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ABSTRACT. The necessary and sufficient field equations are de-
rived for all systems of well behaved fields which obey the relativis-
tic conservation laws for mass (energy) and momentum, and include
an electromagnetic field with sources, and which, in every Lorentz
frame, include a 3D pseudovector field whose field lines are (P1)
pairwise disjoint, (P2) closed or endless, (P3) conserved, and (P4)
embedded in and moving point by point with the charge/current den-
sity (ρ , j) at velocity v = j/ρ. The conserved flux is analogous to,
but different from a perfectly conserved vorticity field, and causes the
charge/current density to segregate into pairwise disjoint droplets,
with vortex-like integrity and permanence. The simplest such field
theory imposes only the equation given by Einstein and by Pauli as
necessary and sufficient for the existence of a Purely Electromag-
netic Particle (PEP) with internal charge/current density. Contrary
to physics dogma, there exist, and are presented here, a myriad of
solutions to that equation with solitons, each centered on a droplet
of vortex-like recirculating charge/current density. A hierarchy of
other field equations is described, with example equations and so-
lutions having similar properties. The soliton fieds in each level of
the hierarchy have properties which suggest that the different views
held by de Broglie, by Schroedinger and by the Copenhagen school
may, in their essential features, be mutually consistent.

RESUME. On établit les équations de champs, nécessaires et suff-
isantes pour tous les systèmes qui obéissent à la conservation rela-
tiviste de la masse (énergie), et de l’impulsion, et qui comportent un
champ électromagnétique interne, avec sources. Dans tout repère de
Lorentz, ces équations comprennent un champ 3D pseudo-vectoriel
ayant certaines propriétés bien définies. La conservation du flux ap-
parâıt semblable, mais diffère cependant de la conservation usuelle
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d’un champ de vortex, ce qui entrâıne l’existence de paires de partic-
ules chargées. La forme la plus simple de cette théorie donne les con-
ditions d’existence de Particules Electromagnétiques Pures (PEP)
ayant une densité interne de charge et de courant, selon une équation
d’Einstein et Pauli. Contrairement à certains dogmes physiques, il
existe un grand nombre de solutions à ces équations, s’apparentant
à des solitons dans l’esprit de Schrödinger et de de Broglie.

1. Introduction

Lochak [1] has compared the de Broglie and Schroedinger ideas re-
garding particle waves. Lochak recalls that “...de Broglie believed in a
particle represented as a localized bump in the wave. He knew that such
a stable feature can occur only in certain non-linear equations, and he
often quoted as an example the solitary waves: Actually his bump-like
wave was a soliton.”

According to Schroedinger, the particle is the de Broglie wave with
wavelength : λ ≈ ~/p. Lochak [1] points out that, “For Schroedinger,
a particle is not a permanent aspect of matter, but rather a type of
response given by some experimental devices,...” In the bound states,
emphasized by Schroedinger’s work, particle integrity and permanence
arise out of localization of the bound “standing wave”. Schroedinger
[2] attempted to describe the electron bound in stationary atomic states
as a time independent charge/current density (ρ, j) given by ψ∗ψ and
ψ∗∇ψ − ψ∇ψ∗. But with free particles, for which Schroedinger’s time
dependent wave equation gives probabilities for an ensemble of Hamilton-
Jacobi trajectories, the linear wave lacks the integrity and permanence
of non-linear solitons.

The Copenhagen school, and most physicists, adopt as their own,
the methods and result of de Broglie and Schroedinger, but reject their
interpretations in terms of physically real waves, because “the wave” can
not be measured directly. To the Copenhagen School, only the particle
properties, which Schroedinger attributed to the measuring process and
measuring instruments, are physically real. To the Copenhagen school,
the measurable properties are the point particles, and the wave function
is a non-real (unmeasurable) probability amplitude.

The point particle concept is further supported by the fact that
no direct experimental measurement of the charge/current density, or of
any fields, inside a particle where charge/current density is non-zero, has
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ever been made. In spite of this, Barut [3,4], Enz [5], Rodrigues, et.al
[6], Bostick [7], Honig [8] and O’Connell [9] are among those who have
continued to investigate the consequences of assigning physical reality to
the 3D particle/waves.

