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ABSTRACT. The electron clots formation in the interelectrode
space of the vacuum detectors of the optical radiation is discussed.
These clots excite the current splashes in the outer circuit of the
detector, which are usually interpreted as photocounts. It is shown
that the traditional photocount theory is inconsistent and, in par-
ticular, it is shown, that the causality violation is peculiar to it. By
variational numerical calculations it is shown that the widespread
electron cloud is unstable to the Coulomb forces and is decaying
into clots. At the clots motion from the cathode to the anode the
catastrophes occur and the clot sharpening happens. The catastro-
phes can be of the space-like (caustics) and time-like (outrunnings)
types. By the numerical simulation the spherical and linear spread-
ing of the electron cloud are investigated. The formation of the sharp
electron density maximums is found. These maximums are similar
to the localized charged particles and can excite the current splashes
(photocounts) in the outer circuit of the detector. the reasons lead-
ing to one-electron clots are discussed.

This account as a whole is an alternative (to the world-wide ac-
cepted) approach to the photocount theory.

1 Introduction

The situation in the photocount theory can be now evaluated as
satisfactory. Many experiments are done and doing, their theoretical
treatment is going and there is no any contradiction between theory
and experiment. However, from the logical point of view the existing
photocount conceptions are far from perfect. In this paper we, appealing
mainly to the physical processes in the vacuum detecting devices (such as
photoelements, photomultipliers, and so on), give an attempt to analyse



332 V.P.Bykov, A.V.Gerasimov, V.O.Turin

the contradictions of the existing photocount theory and propose a new,
alternative approach to this theory, more attractive physically.

Modern photocount theory has in essence a phenomenological na-
ture, i.e., its main equations don’t follow from the basic equations of
physics (such as Maxwell, Schroedinger or Dirac equations). As an ex-
ample it can be mentioned, that the discrete nature of photocounts is
not a consequence of the theory, but is taken as an experimental fact.
Due to it some continuous values of theory, e.g., the photocount rate, are
arbitrarily interpreted as corresponding to the average values describing
the stochastic sequence of the discrete events (photocounts). As to the
photocounts this discreteness is expressed in the fact that due to this
point of view one light quantum - photon is necessary for the extract-
ing of an electron from photocathode. Thereat the photon and electron
are considered as localized particles, flying in the electromagnetic and
electronic flows. It is usually considered that in the photoeffect process
one particle (photon) is absorbered and the other particle (electron) is
emitted.

It can be mentioned, however, that there is no any indication in
QED on the existance of such localized formations in the electromag-
netic and electronic flows. The absence of the localized formations in
the electromagnetic radiation is especially evident in the case of the
high coherent laser radiation. In the good laser source the time of co-
herence can be as great as one second (that is, the coherent train length
is 3.105km and it contains 1015 perfectly similar waves). Although the
amplitude and phase of radiation are practically constant for this time
interval, many photocounts occur during this time.

However, the conception of the localized photons and electrons were
world-wide accepted. Especially definitely such point of view was re-
flected in the description of the shot noise [1,2] peculiar not only to
photodetectors. Due to W.Schottky an electron as a classical point par-
ticle at an accidental time instant appears from the cathode and goes to
the anode under influence of the statical electrical field initiating by this
way some pulse current in the light detector circuit [3]. Both photoeffect
and shot noise are widely investigated in the frames of such approach
and these investigations are continuing [4-6].

However, from the currently accepted theoretical point of view this
approach suffers from some inconsistency. Thus, the process of absorp-
tion of photons and generation of photoelectrons inside the cathode is
considered quantum-mechanically. Specifically, it is usually assumed
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that a quantized plane light wave interacts with a quantized plane elec-
tron wave belonging to the valence band ; as a result, a plane electron
wave is created in the conduction band. The electron wave in the conduc-
tion band is scattered by the boundary of the cathode with vacuum, and
the amplitude of the electron wave propagating into the vacuum deter-
mines the probability of the generation of photoelectrons in the vicinity
of the cathode. The inconsistency of the theory is that the quantum-
mechanical description of the process ends here; from this point on, the
evolution of the electrons is considered from the classical point of view
[3], specifically, the electrons from this point onward are treated as par-
ticles, not waves.

The mentioned above inconsistency is often considered as due to the
fundamental peculiarity of the quantum-mechanical measurements. The
measurement (observation) of the quantum-mechanical object is usually
executed by a macroscopic device (in some cases, by observer), having
the properties of the classical object. Due to it there is inevitably a
boundary between the object of observation and the measurement device,
which divides the quantum-mechanical description (on the object side)
from the classical description (on the side of the measurement device).
Just due to it the electron, emitted from the cathode, is considered as
a classical localized particle, that is, the mentioned above boundary is
going usually along the cathode surface.

