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A trajectory interpretation of tunneling
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ABSTRACT.

A trajectory description of tunneling through a rectangular barrier
is examined. A deterministic trajectory that tunnels through the
barrier is developed in closed form. Its equations of motion are gen-
erated from Hamilton’s characteristic function for quantum motion.
We develop from the trajectory description an associated wave func-
tion that has in the incident domain a compound modulation in
both amplitude and conjugate momentum. This wave function with
compound modulation is an eigenfunction of the Schrödinger rep-
resentation. Neither assigning a probability amplitude to the wave
function by the Copenhagen interpretation, nor Bohm’s stochasticy,
are needed to describe tunneling.

RÉSUMÉ.

Une description de la trajectoire de traversée d’un tunnel à travers
une barrière rectangulaire est examinée. Une trajectoire déterminée
à travers la barrière est développée sous forme analytique. L’équation
du mouvement est engendrée par la fonction caractéristique de
Hamilton du mouvement quantique. A partir de la description de
la trajectoire, nous développons une fonction d’onde associée qui
a, dans le domaine d’incidence, une modulation composée avec
l’amplitude et la quantité conjuguée du mouvement. Cette fonction
d’onde de modulation composée est une fonction caractéristique de
la représentation de Schrödinger. Ni la probabilité d’amplitude à la
fonction d’onde, ni la représentation stochastique de Bohm ne nous
sont nécessaires pour décrire la traversée du tunnel.
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1. Introduction.

The contemporary Schrödinger representation of quantum mechan-
ics investigates tunneling phenomenon by a particle with sub-barrier en-
ergy as an incident wave function that the barrier divides into reflected
and transmitted wave functions. The Copenhagen interpretation as-
signs a probability amplitude to the Schrödinger wave function to predict
statistics for an ensemble undergoing an event1. For the same particle,
classical mechanics predicts only reflection, albeit Cohn and Rabinowitz
[1] describe the possibilities of barrier hopping by a classical particle
whose length sufficiently exceeds the width of a finite barrier2. This
phenomenological description of tunneling has been one of the basic tri-
umphs of quantum mechanics. The Copenhagen interpretation deduces
the probability for tunneling and reflection of an ensemble of identical
wave functions from the probability amplitudes of the transmitted and
reflected waves respectively. Herein, we examine barrier tunneling us-
ing a deterministic, phenomenological trajectory description couched in a
Hamilton-Jacobi representation and show that replicable particles, speci-
fiable a priori, with sub-barrier energy may tunnel with certainty. We
consider a particle encountering a finite rectangular barrier with normal
incidence. The Hamilton-Jacobi equation for continuous quantum mo-
tion is a nonlinear third-order differential equation. The first and second
derivatives of Hamilton’s characteristic function for quantum continuous
motion are continuous across the interfaces of the barrier. On the other
hand, Hamilton’s characteristic function for classical motion has a dis-
continuous first derivatives at the barrier. We show that Hamilton’s
characteristic function, a generator of the motion, for an individual tra-
jectory of a single event contains all the information needed to deduce the
corresponding Schrödinger wave function. We determine the Hamilton’s

1 We distinguish between “Schrödinger representation” and “Copenhagen in-
terpretation” of quantum mechanics. Lest we forget, Schrödinger opposed the
Copenhagen interpretation of his wave function. The principal element of the
Copenhagen interpretation under examination herein is the assignment of a
probability amplitude to the Schrödinger wave function.
2 While we investigate quantum mechanical tunneling herein, classical tun-
neling of Cohn and Rabinowitz [1] has bearing. Our barrier has a finite height
and a finite thickness. On the incident side of the barrier, our stationary state
for the time-independent Schrödinger equation has semi-infinite length. Thus,
the classical tunneling criteria of Cohn and Rabinowitz are met. We comment
later on differences between this classical tunneling and our trajectory results
regarding velocity while tunneling through the barrier.
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characteristic function for a particle with sub-barrier energy to tunnel
through the barrier with certainty and to generate the corresponding
wave function. In the incident domain, the corresponding wave function
for tunneling with certainty has compound modulation in both ampli-
tude and conjugate momentum. Since Hamilton’s characteristic function
and the Schrödinger representation are mutually consistent and since a
deterministic trajectory interpretation of a single event suffices to de-
scribe the wave function, the assignment of a probability amplitude for
an ensemble of events to the Schrödinger wave function is unnecessary.

