will need
special consideration. We shall not have to do, however, with the gen-
eral case since the combined systems of interest for us are of the kind
b+ s(b� s), at that in a specific context.

It is worth pointing to the fact that classical mechanics possesses a
suitable property from the viewpoint of the link between P3 and ther-
modynamics : the purely dynamic Liouville theorem stating constancy
with time of phase-space volumes and hence –of the statistical entropy
(1) in adiabatic processes has a direct counterpart in the constancy of
phenomenological entropy in adiabatic processes.

A simply computable example of the validity of C3 that is of special
interest to us is quasistatic adiabatic volume variation of ideal gas : an
initial ME description of ideal gas is really preserved at all stages of the
process. [The magnitude of ∆Eid [cf. eq. (2)] is not constant in this
process but what will be important for us is the constancy of Sid,m in the
process ; the inessential character of ∆E for thermodynamics is noted,
say, in [2], ch. 1.6.]

The degree of accuracy of C3 with respect to Nz can be assessed as

follows. According to C2, an uncertainty of, say, O(N
1/2
z ) [i.e. O(N

−1/2
z )

per particle] for extensive magnitudes makes one uncertain about the
concrete (ME, CE, etc) description of z. C3 must therefore be valid for

such magnitudes up to terms O(N
1/2
z )ε per particle, where ε� 1.

As a preparatory step for the further consideration of P3 we pause
here to examine a particular consequences of P1 and P2. By P1 and P2
an isolated system s + b, s � b, possesses a ME distribution fs+b,m
and entropy Ss+b,m. Let s and b by themselves be just closed, i.e.
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in thermal contact with each other. Each one of them will then be
in equilibrium at the temperature corresponding to the said ME. By
P2 each one of them possesses individual entropy (Ss and Sb) of its
own defined by eq. (1) for fs and fb. Defining fs+b,m(Xs, Xb) as
fs(Xs)fb(Xb) +ϕ(Xs, Xb) one sees that Ss+b,m = Ss + Sb + Scor, where
the correlation term Scor is due to the presence of the nonfactorable term
ϕ in fs+b,m and cannot be assigned to any one of the systems s and b
but pertains to the combined system s + b as a whole. The stipulation
of well defined individual entropies of s and b therefore requires that
Scor should be negligible compared with both Ss and Sb(Sb � Ss due
to b � s). By C1, Ss = Ss,c [that is, the CE entropy of s correspond-
ing to the temperature (∂Ss+b,m/∂E)−1 of the ME for s + b (cf. eq.

(2))], so the magnitude of Scor cannot surpass O(N
1/2
s ), i.e. O(N

−1/2
s )

per particle. Since b � s (i.e. Nb/Ns → ∞, Vb/Vs → ∞), we have

Scor/Nb ∼ O(N
1/2
s )/Nb = [O(N

1/2
s )/N

1/2
b ]N

1/2
b /Nb = N

−1/2
b ε (ε→ 0 as

Nb →∞). The contribution of Scor per b-particle is thus a higher-order

infinitesimal compared with usual ”uncertainty” of O(N
−1/2
b ) in equilib-

rium ensemble description and hence b must be regarded as isolated from
s in the limit Nb/Ns →∞ at θm = (∂Ss+b,m/∂E)−1 = const. Therefore,
fb(Xb) should be that of a suitable ME for b.

The inference just obtained in a purely static statistical picture is
an expression of the fact that it would be impossible to arrive at a ME
statistical description of the isolated system s + b if b(b � s) were not
described for all practical purposes by a ME of its own. It is worth
demonstrating the vanishing impact of the s− b correlations on the ME
description of b in the above limit by means of a pertinent nonstatic
statistical process as well that does not violate the static character of
the phenomenological picture. Assume to this end that s and b are
initially isolated from each other and from the rest of the Universe. By
P1, each one of them is described then by a ME of its own. Assume
too that θs,m = (∂Ss,m/∂Es)

−1 = θb,m = (∂Sb,m/∂Eb)
−1 and ”switch

on” at moment t = 0 thermal contact between s and b, keeping s and
b closed and isolated from the rest of the Universe. From the viewpoint
of statistical mechanics we shall have at t > 0 a ”thermodynamically
hidden” process (at a temperature θ = const = θs,m = θb,m) in which,
by P3 and C1, the initial ME for s will be eventually transformed into a

CE for s at the same θ, so Ss(t→∞) = Ss,c = Ss,m +O(N
1/2
s ). Due to

the Liouville theorem we have Ss+b(t > 0) = const, which immediately
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leads to the above inference that, up to terms generating only higher-

order infinitesimals ∼ N
−1/2
b ε in extensive b-magnitudes, the statistical

description of b at t→∞ is given by a pertinent ME.