From the general point of view nothing could be said against such
approach and it can’t be disproved. However, the applicability of this
approach is not so wide as it usually accepted. Indeed, this point of view
is correct only if the resulting picture does not depend on the position
of the mentioned above boundary, since this boundary is imaginary and
nothing can depend on its position. Returning to the photocounts, one
can ask, if the result of the theoretical treatment of the experimental
results will be changed, if the imaginary boundary will be taken near
the anode, but not near the cathode as usually. Therefore, such inter-
pretation of photocounts requires an additional investigation.

It would be more consistent to treat the motion of the electrons
from the cathode to the anode also quantum-mechanically and to seek
the field and current created in the circuit by the electron wave. It
is clear, however, that in such an approach one does not obtain pho-
tocount pulses, but rather more or less smooth solutions for the fields
and currents created in the circuit, depending on time in a way simi-
lar to that of the incident light wave. The absence of short pulses in
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such an approach, of course, contradicts the observations, i.e., the exis-
tance of photocounts. This contradiction is especially pronounced in the
case of laser light sources whose characteristic coherence times are quite
large (up to seconds). Naturally, the electron flux in the photodetector
should also preserve the smoothness of its amplitude over time-intervals
comparable with the coherence time. However, no such feature in the
phoelectric effect using laser sources has been noted. In pre-laser stud-
ies the incoherence of light from thermal and luminescent sources could
mask this contradiction. Therefore the existance of photocounts, at least
in the case of laser light, requires explanation.

The aim of the present paper is to present an alternative approach
to the theory of photocounts, differing from that given in the literature
based on the corpuscular relationship of one photon to one electron.
The alternative approach is based on the idea that the electron flux
emitted by the cathode under the action of, in particular, laser light,
is initially, i.e., immediately after it leaves the cathode, a plane wave
or something close to it (an electron cloud). However, this flux is un-
stable and has a tendency to decay into clots under the action of the
interelectron Coulomb force. This instability can be easily understood
if one recalls the widely known Wigner crystallization, i.e., the decay of
an electron plasma in a solid body into clots at low densities of plasma
[7,8]. Thus, the electron flux leaving the cathode, i.e., the region with
high electron density, should decay near the cathode into individual clots
(”electrons”), which as they accelerate in the electric field produce cur-
rent splashes in the electric circuit of the detector. These splashes are
recorded by the device and observed by humans as photocounts.

The alternative approach preserves, of course, the main features of
the photoelectric effect, including the Einstein law with its red limit of
the photoelectric effect, since these laws operate, in fact, at the first step,
when the electron wave is formed in the conduction band.

The first indications on the alternative approach were given by us
in [9]. The alternative approach leads to some problems, part of which is
discussed in this paper. The most important of them are: what manifes-
tation of the electron flow instability is, if the mechanism of the electron
clot sharpening exists and what its nature is, how one-electron clots can
appear and, at last, what practical consequences of the alternative ap-
proach if it will occur to be correct. These problems are difficult enough.
We shall show, that now the answers to these questions don’t contradict
to the alternative approach.
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Emphasize also, that in the existing photocount theory there are
some inconsistences of smaller scale. For example, some quantitative
parameters of photocounts, among them the photocount rate (number
of photocounts per second) violate the causality [10], that is, they don’t
retard in a proper manner.

At the first step we remind how the causality violation occurs. Then
it will be shown by quantum-mechanical calculation that the electron
cloud has a tendency to decay into clots at low densities. Then we
investigate the effect of the clot sharpening based on the appearance
of the temporal and space catastrophes; this research is carried out in
the frames of the classical theory for the present. Later the concept
of transparent and untransparent clots is introduced. In conclusion the
problem of the one-electron clots is discussed.

2 The causality violation in the photocount theory

Here we discuss a small but important defect of the existing theory
of photocounts - causality violation [10-14].

To show it we consider the quantity, assumed usually as a photo-
count rate (more exactly, the probability of photon registration in the
point r in time interval (t, t+ dt) )

dR(r, t) = ηG(r, t)dt, (1)

where G(r, t) is the correlation function, defined by the equation

G(r, t) = Sp
[
ρE(+)(r, t)E(−)(r, t)

]
, (2)

ρ is the density matrix of the electromagnetic field,

E(−)(r, t) = i
∑
n

(
2πh̄ωn

V

)1/2

αnane
i(knr−ωnt) (3)

is the negative-frequency part of the field, and αn is the cosine of the
angle between the polarization directions of the modes and detector.