Barut [3] has considered an ensemble of wave packets, each with
slightly different initial fields. Each obeys the de Broglie relationship,
and each is consistent with initial particle measurements. If the wave
packets are propagated one at a time by a deterministic wave equation
through either a double slit or a Stern Gerlack field, they give ensem-
ble statistics consistent with experiment. The fit to experiment is even
better than that obtained by a single broad Schroedinger wave and the
Hamilton Jacobi (diffraction) computation of probable trajectories. If
this result holds true when non-linear solitons replace Barut’s linear wave
packets, then the system of soliton fields presented here may provide an
alternate method of computing quantum probabilities and relating them
to results obtained by direct quantization.

The purpose of this work is to present a new class of soliton field
equations (with example equations and solutions) for vortex-like rela-
tivistic solitons. These fit de Broglie’s soliton concept because there
is a smooth 3D “bump” of conserved flux embedded in and defining a
smooth droplet of charge/current density. This droplet is analogous to
the smoke in a smoke ring vortex with its embedded vorticity field. The
charge/current density in the vortex-like droplet generates an extended
electromagnetic self field which falls to zero only at infinity. This self
field is analogous to the Biot Savart velocity field generated by the lo-
calized vorticity field of a smoke ring vortex. The mass (energy) and
momentum of the vortex-like solitons are in the wave-like self fields, so
that propagation is wave-like. But particle-like integrity and permanence
follows from the vorticity-like conserved flux embedded in, and foliating
the droplet of charge/current density.

These vortex-like solitons occur in systems of fields which :

(F1) at each point are finite, single valued, and continuous functions,
differentiable as many times as required for the field equations.

(F2) obey the conservation laws of relativistic mechanics (fields and
equations invariant under the Poincaré group),

(F3) include a gauge invariant electromagnetic field with charge/
current density sources (gauge invariant fields and field equations),

(F4) are invariant under the CPT transformation,
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(F5) include, in every Lorentz frame, a permaflux field which is a
dynamic 3D pseudovector field whose field lines are :

(P1) pairwise disjoint,

(P2) closed or endless,

(P3) conserved absolutely,

(P4) embedded in, and moving point by point with, the charge/
current density (ρ, j) at velocity v = j/ρ, which causes the charge/
current density to segregate into pairwise disjoint droplets, each with
vortex-like integrity and permanence.

This work defines the necessary and sufficient field equations for any
and all systems of fields with properties (F1)− (F5). Those field equa-
tions are an underdetermined set. Auxiliary equations must be imposed
to define well posed problems with unique solutions.

The auxiliary equations must define the non-electromagnetic part of
the total system Stress Energy Momentum (SEM) tensor in terms of the
fields; and they must provide field equations adequate to determine any
non-electromagnetic fields introduced. The non-electromagnetic part of
the SEM tensor must couple to the electromagnetic part only throught
he Lorentz force density, which gives the rate of conversion of electro-
magnetic mass (energy) and momentum into non-electromagnetic mass
(energy) and momentum. The determination of these auxiliary equa-
tions is equivalent to determination of the non-electromagnetic part of
the Lagrangian for the pre-quantized fields in quantum field theory, ex-
cept for the imposition of properties (F1) and (F5).

Property (F1) eliminates point particles and 1D strings, because they
must exist at infinite valued singularities inf the fields. But field prop-
erty (F5) and the permaflux field with properties (P1)− (P4) result in
vortex-like solitons with natural approximations as 1D strings. Solitons
approximated as closed strings have further approximations as point
particles. The point particles or strings approximations may then be
quantized, if their coupled fields are simultaneously quantized as boson
fields. The quantization restores soliton wave properties to the particles,
and restores soliton particle properties to the boson fields.

But quantization does something more. Quantization defines a limi-
ted set of observables which correspond to integrals or averages over a
single soliton, such as soliton total charge, total mass and average (mass
or charge) centroid position. Quantization introduces the fundamental
measurement errors imposed by the uncertainty principle. Quantization



Smooth Vortex-Like de Broglie Particle/Waves 431

imposes indeterminacy, and makes it possible to predict only probabili-
ties for an ensemble of experiments, each of which has the same initial
measured values for observables within uncertainty principle errors.

These vortex-like soliton fields are excellent candidates for direct
quantization and might eliminate the infinite self-energy problem aris-
ing from quantization of their string and point particle approximations.
Of greater interest here, these soliton fields present some hope for uni-
fying de Broglie and Schroedinger’s ideas about the particle/wave, and
further hope for using those ideas to understand the uncertainty and
indeterminacy axioms of the Copenhagen School.