As a target of opportunity, we also investigate briefly velocity while
tunneling. We describe the trajectory inside the barrier for an individual
particle with sub-barrier energy.

We have chosen to examine tunneling through a rectangular barrier
for conceptual and computational tractability. Analysis by the contem-
porary Schrödinger representation is familiar. We may apply separation
of the variables. Normal incidence reduces the problem to one dimen-
sion. The Schrödinger and trajectory representations may be described
in closed form. For piecewise continuous potentials, the trajectories are
described by linear, trigonometric, inverse trigonometric, and hyperbolic
functions while the contemporary Schrödinger representation may be de-
scribed by exponential functions.

Dewdney and Hiley have investigated scattering of normally inci-
dent trajectories by a rectangular potential barrier based upon Bohm’s
quantum potential [2]. Consequently, Dewdney and Hiley used the same
Hamilton-Jacobi equation for quantum continuous motion that we have
used herein.

Nevertheless, their analyses differ from ours. Instead of solving the
Hamilton-Jacobi equation for the generator of the motion, Dewdney and
Hiley assumed that the conjugate momentum would be the mechanical
momentum (i.e;, the product of mass and velocity) and that the gradient
of Bohm’s quantum potential would produce a quantum force that, in
turn, would produce a proportional rate of change in mechanical mo-
mentum [2].

Bohm’s quantum potential is a function of the Schrödinger wave
function. Dewdney and Hiley followed Bohm’s procedure for introducing
stochasticy by assigning separate variables for the argument of the wave
function and the position of the particle [3]. Subsequently, Dewdney and
Hiley assumed that the equations of motion for the trajectory would be
established by integrating the conjugate momentum. Dewdney and Hiley
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investigated an ensemble of numerically generated trajectories for a wave
packet to present graphically densities of the transmitted and reflected
trajectories while presenting neither analytic nor numerical coefficients
for transmitted or reflected wave functions.

However, Halpern noted that Bohm’s quantum potential is depen-
dent upon energy [4]. As such, Bohm’s quantum potential is dependent
upon path in phase space. Hence, its gradient does not produce a con-
servative force [5]. Consequently, the conjugate momentum is not the
mechanical momentum [6]. Yet, there is a standard recipe for resolv-
ing motion. Hamilton’s characteristic function is still a generator of the
motion. The equations of motion for the particle trajectory are still es-
tablished by the Hamilton-Jacobi transformation equations for constant
coordinates analogous to classical mechanics. Time, t, as a function
of particle position is specified by the Hamilton-Jacobi transformation
equation for the constant coordinate τ as t − τ = ∂W/∂E where W is
Hamilton’s characteristic function and E is energy.

Herein, we solve the Hamilton-Jacobi equation for quantum contin-
uous motion as a third order differential equation [7] with continuous
first and second derivatives and present our results quantitatively in
closed form for an individual trajectory of a single event where the con-
jugate momentum is not the mechanical momentum. The trajectory is
deterministic rather than stochastic. Its Hamilton’s characteristic func-
tion contains all the information necessary to describe scattering analyti-
cally consistent with the Schrödinger representation without introducing
stochasticy.