Let the field to be in a coherent state, defined by the equations

an|ψ〉 = (Zn/V
1/2)|ψ〉; (4)
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then, taking into account Eq.3, we obtain

E(−)(r, t)|ψ〉 = W (r, t)|ψ〉 (5)

where
W (r, t) = iV −1(2πh̄)1/2

∑
n

ω1/2
n αnzne

i(knr−ωnt),

or, passing to integrals,

W (r, t) =
2i(2πh̄)1/2

(2πh̄)3

∫
d3k α(ω)ω1/2z(ω)ei(kr−ωt) (6)

is the analytical signal. In integral Eq.6 there is a factor exp(−iωt) with
ω > 0. If t is a complex variable t = t1-it2, then in Eq.6 there is a
complementary factor exp(−ωt2); so W (r, t) is an analytical function in
the lower half plane of the complex variable t. In this case the imaginary
and real parts of W (r, t) are connected by

ImW (r, t) =
1

π

∫
dt′
ReW (r, t′)

t− t′
, (7)

that is, by the Hilbert transformation.

According to Eqs.2 and 5 for a coherent state of the field

G(r, t) = W ∗(r, t)W (r, t) (8)

Thus, the photocounting rate is equal to

dR(r, t)

dt
= η|W (r, t)|2 = η

[
(ReW )2 + (ImW )2

]
(9)

But according to Eqs.4 and 5 the mean value of the electric field is equal
to

〈ψ|E(r, t)|ψ〉 = W ∗(r, t) +W (r, t) = 2ReW (r, t). (10)

According to Eq.5 W satisfies the homogeneous wave equation, so we
can consider a plane wave, going in the positive direction of the z axis
and having a sharp front,

W (r, t) = θ(ct− z)F (z − ct); (11)
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here θ is the Heaviside function. In this case the mean values of the

electric field 〈ψ|E(r, t)|ψ〉 and also its powers 〈ψ|En(r, t)|ψ〉 will also have

sharp fronts; the normal ordering is used to avoid an infinite contribution

of vacuum fluctuations independent of the state |ψ〉.

The signal or value of E reaches the detector at the time t = z/c

and is equal to zero at t < z/c. But the probability of photocounting

Eq.9 is not equal to zero until the time t = z/c, that is, until the signal

reaches the detector. It is due to the term [ImW (r, t)]2 in Eq.9. Indeed,

as can be seen from Eq.7, ImW 6= 0 for all t, even if ReW (r, t) = 0 for

t < z/c. Let us consider an example, namely

W (r, t) = θ(ct− z)θ(l + z − ct) sin(kz − ωt+ ϕ). (12)

Then according to Eq.7

ImW (z, t) =
1

π
{sin(ζ + ϕ)[ ln |(ζ + kl)/ζ|+ Cin |ζ| − Cin |ζ + kl| ]

− cos(ζ + ψ)[ Si(ζ + kl)− Si(ζ) ] }, ζ = kz − ct,
(13)

where

Cinx =

x∫
0

dt(1− cos t)/t, Six =

x∫
0

dt(sint)/t. (14)

The field 〈E〉 and function W are not equal to zero only in the interval

ct − l < z < ct, but ImW is not equal to zero outside this interval.

Fig.1 presents the dependence dR(ζ = kz − ωt)/dt for values kl = π, 4π

and ψ = 0, π/2. As can be seen in Fig.1 the photocount rate is not

equal to zero outside the interval where the field is concentrated; this

fictitious reading being the greater the shorter the impulse is. In the

region of femtosecond impulses, that contain only some oscillations, the

distortion of the true picture, due to the precursor in the photocount

rate, becomes important.
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Figure 1. Photon counting rate as a function of ζ = kz−ωt for different pulse
length:1) kl = π, and 2) kl = 4π . a) Pulse with no jump at ζ = 0(ϕ = 0), b)
pulse with a jump at ζ = 0(ϕ = π/2). A nonzero photocount rate for ζ > 0
represents a nonphysical precursor that violates causality.

It is necessary to notice that parallel to Eq.7 there is an analogous
relation connecting the real part of W with its imaginary part. Hence,
the localization of one part of W makes the other part distributed in the
whole space. Consequently in the coherent state the usual correlation
functions cannot be taken as localized. Only the electric field 〈E〉 =
2ReW and functions of this field can be localized.

Equation 7 and its conjugate similar to the Kramers-Kronig rela-
tions. But the meaning of these relations is opposite. The Kramers-
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Kronig relations give restrictions for the spectral properties of the di-
electric constant ε(ω) due to the causality. Equation 7 and its inversion
give causality violation due to artificial restrictions in the spectrum of
E(+) and E(−).

Causality violation in Eq.2 requires changing the determination of
the correlation functions and in particular the photocount rate.

One can sometimes meet the statement, that the causality violation
is quantitatively small and, hence, does not play great role. But this
statement is not true. First, the quantitative criterion cannot be applied
to such a concept as causality. There are only two possibilities: either
causality is violated and the theory is not correct, or causality is not
violated and the theory has some base to be correct. Second, there were
attempts to correct the theory of photocounts. These attempts were
partly successful [13,15], but they lead to correlation functions and, in
particular, to the photocount rate, depending on the photo detector
properties, while in the nature of these functions and the photocount
rate to describe the properties of the fields only and to be independent
of the photo detector properties. In essence, the independence of the
field characteristics on the photo detector properties is an additional to
causality requirement. To satisfy these two requirements is not easy.