The simplest system of fields and field equations with properties
(F1) − (F5) arise if the only fields are the electromagnetic fields. The
non-electromagnetic SEM tensor is then set equal to zero, indicating the
absence of non-electromagnetic mass (energy), momentum and forces.
The resulting fied equation is that given by Einstein [10] in 1919, and
by Pauli [11] in 1921 as necessary and sufficient for the existence of
a Purely Electromagnetic Particle (PEP) with internal charge/current
density. For more than eighty years, physics dogma has held that no
such PEP solutions can exist. But there is an exception to the as-
sumption that the charge/current density is a time-like vector field, as
assumed in the Poincaré/Ehrenfest PEP non-existence theorems (for a
review, see ref.[11]). Sections (3) through (5) below present a myriad
of solutions to the Einstein/Pauli PEP equation which include vortex-
like solitons with internal charge/current density undergoing superpho-
tonic flow. The component of flow parallel to the embedded permaflux
field lines is always superphotonic; and it is always a pure recirculation
along these closed or endless field lines, so that it does not change the
charge/current density as a function of time. As a result, that compo-
nent of flow does not violate causality and it is not damped by radiating.
The component of flow perpendicular to the embedded permaflux field
lines is always subphotonic (causal) and is responsible for all translation,
rotation, expansion, contraction and deformation of the charge/current
density droplet.

Section (4) gives an exact analytic solution to the Einstein/Pauli PEP
equation for an isolated PEP charge/current density droplet stationary
in a uniform magnetic field. It may be Lorentz transformed to give a PEP
droplet propagating through orthogonal uniform magnetic and electric
fields. As such, it is clearly de Broglie’s “bump in the wave”. The wave is
the self field of the droplet. All mass (energy) and momentum possessed
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by the propagating PEP soliton are in its self fields as
∫ ∫ ∫

(1/2)(E2
self +

B2
self )dV and as

∫ ∫ ∫
(Eself × Bself )dV . Therefore, the PEP droplet

propagates as a wave so long as the Einstein/Pauli PEP equation is
obeyed.

Bound state PEP solitons analogous to Schroedinger’s standing waves
exist, also. Section (5) gives an exact analytic solution to the Ein-
stein/Pauli PEP equation for time independent PEP solitons, symmet-
rically distributed about a point magnetic dipole in a uniform magnetic
field. The infinite mass of the binding or “bottle” potential seems to be
essential to the existence of a localized time independent PEP droplet.
The self field of the droplet is analogous to Schroedinger’s standing wave,
but the charge/current density is localized in a spherical shell droplet
with vortex-like recirculation around the binding point dipole.

Section (10) illustrates the essential topology of the most elementary
PEP charge/current density droplet bound in a point coulomb poten-
tial. It describes how such solutions to the Einstein/Pauli PEP equation
might be generated by computer analysis. The ratio of PEP soliton to-
tal charge : Q =

∫ ∫ ∫
ρdV , to the PEP total angular momentum about

its center of mass : Ω =
∫ ∫ ∫

r × (Eself ×Bself )dV , is a dimensionless
scalar (or topological invariant) of each such axially symmetric, time in-
dependent solution. For the simplest solution, it would be consistent,
but shocking, if Q2/(2Ω) proves to be equal to e2/~ ∼= (137)−1.

The Einstein/Pauli equation is derived in Section (2) as the simplest
possible system of fields with properties (F1)− (F4), ignoring property
(F5). It was in an evaluation of the properties of the vortex-like solutions
to the Einstein/Pauli PEP equation that the concept of a Permaflux
field essential to field property (F5) was discovered. Section (8) derives
the Permaflux Theorem which gives the necessary and sufficient field
equation for a permaflux field. Section (9) gives the Vorton Conservation
Theorem with vortons defined as vortex-like particles or solitons. This
theorem provides the equation and concepts needed to define the PEP
Hierarchy of systems of fields with properties (F1) − (F5). The field
equations for the three lowest levels of that hierarchy are given in Section
(9), with examples of exact analytic solutions at each level. All systems
of fields in this hierarchy possess the qualitative properties given above,
which suggest a possible unification of the de Broglie and Schroedinger
viewpoints.