In Section 2, we develop a trajectory description of a quantum par-
ticle with sub-barrier energy that tunnels through a rectangular barrier
with normal incidence. We develop the generator of the motion for
this trajectory and subsequently the equations of motion in the clas-
sically forbidden region inside the barrier. In Section 3, we develop
the corresponding wave function that tunnels with certainty. This wave
function has compound modulation in both amplitude and wave num-
ber in specified regions. In Section 4, we show that this wave function
with compound modulation in specified regions is consistent with the
unmodulated incident and reflected wave functions of the contemporary
Schrödinger representation. This wave function with compound modu-
lation is shown to be an eigenfunction by the principle of superposition.

In Section 5, we discuss the various interpretations and show that
the trajectory interpretation offers a new deterministic resolution to
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scattering. While the trajectory and Schrödinger representations are
mutually consistent, the assignment of a probability amplitude to the
Schrödinger wave function is unnecessary. In the Appendix, the unmod-
ulated plane waves of the contemporary Schrödinger representation are
synthesized from a set of compoundly modulated waves by the superpo-
sition principle.

While we develop a trajectory presentation herein, the reader with-
out any familiarity with the trajectory representation but familiar with
the Schrödinger representation may choose to read Sections 4, 3 and 2
in that order.

2. Trajectory description.

Consider a plane wave progressing in the positive x-direction with
sub-barrier energy, E, that tunnels, with normal incidence, through a
barrier given by the potential

V =

{ 0, x < −q
U > E, −q ≤ x ≤ q
0, x > q .

(1)

The Hamilton-Jacobi equation for quantum continuous motion is
given by [7]

(W ′)2

2m
+ V − E = − h̄2

4m

(W ′′′
W ′
− 3

2

(W ′′
W ′

)2)
(2)

where W is Hamilton’s characteristic function and the generator of the
motion, m is the particle mass, and h̄ is Planck’s constant. The en-
ergy may be expressed as E = (h̄k)2/(2m) where k is the wave number.
The left side of Eq.(2) represents the classical Hamilton-Jacobi equation
while the right side of Eq.(2) contains the quantum terms that raise
the Hamilton-Jacobi equation from a first-order differential equation for
classical motion to a third-order differential equation for quantum con-
tinuous motion.

W ′ is the conjugate momentum (not the mechanical momentum in
contrast to Dewdney and Hiley [2]) given by [7]

W ′ = (2m)1/2(aφ2 + bθ2 + cφθ)−1 (3)
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where (φ, θ) is a set of scaled independent solutions of the associated
time-independent Schrödinger equation, −h̄2ψ′′/(2m) + (V − E)ψ = 0
with a Wronskian, W , normalized by W 2(φ, θ) = 2m/

(
h̄2(ab − c2/4)

)
.

Substituting Eq.(3) for W ′ into Eq.(2) renders the Schrödinger equation
[7]. The subsequent general solution for W is given by [6]

W = h̄ arctan
( b(θ/φ) + c/2

(ab− c2/4)1/2

)
+K (4)

where K is the additive constant of integration.

As Eq.(2) is third order and does not explicitly contain W , specify-
ing W ′ and W ′′ at some initial (or terminal) point determines a unique
solution for W within the arbitrary additive constant, K. Including
W in the initial conditions specifies K. The terminal conditions that
represent a trajectory of a running wave that has been transmitted
through the barrier are given by Huygen’s principle [8] at x =∞ where
W ′(x = ∞) = k and W ′′(x = ∞) = 0. In addition, W and its first
two derivatives with respect to x must be continuous across the barrier
interfaces at x = −q, q.