3 The electron cloud instability at small densities

Figure 2. The energy E (in atomic units) of the symmetric (s) and asym-
metric (a) state as a function of the parameter a of the quadratic potential
well.
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In order to illustrate the decay of the electron cloud into clots at
low electron densities, let us consider a simple example: two electrons
located in a quadratic potential well and interacting with each other
according to the Coulomb law. Such electron system can be described
by the Hamiltonian

H = −1

2
∆1 −

1

2
∆2 + α(ρ21 + ρ22)− 1

ρ12
,

where α is a parameter of a quadratic potential well; the greater α, the
narrower the potential well is. By varying the parameter α, it is possible
to control the electron density of the system and determine that instant
at which the electron cloud begins to decay into clots. Calculations of
stationary wave functions and the corresponding energies were carried
out using baseless variational method [16,17]. Figure 2 shows the de-
pendence of the energies of the symmetric (not decaying into clots) and
asymmetric (decaying into two clots) states on the parameter α, i.e., on
the magnitude of the forces holding electrons together. As can be seen,
at values of a less than 0.82, the asymmetric state becomes energetically
favoured. The decay of the electron cloud into clots is seen in Fig.3,
which shows the charge density of the asymmetric state along the z axis.
When the forces holding the electrons together are large, the Coulomb
repulsion does not play a large role and symmetric state is favoured.
With decrease of the attractive forces (i.e., the parameter α) the relative
importance of the Coulomb energy grows, and beginning with the value
α = 0.82, the asymmetric state, which decays into two clots, becomes
favoured.

Figure 3. Charge distribution along the z axis in the asymmetric state at
different values of the parameter a: 1) 0.4, 2) 0.25, 3) 0.2, 4) 0.15, 5) 0.1.
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4 Catastrophes of the nonuniform electron flow

As it will be shown below the catastrophes, identical to described
by the catastrophes theory [18,19,20], can occur in the uniform electron
flow. In the alternative approach these catastrophes are of interest, since
in some their points the electron density can become infinitely great.
Hence, the catastrophes give us the natural mechanism of the electron
clots sharpening.

The catastrophes can be of two types: space and temporal. Space
catastrophes are well known from the ray optics - they are caustics and
focuses [21]. In the ray optics approximation the light intensity on caus-
tics and in focuses is infinitely great. The same situation is in the electron
flow.

The temporal catastrophes are outrunnings of some parts of the
electron flow by other parts of the same flow. In temporal catastrophes
the electron density becomes also infinite.

a. The temporal catastrophes - outrunnings. To obtain some idea
about the growth of the electron density at the outrunning, two examples
(spherical and linear) of the electron cloud expansion under the influence
of the Coulomb forces were studied. The spherical case is very conve-
nient, since the corresponding motion equation can be integrated in the
time interval from the beginning of the expansion up to the outrunning.
Thus, the electron density behavior can be investigated in the analytical
form.

a.Spherical expansion of the electron cloud. Let the distribution of
the electron density σ(r) there is at the initial instant and the cloud is at
rest at that moment, that is, the velocities are equal to zero in all points
of the cloud. Then the electrical field E(R) on the sphere of radius R
equals

E(R) = Q(R)/R2, (1)

where Q(R) is the full charge in the sphere,

Q(R) = 4π

R∫
0

dr r2σ(r). (2)

Emphasize, that Q(R) is constant up to the beginning of the outrunning,
in other words

Q(R) = Q(R0), (3)



342 V.P.Bykov, A.V.Gerasimov, V.O.Turin

if R0 is the initial value of R. Thus the motion equation of the charges
on the sphere of radius R is

mR̈ = eQ(R0)/R2 (4)

We suppose below, that at t = 0 the charge distribution is gaussian

σ(r) =
Q0

π3/2r30
e−r

2/r20 , (5)

where Q0 is the entire charge of the distribution. Then the solution of
this equation is

[
(ρ(ρ− ρ0))

1/2
+ ρ0 ln

(ρ− ρ0)1/2 + ρ1/2

ρ
1/2
0

]
(ρ0Q0/2Q(R0))

1/2
= τ (6)

where

ρ = R/r0, ρ0 = R0/r0, τ = t/t0 (7)

and

t0 =

(
m

e

r30
Q0

)1/2

(8)

Let us study the time dependence of the electron density. Emphasize,
that up to the beginning of the outrunning the full charge in the spherical
layer of width d < R is constant

σ(R)R2 dR = σ(R0)R2
0 dR0

Hence, we have

σ(R) = σ(R0)
R2

0

R2

dR0

dR
. (9)

One can see from this equation, that the electron density becomes infinite
if the derivative dR0/dR turns into infinity, or, that is the same, the
derivative dR/dR0 turns to zero.
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Figure 4. The spherical spreading of the electron cloud under the influence
of its Coulomb field. At the beginning of the outrunning of some layers by
others the R-derivative over R0 at fixed t turns to zero at the bend point.