The said inference is easily extended to the case of quasistatic adi-
abatic variation of (at least some of) the mechanical-type parameters of
s+b [denoted by V and a in eq. (2)] when s and b are in thermal contact
with each other. Indeed, by P3 s and b are in thermal equilibrium at
each moment t (so that s possesses a CE statistical description at each
t) and by C3 the combined system s + b possesses –up to higher-order
infinitesimals– an ME description at any moment t when the initial con-
dition at t = 0 is also given by an ME for the said system. We therefore
have essentially the same situation here as the one discussed in the purely
static case, so one arrives at

C4. Up to higher-order infinitesimals the heat bath b(b � s) pos-
sesses an ME statistical description at any moment t > 0 when system
s + b undergoes a quasistatic adiabatic process at positive times under
an ME initial condition at t = 0.

As a last preparatory step we shall now discus the

3. Interpretation of ideal-gas entropy variation as variation of
randomness

As is well known, the right-hand side of eq. (2) is equal to dQm/θm,
dQm standing for the heat energy imparted to the system in the process.
This equation has its CE counterpart which reads, for an only variable
parameter V (cf.[1]),

dSc = θ−1
c (d〈H〉c + PcdV ) ≡ θ−1

c dQc (3)

in obvious notations, d〈H〉c denoting, in particular, the CE variation of
the average (internal) energy U = 〈H〉c of the system. In the case of an
ideal-gas N -body system the energy Eid of its dynamic state is equal to
its kinetic energy K and one obtains

d〈Hid〉c = (∂〈K〉c/∂θc)dθc

(since 〈K〉c is V -independent at a fixed θc). The respective entropy
variation dSid,c will therefore be give by

dSid,c = θ−1
c (

d〈K〉c
dθc

dθc + PcdV ) (4)
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Other CE ideal-gas equations that will be employed below are

PcV = Nθc (5)

〈K〉c = (3/2)Nθc = N〈~p2〉c/2m (6)

Consider first an infinitesimal variation dV of the ideal-gas volume V at
θc = const. Eqs. (4) and (5) yield in this case entropy variation

dV Sid,c = (Pc/θc)dV = NdV/V (7)

This expression agrees well with an intuitively acceptable concept of
position-randomness variation in an N -body system with statistically
independent positions when one possesses, at that, no information what-
soever about the location of any given individual particle (as is the case
with the ideal-gas CE position distribution). Really, the magnitude of
volume V represents a natural measure of the indefiniteness of position
location of any individual particle. Ratio dV/V on its turn measures
–with the proper sign– the relative significance of the said variation
and can be treated as an ”absolute” measure of individual position-
randomness variation. The magnitude NdV/V in eq. (7) can therefore
be treated as position-randomness variation of the gas in accord with
the natural concept that the position-randomness variation in a system
of N identical particles with statistically independent positions should
represente the sum-total of equal individual contributions due to the
identical statistical properties of each individual particle. Consequently,
in this sense dV Sid,c represents a measure of position-randomness varia-
tion dRpos in the ideal gas.

Examine now the variation dθcSid,c at V = const. Eq. (4) yields
in this case dθcSid,c = θ−1

c (d〈K〉c/dθc)dθc, whence one obtains with the
aid of (6)

dθcSid,c = Nd〈~p2〉3/2c /〈~p2〉3/2c (8)

The form of eq. (8) is the same as that of eq. (7) thus implying that
the right-hand side of (8) represents momentum-randomness variation
dRmom in the system of N statistically independent individual momenta
pi, i = 1, 2, . . . , N , of the ideal gas. The randomness interpretation of
dRmom = dθcSid,c is additionally corroborated by the fact that dRmom
and dRpos are magnitudes of an identical physical nature in the sense that
each one of them can be transformed in a strictly dynamic (mechanical)
fashion into an equivalent amount of the other and, at the same time,
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the meaning of randomness is already fixed by our interpretation of the
magnitude NdV/V .

(The above definition of equivalence is in keeping with a natural
physical concept concerning mutually transformable magnitudes, e.g.
with the equivalent physical nature –energy– of kinetic and potential
energy variations in a conservative dynamic system.)

In order to demonstrate the mutual dynamic transformability of
dRpos and dRmom into each other one has to examine a mechanical
process in the ideal gas in which entropy variation dSid = dRmom+dRpos
is zero, i.e. dRmom = −dRpos. This will evidently be a quasistatic
adiabatic process. The CE is not quite suitable to this end due to the
contact of our system with the thermostat in the said picture, so we
shall consider the problem in the ME picture and then make use of C2
for these ensembles.

For ideal gas with energy Eid = K and only variable parameter V
eq. (2) reads

dSid,m = (1/θm)(dK + PmdV ) (9)

Comparing eqs. (9) and (4) one sees that if the kinetic energy K in
Sid,m(K,V ) is set equal to 〈K〉c, the thermodynamic equivalence of the
ME and the CE (C2) will lead to

θm = θc = θ , Pm = Pc = P (10)

in the thermodynamic limit.