The terminal conditions and the continuity conditions along with
the specified normalization of the Wronskian are sufficient to determine
the coefficients

(
a, b, c

)
and a continuous (to degree two) Hamilton’s

characteristic function (a generator of the motion) in units of Planck’s
constant for all x as

W =


h̄k(x− q), x > q
h̄ arctan

(
k
κ tanh

(
κ(x− q)

))
, −q ≤ x ≤ q

h̄ arctan
(N
D
)

x < −q
(5)

where

N =
k

κ
sinh(−2κq) cos

(
k(x+ q)

)
+ cosh(−2κq) sin

(
k(x+ q)

)
D = cosh(−2κq) cos

(
k(x+ q)

)
+
κ

k
sinh(−2κq) sin

(
k(x+ q)

)
κ =

(
2m(U − E)

)1/2
h̄

and where we have picked the integration constant K so that

W (x = q) = 0 .
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We apply the trajectory interpretation to examine the particle ve-
locity while tunneling through the barrier. Different models including
Wigner trajectories and hydrodynamic models have been used to deter-
mine or, from dwell times, infer velocities for wave packets in the classi-
cally forbidden regions and have been discussed in literature [9, 10]. We
now have a generator of the motion, Eq.(5), that is valid for an individual
monochromatic particle in both the classically forbidden and the classi-
cally allowed regions. The equation of motion for the trajectory, which
differs from that of Dewdney and Hiley [2], is the Hamilton-Jacobi trans-
formation equation t− τ = ∂W/∂E. Thus, the temporal behavior of the
trajectory for x > −q (the temporal behavior before tunneling, x < −q,
is represented regrettably by a very long expression, albeit a closed-form
expression, whose significance will soon be reported separately) is given
by differentiating Eq.(5) with respect to E or

t− τ =



m

h̄k
(x− q), for x > q

m/h̄

1 + (k/κ)2 tanh2
(
κ(x− q)

)(( 1

κk
+

k

κ3
)

tanh
(
κ(x− q)

)
−k(x− q)

κ2
sech2

(
κ(x− q)

))
, for − q ≤ x ≤ q .

(6)

Note that Eq.(6) describes the trajectory in the classically forbidden
region, −q ≤ x ≤ q. The particle velocity, x, is given by differentiat-
ing Eq.(6). We report that only for x > q does ẋ = W ′/m. This is a
manifestation that W ′ is generally not the mechanical momentum [11]
(i.e., W ′ 6= mẋ), but rather it is related to the phase velocity [6] that
is given by Park [12] for matter as W ′/(2m). Meanwhile, particle ve-
locity has been shown [6] to be related to group velocity for Eq.(6) is
a Hamilton-Jacobi transformation equation. We have from Eq.(6) that
in the classically forbidden region, ẋ > h̄k/m consistent with Olkhovsky
and Recami [13] and the previous findings of Floyd [11] that showed
the velocity increased in the region beyond the WKB turning point
for bound states but different from the findings of Hartmann [14] and
Fletcher [15] who found that ẋ < h̄k/m for thin barriers. Neverthe-
less, the velocity increases with barrier thickness consistent with the
Hartmann-Fletcher [14, 15] effect for thick barriers. Tunneling dwell
times,

(
t(x = q) − t(x = −q)

)
, by Eq.(6) decrease with increasing κ

consistent with Barton [16]. However, our results differ from those of
Dewdney and Hiley [2] who graphically showed that the magnitude of
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the velocity was less while tunneling in the classically forbidden region.
Our results also differ with the classical analogy of Cohn and Rabinowitz
[1] where the magnitude of velocity is less while hopping over the barrier.

3. Tunneling with certainty.

Hamilton’s characteristic function as presented by Eq.(5) is the gen-
erator of motion for an individual deterministic trajectory that tunnels
through the barrier with certainty. We now develop the corresponding
Schrödinger wave function for this trajectory that tunnels with certainty.
This wave function has a continuous logarithmic derivative across the
barrier interfaces at −q, q.

While Eq.(3) gives the relationship between the conjugate momen-
tum W ′ and the solution set of independent wave functions (φ, θ), an
inverse relationship is given by [7]

ψ =
exp
(
iW/h̄

)
(W ′)1/2

(7)

For x > q, we have easily from Eqs.(5) and (7) a transmitted, unmodu-
lated running wave given by

ψ = (h̄k)−1/2 exp
(
ik(x− q)

)
, x > q (8a)

where the integration constant, K, has been chosen so that phase is zero
at the barrier interface x = q.