The dependence R on R0 was calculated numerically and the result
of the calculation is given in Fig.4. One can see that in the point, where
dR/dR0 at the first time turns to zero, this dependence has a bend and,
hence, it can be taken in the form

R = B + ε (R0 −A)3 + ..., (10)

where A and B are some constants. Then R0 is a function of R

R0 = A+ [(R−B)/ε ]1/3 (11)

The derivative dR/dR0 near this point has the form

R = 3ε(R0 −A)2 = 3ε1/2(R−B)2/3 (12)

Thus, the electron density near the point, where it turns to infinity has
the following dependence on R

σ(R) =
1

3
σ(A) ε−1/2(A/B)2(R−B)−2/3 (13)
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Fig.4 shows, how R depends (due to (4)) on R0 at some time instants. In
the initial instant R and R0 are the same. Then, after the beginning of
the cloud expansion the charges on the slope of the distribution receive
the greatest velocities and, as a consequence, the greatest shifts. Due
to it the fore-running layers outrun the subsequent layers. So the shifts
at R0

∼= 1.5 are significantly greater than the shifts at R0
∼= 2.0. In the

instant t = 2.77 values R, corresponding to 1.5 < R0 < 2.0, become ap-
proximately equal and it is the beginning of the outrunning and turning
of the electron density into the infinity. Fig.5 shows the formation of the
electron density maximum near R ∼= 3.65 and its sharpening with time.
One can see that at t = 2.77 the electron density at the maximum is
four orders greater than in center of the distribution.

Figure 5. The electron density maximum formation and its sharpening with
time at the spherical spreading of the electron cloud. The electron density at
the maximum is four orders greater than in the center of the distribution.

Fig.6 shows the electrical field dependence on R. One can see, that
in the vicinity of the point, where the electron density turns into the
infinity, there is a jump of the field, as it has to be near the charged
layer. Fig.7 shows the dependence of the inner charge of the sphere on
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its radius R. As one can see in this figure, in the vicinity of the charged

layer not less than 20% of the full charge is concentrated.

Figure 6. The electrical field jump near the electron density maximum.

b.Linear expansion of the electron cloud. Let the charge distribution

is kept in the vicinity of the z-axis by the outside forces. The linear

density has the distribution σ(z), which will be supposed symmetrical

to the origin. The initial velocities we let to be zero as before. The

motion equations of the charge element have the form

dz(z0, t)

dt
= V (z0, t),

dV (z0, t)

dt
= a(z0, t) (14)

where z is the coordinate of the charge, initially situated at z0, V is its

velocity

a(z0, t) =
e

m
E(z0, t) (15)

is the acceleration and E is the field influencing it.
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Figure 7. The dependence of the entire charge in the sphere on its radius.

In the crosssection the distribution is supposed a uniform in the cir-
cle of the radius r. In other words the distribution is in the cylinder with
the radius r and the axis, coinciding with the z-axis. The supposition,
that the distribution is infinitely thin, leads to the divergent fields.

The electrical field on the axis of the cylinder equals

E = 2πρ[1− l/(l2 + r2)1/2]dz, (16)

where r is the disk radius, ρ is the charge density, l is the distance from
the field point on the cylinder axis to the center of the disk, and dz is
the disk thickness. Summing such fields over all distances l, we receive
the field on the cylinder axis in the point z

E(z) = 2π

 z∫
−∞

dz′ρ(z′)

(
1− z − z′

[(z − z′)2 + r2]1/2

)

−
+∞∫
z

dz′′ρ(z′′)

(
1− z′′ − z

[(z′′ − z)2 + r2]1/2

) . (17)
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Below we shall use the full charge, which is on the left side from the
point z. It equals

Q(z) = πr2
z∫

−∞

dz′ ρ(z′), Q(z = +∞) = Q0 (18)

Then, using the equation

dQ = πr2ρ(z)dz (19)

we receive

E(z) =
2

r2


Q∫
0

dQ′
[
1− z(Q)− z(Q′)

[ r2 + ( z(Q)− z(Q′) )2 ]1/2

]

−
Q0∫
Q

dQ′′
[
1− z(Q′′)− z(Q)

[ r2 + ( z(Q′′)− z(Q) )2 ]1/2

] . (20)