The charge/current density droplets in solutions to the field equations
at each level in this hierarchy are pairwise disjoint in accordance with
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field property (F5) and properties (P1) and (P4) of the permaflux field.
Assume for a moment that there exist Intra System Observers (ISO) in
such a system. The ISO, their measuring instruments and their probe
particles are all comprised of vortons, the vortex-like solitons. The ISO
can not possibly measure any fields inside the charge/current droplet
of any vorton, because the measured droplet is topologically pairwise
disjoint from the measuring or probe vorton droplet. The ISO can only
measure integrals and averages over the vorton droplet, such as total
charge, total mass, centroid (mass or chage) average position, etc. To
the ISO, each vorton droplet is a point particle which propagates as a
wave. It has only a limited set of measurable “observables”, and there
are fundamental uncertainties in those integrals and averages.

The ISO can not use the deterministic field equations to predict future
values of observables from past measurements, because the initial fields
inside the vorton droplets could not have been measured as required for
time integration. One must integrate the deterministic field equations
for each member of an ensemble of systems. Each member has initial
internal fields consistent with the initially measured integrals and aver-
ages, and their fundamental uncertainties. If the vorton solitons obey
the de Broglie relationship, one might expect those ensemble statistics,
in accordance with the analyses of Barut [3], to agree with experiment.
A single broadened wave, typical of the ensemble, may, after propaga-
tion through the experiment, give Hamilton Jacobi vorton trajectories
in agreement with the soliton ensemble. If it does, then quantum field
theory might follow as a Bohr correspondence principle limit, by approx-
imating the ensemble of solitons with a single typical wave. Since there
are an infinity of levels in the PEP hierarchy, each with different field
equations, not every level can give the desired result. However, because
of the fundamental nature of field properties (F1)− (F4), and the nat-
ural approximations as point particles and strings arising from property
(F5), it seems likely that at least one level in the hierarchy, if it con-
tains solutions corresponding to an ISO, will, from the ISO viewpoint, be
in agreement with the Copenhagen school postulate and quantum field
theory. The qualitative similarity between ISO measurement limitations
and the Copenhagen school axioms, further suggests that these theo-
ries with hidden (ISO unmeasurable) subspaces may be an exception to
Bell’s hidden variable theorem.

2. PEP as the Base of the Hierarchy

There exists a hierarchy of different field equations each describing a
system of fields with field properties (F1)−(F5). Initially only properties



434 T. Waite

(F1)− (F4) are considered. Property (F5) is considered in Sections (8)-
(11).

Property (F2) requires the existence of a symmetric, second rank 4D
tensor : Sjk = Skj , with : S44 ≥ 0, whose divergence vanishes :

Sjk,j = 0 (1)

Then Sjk may be defined as the total system SEM tensor. Generally,
Sjk may be a function of any or all other fields in the system. Here
indices take on values (1, 2, 3, 4), the metric signature is (−−−+), terms
are summed on repeated indices, and indices after a comma indicate
covariant derivatives.

One may then define an angular momentum density tensor:

M ijk = Sijxk − Sikxj

which is divergenceless by its definition. Mass (energy) and momentum
are conserved by virtue of these definitions.

All of electromagnetic theory, as required by property (F3), fol-
lows from the existence of a 4D vector potential Aj , and a series of
gauge invariant definitions. The electromagnetic field is defined as:
Fjk ≡ Akj − Aj,k. The charge current density is: Jk ≡ F jk,j . The elec-

tromagnetic SEM tensor density is: T jk ≡ F jmFmk− (1/4)(FmnFnm)δjk.

The non-electromagnetic SEM tensor density is: W j
k ≡ Sjk − T

j
k . Free

space is defined as a region where Jj = 0.

By virtue of these definitions, Maxwell’s first set of equations:
εjklmFkl,m = 0 are obeyed everywhere, and Maxwell’s free space equa-

tion: F jk,k = 0 is obeyed in free space where: Jj = 0. Charge is conserved

Jj,j = 0 by virtue of the definition of Jj . None of these definitions im-
poses any constraint on, or equation to determine, the electromagnetic
potential Aj and its sources Jj .

By virtue of the conservation law in Eq.(1) and the definitions of Tjk
and Fjk, the non-electromagnetic fields couple to the electromagnetic
fields only where Jj 6= 0, and only through the Lorentz force density:

W j
k,j = Sjk,j − T

j
k,j = JjFjk

The rate of conversion of electromagnetic mass (energy) and mo-
mentum into non-electromagnetic mass (energy) and momentum is:
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W j
k,j = JjFjk. The field W j

k , like Sjk, may be a function of any and

all fields in the system, so long as: W j
k,j = JjFjk.