For −q ≤ x ≤ q and from Eqs.(3) – (5) and (7), the Schrödinger
wave function is

ψ =
( (κ/k) cosh2(κx) + (k/κ) sinh2(κx)

h̄κ

)1/2
· exp

(
i arctan

(k
κ

tanh(κ(x− q))
))
,

− q ≤ x ≤ q

(8b)

where in Eqs.(3) and (4) φ = cosh
(
κ(x − q)

)
, θ = sinh

(
κ(x − q)

)
,

a =
(
(2m)1/2/(h̄κ)

)
(κ/k), b =

(
(2m)1/2/(h̄κ)

)
(k/κ), and c = 0. This

Schrödinger wave function represented by Eqs.(8a) and (8b) has a con-
tinuous logarithmic derivative across the barrier interface x = q. As
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Eq.(8b) manifests a wave running in the positive x-direction, there is no
reflection at the barrier interface x = q.

For x < −q and from Eqs.(3) – (5) and (7), the Schrödinger wave
function is presented in the form that facilitates further manipulations
in Sect. 4 as

ψ =
1

(h̄k)1/2

(
cosh2(−2κq) +

1

2

(κ
k

+
k

κ

)
sinh(−4κq) sin

(
2k(x+ q)

)
+ sinh2(−2κq)

((κ
k

sin
(
k(x+ q)

))2
+
(k
κ

cos
(
k(x+ q)

))2))1/2

· exp

(
i arctan(a)

)
for x < −q

(8c)
where

a =
k
κ sinh(−2κq) cos

(
k(x+ q)

)
+ cosh(−2κq) sin

(
k(x+ q)

)
cosh(−2κq) cos

(
k(x+ q)

)
+ κ

k sinh(−2κq) sin
(
k(x+ q)

)
and where φ = cos

(
k(x+ q)

)
and θ = sin

(
k(x+ q)

)
The Schrödinger wave function as represented by Eqs.(8b) and (8c)

has a continuous logarithmic derivative across the barrier interface at
x = −q. Similar to the situation at the barrier interface at x = q, Eq.
(8c) manifests a compoundly modulated wave progressing in the positive
x-direction, so there is no reflection of this wave at the interface x = −q
either.

The Schrödinger wave function represented by Eqs.(8a) – (8c) man-
ifests a wave progressing in the x-direction everywhere. There is no
reflection. This Schrödinger wave function is an eigenfunction for en-
ergy E and for our given rectangular barrier. Hence, this eigenfunction
represents a particle with sub-barrier energy that tunnels through the
barrier with certainty.

Only recently did we recognize that eigenfunctions for a constant
potential could be wave functions with compound modulation in ampli-
tude and wavenumber [6]. While one could confirm that the wave func-
tion represented by Eqs.(8a) – (8c) is an eigenfunction by brute force
through substituting this wave function into the Schrödinger equation,
we suggest waiting for the analyses of the next section.
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4. Consistency with the contemporary Schrödinger represen-
tation.

We now analyze the wave function represented by Eqs. (8a) – (8c)
into familiar, unmodulated plane waves and hyperbolic functions of the
contemporary Schrödinger representation in the allowed and forbidden
regions respectively for a piecewise constant potential. First, it is con-
venient to combine the trigonometric relationships [7]

(aφ2 + bθ2 + cφθ)1/2 cos
(

arctan
( b

θ

φ
+
c

2

(ab− c2

4
)1/2

))
=
(
a− c2

4b

)1/2
φ

and

(aφ2 + bθ2 + cφθ)1/2 sin
(

arctan

b
θ

φ
+
c

2

(ab− c2

4
)1/2

)
= b1/2θ +

cφ

2b1/2

into an exponential relationship

(aφ2 + bθ2 + cφθ)1/2 exp
(
i arctan

b
θ

φ
+
c

2

(ab− c2

4
)1/2

)

=
((
a− c2

4b

)1/2
+ i

c

2b1/2

)
φ+ ib1/2θ

(9)

For x > q, Eq.(8a) is trivially the familiar, transmitted unmodulated
wave function (h̄k)−1/2 exp

(
ik(x− q)

)
of the contemporary Schrödinger

representation.