The equations (14) and (15) now can be written in the form

dz(Q, t)

dt
= V (Q, t),

dV (Q, t)

dt
= a(Q, t), (21)

a(Q, t) =
2e

mr2

Q0∫
0

dQ′W (Q,Q′), (22)

where

W (Q,Q′) = 1− z(Q)− z(Q′)
[ r2 + ( z(Q)− z(Q′) )2 ]1/2

(Q′ < Q) (23)

and

W (Q,Q′) =
z(Q′)− z(Q)

[ r2 + ( z(Q)− z(Q′) )2 ]1/2
− 1 (Q′ > Q). (24)

The dependence z on Q is defined by equation (18).
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Before the beginning of the outrunning the charge between two
crosssections is constant. Therefore we have the equation

ρ(z, t) dz|t = ρ(z0, 0) dz0|t=0

or

ρ(z, t) = ρ(z0, 0)

(
dz

dz0

)−1
t=const

. (25)

Hence, the electron density can turn into the infinity, if the derivative
(dz/dz0)t=const turns to zero.

Figure 8. The electron density maximum formation at the linear spreading.

Results of the numerical calculations are given in Fig.8. As in the
spherical case the infinite maximum of the electron density distribution
is forming. However, now we have an opportunity to study the depen-
dence of the maximum formation on the cross section diameter. The
corresponding picture is given in Fig.9. One can see that the smaller
the cross-section dimension the faster the formation of the distribution
maximum occurs. This circumstance makes more important the process
of the electron cloud focusing, which we concern in the following section.
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Figure 9. The electron density maximum formation at different dimensions
of the distribution cross-section.

Space catastrophes - focusing. Space catastrophes, connected with
focusing, are well known, for example, from the ray optics [21]. There-
fore, below we give only some qualitative considerations of the electron
clot sharpening due to the focusing.

As a rule, the electron cloud motion takes place in the focusing
electrical field of the cathode-anode space. The own Coulomb electrical
field of the cloud can also be focusing in some cases. The catastrophes
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of two types - caustics and focuses - can occur as a result of focusing.
In focuses the electron density grows as 1/R2 (if the wave nature of the
electron field can be neglected), and in the vicinity of caustics it grows
as 1/R. However, the focuses are not the catastrophes of the general
position. In other words, only in exceptional cases the curvature radii
are equal to each other, that is necessary for the existance of the spherical
wave front and formation of the focuses. However, the difference between
them is not great, so that in the vicinity of caustics the electron density
will grow apparently as 1/Rn, where n is between one and two.

At the approaching of the electron cloud to the caustic region and,
correspondingly, with the growing of the electron density all processes
influenced by the Coulomb field will be intensified, in particular, the out-
running process. It can be seen especially well in Fig.9. Therefore, there
is a great probability that the outrunning will occur also in the vicinity
of caustics. Then the electron density will grow with the law close to
1/R2, i.e., the electron clot in this case will become untransparent (see
following section).

5 The transparent and untransparent electron clots

As was shown above, the catastrophes, forming in the electron flow,
give the electron density growth in some points up to infinity. The
charged clots in the vicinity of such points have some properties of the
pointlike particles. Such clots can be of two types: transparent and
untransparent. The untransparent clots are especially similar to the
pointlike particles, since they are more stable. Correspondingly they
are more important for our investigation. We consider, for example,
spherically symmetrical clots.

Let us clarify, how the electron density in the clot must depend on
the distance from its center the potential to be infinite. In this case
outer clots incident on that under consideration will not penetrate into
its center, i.e., the clot will be untransparent.

Let the electron density distribution in the clot is

σ(r) = G/rn (1)

The full charge Q(R) in the center of the clot (in a sphere of a small
radius R ) must be finite

Q(R) = 4π

R∫
0

dr r2 σ(r) = 4πG

R∫
0

dr r2−n =
4πG

3− n
r3−n

∣∣∣∣R
0

; (2)
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it is possible if
n < 3

The charge Q(R) in this case equals

Q(R) =
4πG

3− n
R3−n. (3)

The electrical field equals

E(R) = Q(R)/R2 =
4πG

3− n
R1−n (4)

Correspondingly, for potential the following expression can be obtained

U(R) =

∫
R

dR ′E(R ′)

=
4πG

3− n

∫
R

dR ′R ′(1−n) =
4πG

(2− n)(3− n)
R ′(2−n)

∣∣∣∣
R

(5)

The potential behavior at the upper limit is not important, since far
from the singularity (1) the electron density can decrease faster then in
(1). The potential behavior at the clot center is more important. Its
value is going to infinity if

n > 2.

Thus, the electron clot is untransparent if its density distribution is
obeyed to the law (1) with

2 < n < 3

Practically n can be only close to 2, since the subsequent growth of the
density is stoppening by the Coulomb forces.