The above abstract analysis has required only the existence of Sjk

and Aj and fields defined in terms of them, and only the equations
Sjk = Skj and Sjk,j = 0. The fields and equations satisfy all of properties
(F1)− (F4).

The simplest theoretical model based on the fields Sjk and Aj , and

on the field equations [Sjk = Skj ] and [Sjk,j = 0], is defined by using
the simplest possible function for the non-electromagnetic SEM tensor
[W j

k ]. That simplest function is [W j
k = 0]. This simplest system has no

non-electromagnetic masses (energy), momentum or forces. The single
field equation is the conservation law :

Sjk,j = T jk,j = −JjFjk = (Aj,m,m −Amj,m )(Aj,k −Ak,j) = 0 (2)

It is a four component equation, only three of which are independent,
and it determines the four components of Aj to within the gradient of
an unknown scalar gauge field.

Eq.(2) is satisfied identically by solutions to Maxwell’s free space
equations in “free space” where [Jk = 0]. The solutions of interest here
are those with regions in which [Jk 6= 0].

Eq.(2) is the equation given by Einstein [10] and by Pauli [11] as
necessary and sufficient for existence of a Purely Electromagnetic Par-
ticle (PEP) with internal charge/current density. Pauli [11], in review-
ing the history of the relativistic electron, considered some properties
of a localized charge/current density [jρ]. These included total charge:
[Q =

∫ ∫ ∫
ρdV ] and average velocity: [V = Q−1

∫ ∫ ∫
jdV ] as well as

total mass (energy) and momentum:

M =

∫ ∫ ∫
(1/2)(B2

self + E2
self )dV

P =

∫ ∫ ∫
(Eself ×Bself )dV

(3)

where Eself and Bself are the self fields generated by [j, ρ]. Pauli then
imposed external fields [Eext,Bext] and he showed, without regard to
stability and spreading of the distribution [j, ρ], that:

Ṗ = Q[V ×Bext + Eext]
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if and only if:

j×B + ρE = j× (Bself + Bext) + ρ(Eself + Eext) = 0 (4)

This is the Pauli/Einstein PEP Eq.(2), omitting the dependent fourth
component [j · (Eself + Eext) = 0]. In this system, the electromagnetic
mass (energy) and momentum in the self fields of the charge/current
density provide the mechanical mass (energy) and momentum ordinarily
identified as “non-electromagnetic”.

Within sentences of presenting the PEP Eq.(2), Einstein and Pauli
each concurred in the earlier conclusions of Poincaré and Ehrenfest (for
a review see ref.[11]) that a PEP with non-zero charge/current den-
sity cannot exist. That conclusion was based on the assumption that
[det|Fjk| 6= 0], or that one need consider only the electric field term in
the PEP Eq.(2) or (4). The term [j×B] was ignored on the assumption
that radiation damping prohibits a steady recirculating current j; or the
assumption that the current is time-like [j2 < ρ2] so that there exists a
Lorentz frame appropriate to each point in which [j = 0, ρ 6= 0] in Eq.(4)
at that point. In spite of the plausibility of these negative assumptions,
Sections (3) - (5) present a myriad of exact analytic solutions to the PEP
Eq.(2) with regions in which det|Fjk| = 0 and [ρ2 ≤ j2 6= 0] without vio-
lations of causality and without radiation damping of the charge/current
density. Each solution is a generalized soliton with each soliton centered
on a compact 3D subspace filled with a vortex-like recirculating charge
current density.