We find from Eqs.(3), (4) and (9) that the wave function represented
by Eq.(8b) in the classically forbidden region −q ≤ x ≤ q may also be
expressed in an alternative form as

ψ =
1

(h̄k)1/2
(
cosh

(
κ(x− q)

)
+ i

k

κ
sinh

(
κ(x− q)

))
, −q ≤ x ≤ q (10)

This representation of Eq.(10) in hyperbolic functions is the very
representation of contemporary Schrödinger representation that matches
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the logarithmic derivative of the transmitted wave (h̄k)−1/2 exp
(
ik(x −

q)
)

at the barrier interface x = q. Thus, the trajectory representation ac-
counts for the continuity requirements for the Schrödinger wave function
to have a continuous logarithmic derivative across an interface. The com-
poundly modulated wave function given by Eq.(8b) is equivalent to the
contemporary Schrödinger representation and does indeed represent the
eigenfunction for sub-barrier energy E in the classically forbidden region.
We note that we could have also shown consistency between for this case
by using a procedure suggested by Bohm [17] where, knowing Eq.(10), we

specify W = h̄ arctan
(
=
(
ψ
)
/<
(
ψ
))

and (W ′)−1 =
(
<
(
ψ
))2

+
(
=
(
ψ
))2

to deduce Eq.(8b).

For x < −q, we have before the barrier that

ψ =(h̄k)−1/2
((

cosh(−2κq) + i(k/κ) sinh(−2κq)
)

cos
(
k(x+ q)

)
+
(
(κ/k) sinh(−2κq) + i cosh(−2κq)

)
sin
(
k(x+ q))

)
,

for all x < −q

(11)

Like the case at x = q, Eq.(11) is the solution of the contemporary
Schrödinger representation that has a continuous logarithmic derivative
at the barrier interface x = −q with the solution represented by Eq.
(10). We may represent this wave function for x < −q in terms of
unmodulated running waves as

ψ =
1

(h̄k)1/2

((
cosh(−2κq) +

i

2

(k
κ
− κ

k

)
sinh(−2κq)

)
exp

(
ik(x+ q)

)
+
( i

2

(k
κ
− κ

k

)
sinh(−2κq)

)
exp (−ik(x+ q))

)
,

for all x < −q
(12)

The terms in the first set of mid-size parenthesis on the right side of
Eq.(12) manifest the coefficient for the incident running wave while the
terms within the second set of mid-size parenthesis manifest the coef-
ficient for the reflected running wave of the contemporary Schrödinger
representation for scatter from a rectangular barrier. Hence, the tra-
jectory representation is consistent with the contemporary Schrödinger
representation for scattering by a rectangular barrier.

From a mathematical viewpoint, for any solution set (φ, θ) to the
Schrödinger equation, we can always form another set (ζ, ξ) of inde-
pendent solutions by the principle of superposition for linear differential
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equations so that ζ = Aφ + Bθ and ξ = Cφ + Dθ where the coeffi-
cients obey the relationship (AD − BC) 6= 0. Thus, Eq.(9) manifests
an application of the superposition principle that reversibly maps the
wave functions represented by Eqs.(10) and (11) into the synthetic wave
functions represented by Eqs.(8b) and (8c). We present in the Appendix
the inverse mappings for synthesizing unmodulated plane waves from
compoundly modulated waves.

Thus, the compoundly modulated wave represented by Eqs.(8a),
(8c) is an eigenfunction of the Schrödinger equation for sub-barrier en-
ergy E that tunnels through the barrier with certainty.