6 The one-electron clots

One of the most important and difficult problems of the alternative
approach is the necessity to explain the formation mainly one-electron
clots. It is considered usually that one point-like electron, emitted from
the cathode, corresponds to one photocount. However, we did not find
experiments confirming such point of view. We did not find also the



352 V.P.Bykov, A.V.Gerasimov, V.O.Turin

evidence that the current splashes, corresponding to photocounts, are
identical to each other. Nevertheless, this point of view is apparently
correct. Therefore, developing an alternative approach it is necessary to
indicate the reasons, due to which the observation of the one-electron
clots is preferrable.

The above research of two electron system in a quadratic potential
well showed that at small electron density the cloud decays into two
clots. We suppose that this circumstance is not occasional: the three
electron cloud will decay into three clots, the four electron cloud - into
four clots, and the n electron cloud - into n clots.

Qualitatively this statement can be founded in the following man-
ner. Emphasize the absence of the selfinfluence, that is influence of the
Coulomb field of an electron onto it itself, in the Hamiltonian, taking
into account the Coulomb interaction,

H =
∑
n

1

2m
p2n +

∑
n,l

e2

rnl
(1)

here the first term is the kinetic energy of electrons and the summa-
tion is over all electrons, the second term is the Coulomb energy of the
electron system and summation is over all electron couples. The absence
of the selfinfluence means that if a narrow wave-packet, containing one
electron, is formed, its Coulomb field will not influence its diffusion; such
wave-packet will diffuse as a noncharged wave-packet, that is, relatively
slow.

In multielectron systems, such as the electron cloud under investiga-
tion, all electron wave-packets are on principle multielectron due to the
well-known symmetry properties of the electron wave-function. How-
ever, among such multielectron configurations there are ”equivalent ”
to one-electron configurations. Indeed, let the function ψ(r) describes
a narrow electron wave-packet, e.g., gaussian (All spins let be oriented
equivalently and neglect the spin-spin and spin-orbit interactions). Then
the wave-function

ψ(r1, r2) = 2−1/2[ψ(r1)ψ(r2 − a)− ψ(r2)ψ(r1 − a)] (2)
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having the necessary symmetry, describes the two-electron system,
concentrated in two wave-packets - one is in the origin, and the other is
in the point with radius-vector a.

One can be convinced of the absence of the Coulomb interaction
inside the wave-packets at the least if the distance a between the wave-
packets is much greater of their width. Indeed, the Coulomb energy av-
erage value in the state, described by the wave-function ψ(r1, r2), equals

〈UCoulomb〉 = e2
∫∫

dr1dr2|ψ(r1, r2)|2/|r1 − r2| =

=
1

2
e2
∫∫

dr1dr2
[
|ψ(r1)|2|ψ(r2 − a)|2 + |ψ(r2)|2|ψ(r1 − a)|2

− ψ∗(r1)ψ(r1 − a)ψ(r2)ψ∗(r2 − a)

−ψ(r1)ψ∗(r1 − a)ψ∗(r2)ψ(r2 − a) ] /|r1 − r2|.
(3)

The first two terms correspond to the Coulomb energy of two electrons,
placed correspondingly at the origin and at the point with radius-vector
a. Approximately this part of the Coulomb energy equals

〈UCoulomb〉′ = e2/|a| (4)

since the factor 1/|r1 − r2| can be taken a constant in the frames of
distributions |ψ(r1)|2 and |ψ(r2−a)|2. The two other terms are so called
the integrals of the overlapping; in our case they can be only very small,
since there are the combinations

ψ∗(r1)ψ(r1 − a), ψ(r2)ψ∗(r2 − a)

and complex conjugated to them, which are enavitably small, if the width
of the gaussian wave-packet is much smaller than the distance a between
them. If ψ∗(r1) is near the distribution maximum, then ψ(r1 − a) will
have a very small value and so on ...

Thus, although both electrons with equal probabilities can be found
in every wave-packet, the Coulomb interaction between them inside the
wave-packet is absent. The situation is equivalent to that, when one
electron is in the first wave-packet, and the other is in the second wave-
packet. This consideration can be easily generalized to multielectron
systems. It is enough for it to use the n× n Slater determinant instead
of function (2). The considerations given here are similar to those which
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permit to consider atoms without taking into account all other electrons
(for example, the electrons of other atoms).

Hence, if at the initial instant the real multielectron wave-packet
(not such as (2)) was created, it will decay rapidly under the influence
of the interpacket Coulomb forces, seeking to form finally one-electron
wave-packet, similar to (2). This one-electron wave-packet after its for-
mation will relatively slow diffuse as the noncharged packets are diffusing
in the free space. Therefore the one-electron wave-packets have an ad-
vantage over the multielectron ones in their time of life and due to it
their observation is more probable.