Eqs. (10) evidently mean that dV Sid,m and dθSid,m(= dK/θ) have
the same meaning and value (up to ”infinitesimals”) in the thermo-
dynamic limit as dV Sid,c and dθSid,c = d〈K〉cSid,c, i.e. variations of
dRpos and dRmom respectively. On the other hand, we know (both
from C3 and direct computation) that the ME statistical description of
ideal gas is preserved in a process of quasistatic adiabatic variation of
its volume V . This fact, together with the ”entropy conservation law”
dSid,m = dRpos + dRmom = 0 in the said process, has at that a purely
mechanical sense being a consequence of microscopic dynamics when ap-
plied to an ME of ideal-gas mechanical states. Consequently, the identity
dRpos = −dRmom in such processes represents a dynamic transforma-
tion law. As is clear e.g. from eq. (9) (with dSid,m = 0), the said law
directly follows from the enertgy conservation law of the overall system
ideal gas + rest of the Universe. Consequently, dRpos and dRmom are
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magnitudes of the same physical nature (randomness –the clear-cut na-
ture of dRpos). The same applies therefore to the sums in eqs. (4) and
(9), which are generally 6= 0.

The consideration in this section gives a precise definition of the
meaning of randomness variation in our particular approach : this is
nothing else than ideal-gas nonzero statistical entropy variation in the
CE and/or ME pictures. If this entropy variation could be imparted to
an arbitrary system s by an ideal-gas heat bath in a purely dynamic,
conservative and ensemble-statistics preserving fashion, then, employing
the third law assigning zero entropy to s at θ = 0, one could achieve a
randomness interpretation of any Ss and its variation. As we shall see
now, our axioms permit entropy exchange of this kind.

4. The interpretation

We shall examine here a combined system s + bid consisting of an
arbitrary system s under experimental study and ideal-gas heat bath
bid(bid � s). bid and s are assumed to be closed and in thermal contact
with each other, the combined system s+bid being adiabatically isolated
from the rest of the Universe.

(i) Let the initial condition for bid + s at t = 0 be thermodynamic
equilibrium described by a pertinent classical ME. Assume that the pa-
rameters Vs and as of s and Vid of bid are varied quasistatically and
adiabatically at t > 0. (The variation of Vid will ensure temperature
variation in s+ bid, if necessary.) By C3, the ME description of s+ bid is
preserved in the process and by C4 the same applies (up to higher-order
infinitesimals) to bid. By the Liouville theorem, Sbid+s is constant in the
process, so we have a dynamic entropy conservation law in bid + s of the
kind discussed in Sec. 3. Up to higher-order infinitesimals the entropy
exchange (of magnitude proportional to Ns) between s and bid can be
represented as ∆Ss,c = −∆Sbid,m. Since ∆Sbid,m has a randomness in-
terpretation, the same interpretation applies to ∆Ss,c too (cf. Sec. 3).
By C2, the same interpretation applies to any equilibrium ensemble de-
scription of s. This result is general and is also valid when we have, say,
chemical reactions and phase transitions in s.

(ii) Assume now that the classical character of bid is preserved but
the processes in s require quantal description. We impose then quantal
description of bid+s. Examine once again the above adiabatic process in
bid+ s. The well known quantum variant of the Liouville theorem states
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that ∆Sbid+s = 0 in the process, so the dynamic ”entropy conservation
law” operates in this case too. The quantal version of postulates P1-P3
requires, in complete analogy with the classical case, an ME description
of bid+s at all times t > 0 and hence –up to higher-order infinitesimals–
an ME description of bid. The classical character of bid, however, ad-
mits a classical ME description of bid as well and hence a randomness
interpretation of the entropy variation in s.

5. Conclusions

Our consideration resting on postulates P1-P3 and the Liouville
theorem demonstrated that a randomness interpretation of entropy of a
most general character is possible indeed. (Invalidity of some of these
postulates would mean that not only our interpretation but statistical
mechanics itself too rest on a shaky basis.) With respect to this in-
terpretation the ideal-gas heat bath really turned out to play a role as
significant as that of the ideal-gas thermometer in temperature measure-
ments. The above way of reasoning gives also an answer to the question
why purely mathematical information-theoretic expressions for statis-
tical entropy of the kind of (1) have a thermodynamic purport : these

entropies coincide up to O(N
1/2
z ) and are transformable in a conservative

fashion into ideal-gas ME entropy, the latter having a lucid randomness
sense, at that directly linked with ideal-gas thermodynamics.

Our interpretation would also be preserved in a possible more gen-
eral future theory containing quantum and classical statistical mechanics
as its particular limits if this theory would contain, in its specific lan-
guage, postulates P1-P3 and a Liouville-type theorem stating constancy
of entropy in adiabatic processes.

An obvious by-product of our consideration that deserves mention
too is that for compound systems of the kind b + s, b � s, we have an
ME statistical variant (2) of the basic thermodynamic identity for b and
a CE variant dSs,c = θ−1

c (dUc + PcdV − Acda) of the same identity for
s. (In fact, it is exactly the latter variant that is made use of in ref. [4].)
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