5. Discussion and interpretation.

All work has been done exactly. The trajectory described by Hamil-
ton’s characteristic function, Eq.(5), tunnels through the barrier. This
Hamilton’s characteristic function specifies the Schrödinger wave func-
tion as described by Eqs.(8a) - (8c) where a compoundly modulated
wave tunnels through the barrier to generate an unmodulated transmit-
ted wave. This wave function is an eigenfunction of sub-barrier energy
E as shown in Section 4 by Eqs.(10) and (12). Hence, the compoundly
modulated wave function with sub-barrier energy eigenvalue E tunnels
through the barrier with certainty.

A spectral resolution of the compoundly modulated wave function
in the domain

(
−∞,−q

)
before the barrier would reveal a two compo-

nent spectrum (+k and −k) in consonance with Eq.(12). This spec-
tral resolution only demonstrates that the trajectory and contemporary
Schrödinger representations are consistent by the principle of superpo-
sition. Heretofore, the contemporary Schrödinger representation has in
practice solved the tunneling problem by analysis into intuitive, unmod-
ulated (incident, reflected and transmitted) wave functions.

Now, the trajectory representation, which can synthesize the spec-
tral resolution into a compoundly modulated wave in the incident do-
main, offers us other possible choices of eigenfunction to describe tun-
neling. The principle of superposition for linear differential equations
has been well understood mathematically; to wit it gives us the map-
ping between standing and running wave functions. Now, we can extract
physical insight from the principle of superposition for two (incident and
reflected) unmodulated plane wave function of unequal amplitudes can
be synthesized into a single incident wave function with compound mod-
ulation.
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Hence, the synthetic wave function is the eigenfunction that repre-
sents the ensemble, and the associated Hamilton’s characteristic function
is the generator of motion for the unpartitioned ensemble. In an ensemble
of sufficiently large number, N , of particles, there is flexibility in the ac-
tual partitioning among the possible eigenfunctions. The ensemble may
be composed entirely of unmodulated incident and reflected waves in the
region before the barrier as visualized by the contemporary Schrödinger
representation. But the ensemble for large N is not restricted to such
a distribution. Other distributions are possible. On the other hand,
the ensemble size can be reduced to a single particle. Then, only the
normalization of the wave function for the ensemble would be changed
in the Schrödinger representation. For N = 1, the tunneling particle is
described by the wave function given by Eqs.(8a) - (8c).

We recognize that time-independence is an idealization. Our wave
packet for a particle has an infinitely long wave train. Before incidence,
this wave train is compoundly modulated and has spectral components
running in opposite directions. While we examine such an idealization in
this exposition, we can nevertheless comment on the integrity of a wave
packet consisting of a finitely long, compoundly modulated wave train
during its temporal evolution before incidence. We can put to rest any
reservations that its spectral components running in opposite directions
might induce a spontaneous splitting of such a wave packet. Let us
consider the familiar wave packet consisting of just a plane wave train.
As shown in the Appendix, a plane wave can be mapped into compoundly
modulated waves that run in opposite directions. Therefore, the integrity
of the familiar plane wave packet infers the integrity of the compoundly
modulated wave packet. By the superposition principle, the integrity of
either wave packet infers the integrity of the other.

In an experiment, if N particles each with a compoundly modulated
wave function described by Eq.(8c) are incident to the rectangular barrier
described by Eq.(1), then all N particles will tunnel through the barrier
with certainty to emerge as unmodulated wave functions as described
by Eq.(8a). Inside the barrier, the wave function for each particle is de-
scribed by Eq.(8b). This ensemble is composed of N identically prepared
particles. N may be any positive integer. Note that in the trajectory
representation, a generator of the motion, such as given by Eq.(5), also
specifies this experiment for an individual particle.