7 Conclusion

The considerations of this paper don’t exhaust the problem and
they don’t give the evidence of the alternative approach correctness.
The reader can find questions for which there are no answers in this
paper. However, it is wonderful, how many arguments can be given for
this approach. The major argument in favour of the alternative approach
is that the electron clot is forming naturally, but not as a result of the
mysterious and miraculous transformation of the wave into the particle.
Therefore we decided to publish these cosiderations to attract attention
of experimenters and theorists to them.

The qualitative picture of the photocount appearance at the de-
tecting of the laser radiation can be described in the following manner.
The electron system of the metallic or semiconductor cathode has a high
density and is uniformly (if we neglect fluctuations) distributed over
the cathode volume. Under influence of the coherent (laser) radiation,
this system, being as before uniform, becomes excited so that the elec-
tron cloud exit into the free space gets possible. In the outer space
the electron density of the cloud is very small and the disintegration of
the cloud into the particular clots (may be, one-electron) becomes pre-
ferrable. However, these clots are very widespread so that the distance
between them is of the order of their width. During the clot acceleration
in the electrical field between the cathode and anode the focusing (the
space catastrophe) of the clot occurs and it leads to the increasing of its
density. The outrunning effect (the temporal catastrophe) also occurs in
the cloud due to its Coulomb field and the cloud become more dense in
the longitudinal direction and their width becomes significantly smaller
than the distance between them. Formed very dense clot is very similar
to the localized particle. Moving in the cathode-anode space this clot



Photocounts and the catastrophe theory 355

is inducing the sharp and intensive current splash in the outer circuit
of the photodetector; this splash will be accepted by the observer as a
photocount.

Emphasize, that the possibility of the including of the catastrophe
theory with its topological methods to the problem of the clots sharp-
ening indicates on the not occasional nature of this effect. Therefore,
it is interesting to develop the catastrophe theory for the 3N -dimension
configuration space of the N -electron wavefunction.

The developing approach to the photocount theory on the one hand
gives the physical base for the usual statistical interpretation of the
quantum-mechanical values, on the other hand delivers the theory from
the immanent character of this statisticalness, that is, makes it not oblig-
atory, but only peculiar to many physical cases. In this respect the alter-
native approach returns us to the old discussions on the localization and
delocalization of particles (it is especially important to remind the book
of L.DeBroglie [22]). It may be that the new insight to these problems
will become possible.

The alternative approach shows also that the situations can exist
when the statistical character of the effect is absent, and such situations
are of great interest.

Thus, the statistics of the current splashes in the photodetector,
which is usually identified with the photon statistics, reflects the statis-
tical nature of the process of the electron cloud decay into clots and only
partially, through the statistics, the properties of the light which have
given rise to the effect. This is the main consequence of the alternative
approach.

From the experimental viewpoint the most interesting consequence
of the alternative approach is the possibility of a regime in which the pho-
tocathode operates without current splashes or, in other words, without
photocounts. This possibility is a particular case of the mentioned above
situations without statistical character of quantum-mechanical effect. It
can be manifested in a very strong fields, in which the electron cloud has
no enough time to decay into clots. In this case the spectral composition
of the photocurrent is substantially changed: the high frequency compo-
nents due to the individual clots disappear, and only the low-frequency
components due to the variation of the amplitude of the optical signal
remain. As a rule, the amplifiers which follow the photodetector have
a depressed sensitivity in the low-frequency region. It is necessary to
correct this low sensitivity in the regime with the absence of current
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splashes; otherwise, the disappearance of current splashes will manifest
itself as a decrease in the efficiency of the photocathode. In experimental
studies there have been hints of such phenomena in strong fields.

Thus, the alternative approach can qualitatively explain the main
phenomena of the physics of photocounts. However, a more detailed
verification of these features requires additional study.

What conclusions can be arrived at from the alternative approach
for the practice of photodetecting devices? The most general reason
of the electron cloud instability is the strong quasidegeneration of the
electronic systems in such devices. Indeed, the energy levels of the trans-
lational electron motion are very close to each other and their number is
very great. Due to it the electronic system becomes very pliant to any
disturbing influences. For comparison remind that the same electronic
system is very stable in the atomic conditions - for a change of its state
in atom a great energy of one quantum is necessary.

Therefore it is natural to refuse the systems with great degree of
degeneration. In this sense the atomic systems become attractive, where
the electron cloud is strongly stabilized by the Coulomb field of a nucleus.
On this way it is necessary to apply in the first place to such a well-
known devices as optical amplifiers. These amplifiers are studied well at
present and it was concluded that they can’t be good detectors of the
weak radiation, since the active medium of the amplifiers spontaneously
radiates with a relatively high intensity.

However, the possibilities of the atomic systems as detectors did not
apparently exhausted entirely. In this respect the atomic systems with
two degenerate levels are attractive, provided the multiphoton process
occurs there [23].
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