The trajectory representation is deterministic, even in the classically
forbidden region. By precept, it should be so. If the initial conditions (W
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does not appear explicitly in Eq.(2)) for W ′ and W ′′ for some x < −q are
such to determine a solution to the third-order Hamilton-Jacobi equa-
tion for quantum motion that describes W ′ as a positive constant for
x > q, then that trajectory shall tunnel through the barrier to gen-
erate a transmitted unmodulated running wave. The corollary is that
the initial conditions for W ′ and W ′′ for some x < −q, along with an
arbitrary additive constant K, establish a unique solution for W every-
where and consequently establish the spectral components of the wave
function everywhere. These initial conditions are the necessary and suffi-
cient set of variables [18] that determine the behavior of the particle. As
W itself does not appear in the Hamilton-Jacobi equation for quantum
continuous motion, Eq.(2), the initial conditions W ′ and W ′′ along with
the normalization of the Wronskian are sufficient to specify the set of
coefficients (a, b, c) at the initial point.

The deterministic trajectory from first principles describes propaga-
tion for an individual monochromatic particle in the forbidden regions.
It can confirm other findings [11, 14, 16] with respect to tunneling by
wave packets. However, these other findings assumed a contemporary
Schrödinger representation in describing the wave function so they a pri-
ori assumed the incident wave packet was split by the barrier into trans-
mitted and reflected components. (Barton [16] did construct a packet
that was so severely spread that spreading masked reflection). Hence,
these other findings are applicable to a different physical situation where
tunneling is only possible, so not all findings need be confirmed.

The Copenhagen interpretation renders statistical expectations for
an ensemble of particles. It does not describe the trajectories of indi-
vidual particles. On the other hand, the trajectory representation is
deterministic for the individual particle.

As the deterministic trajectory and Schrödinger representations are
mutually consistent, we find that assigning a probability amplitude to the
Schrödinger wave function by the Copenhagen interpretation is unneces-
sary. Also, from the consistency between the trajectory and Schrödinger
representations, we find that the introduction of stochasticy by the Bohm
school in a trajectory interpretation is unnecessary.

The Copenhagen interpretation sets epistemological limits to knowl-
edge. Before collapsing the wave function, only the probability that an
individual particle will tunnel successfully could be known. No prop-
erty of the wave function could predetermine the tunnelling outcome.
Meanwhile, the trajectory representation is deterministic. Tunnelling
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outcomes are predetermined by Hamilton’s characteristic function. As
the trajectory representation is applicable to an individual trajectory,
there is no need to collapse the wave function to determine its successful
outcome in the trajectory interpretation.

As we reject the Copenhagen interpretation, can we give another
interpretation to the wave function ? As the Schrödinger and trajectory
representations are consistent for the ensemble and as the wave function
and Hamilton’s characteristic function mutually infer each other, we con-
clude that the phase of the Schrödinger wave function for an ensemble
is also a generator of the motion for that unpartitioned ensemble.

Appendix – Inverse mappings.

The incident wave function with compound modulation, Eq.(8c),
can be synthesized under the superposition principal from two spectral
components running in opposite direction as shown by Eq.(12). Likewise,
an unmodulated plane wave running in one direction can be synthesized
from two waves with compound modulation running in the opposite
direction for mappings under the superposition principle are reversible.

As a heuristic example, consider analyzing the unmodulated plane
waves (eigenfunctions for the free particle with energy E) into the solu-
tion set (ζ, ξ) where
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We now consider the mappings
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(A1)

and
1
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= −
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·
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sinh(−2κq)
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(A2)

Equations (A1) and (A2) respectively map the incident unmodu-
lated plane wave and the reflected unmodulated plane wave of the con-
temporary Schrödinger representation (cf. Eq.(12)) into set (ζ, ξ) of
compoundly modulated eigenfunctions that run in opposite directions.
We note that Eqs.(A1) and (A2) sum to ζ, which manifests the incident
wave with compound modulations, Eq.(8c), as expected.
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