The PEP fields, outside the vortex-like compact 3D subspace, are
electromagnetic fields obeying Maxwell’s linear free space equations.
Quite generally, those external fields are well approximated if the com-
pact 3D subspace is replaced by fields with infinite valued singularities on
1D strings or on singular points within the subspace. This eliminates the
regions where the field equations are non-linear. These strings or point
particles may then be assumed to inherit the properties of the vortex-
like compact subspace and of the self fields generated by the sources in
it. This correspondence principle limiting approximation replaces the
density distributions in the compact subspaces where [Jk 6= 0], by inte-
grated and average soliton properties, such as Q, M and P in Eqs.(3),
which are then identified as properties of the point particles or strings.
But it introduces infinite self energy due to the coupling of the singular
point particles or strings as sources to the fields at the infinite valued
singularities.
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The existence of the steady state vortex-like solutions illustrated in
Sections (3)-(5) below suggests that the PEP Eq.(2) supports the exis-
tence of a conserved flux field and vortex-like solitons in it, analogous to
perfectly conserved fluid vorticity. In Sections (8) and (9), this is proven
to be the case, with general theorems which support the generation of a
hierarchy of fields and field equations with the same remarkable proper-
ties. That hierarchy of systems is more completely described in Section
(11) with examples from other levels.

3. Cylindrical PEP Solitons

The simplest illustration of solutions with vortex-like character is
in cylindrical coordinates [R,Φ, Z, t]. Consider those solutions which,
in one singular Lorentz frame are independent of Φ, Z and t, being
functions of R only, with charge/current density zero outside of some
infinitely long cylinder of finite radius R∗. The charge/current density
must then be a vortex-like flow inside this cylinder, around and along
the axis of the cylinder.

For R ≤ R∗, with jR = BR = EΦ = Ez = 0 the single constraining
equation is JΦBz − jzBΦ + ρER = 0. This is easily converted to the
linear equation:

d

dR
(B2

z ) +R−2 d

dR
(R2B2

Φ −R2E2
R) = 0 (5)

for the three new variables (B2
z ), (R2B2

Φ) and (R2E2
R). Maxwell’s equa-

tions ∇ ·B = 0, and ∇× E = 0, and the other components of the PEP
Eq.(4), are satisfied identically. If one imposes Bz = 0 at R = R∗, then
the only fields present are the self fields generated by the charge/current
density inside the cylinder of radius R∗. The fields for R ≥ R∗ are: j = 0,
ρ = 0, BR = Bz = EΦ = Ez = 0 with ER = aR−1 and BΦ = bR−1,
where a and b are selected to match the internal fields at R = R∗. The
field outside of R∗ is exactly that of a charged 1D string of supercur-
rent along the Z axis at R = 0, irrespective of the actual charge/current
distribution for R ≤ R∗. The 1D string approximation for these highly
symmetric solitons is completely general.

This highly symmetric system is under-determined, and rather arbi-
trary solutions for R ≤ R∗ are possible. Except for simple null currents
(j2 = ρ2), they are chiral and vortex-like. This motivates one to inquire
as to whether the conservation laws which give particle-like integrity to
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solitons in fluid vorticity fields may have an analog in this system. That
proves to be the case where [Jk 6= 0] as proven in Sections (8) and (9)
below.

One simple solution to Eq.(5) is useful in studying properties of
PEP fields. For R ≤ R∗ where R∗ is at the first zero of J0(αR), the
charge/current density is:

jR = 0

jΦ = χbJ1(αR)

jz = b(1− v2)−0.5J0(αR)

ρ = bv(1− v2)−0.5J0(αR)

(6)

where Jn(αR) is the cylindrical Bessel function of order n and χ = ±1 is
the chirality of the helical fields. This charge/current distribution, with
its self generated fields, is an exact solution to the PEP Eq.(2) for all
constant values of the three parameters b, R∗(α) and v. The parameter
v corresponds to Lorentz transforms of the [v = 0] case to velocity v
along the z axis. The limit [v2 → 1], which is inaccessible, relates to
the limit [ρ2 → j2] and field chirality (screw sense of helicity) switching
from [χ = ±1] to [χ = 0], which is impossible.

4. Toroidal PEP Solitons

The above PEP soliton analogs to linear vortices are infinite in one
dimension. One may generate exact analytic solutions to the PEP Eq.(2)
which are analogous to ring-like vortices and their localized generaliza-
tions.

Consider only those solutions to the PEP Eq.(4) which, in one sin-
gular Lorentz frame, are time independent and have E = 0 everywhere.
Then [B × ∇ × B = 0], which is equivalent to [∇ × B = fB] with
[B · ∇f = 0]. This equation arises in other types of systems [12] and a
complete set of exact analytic solutions for f constant have been given
in spherical coordinates [13,14].

The solutions vanishing at infinity with constant f are re-derived here
in a different form to emphasize the relationship of that set of solutions
to the symmetry group of [B×∇×B = 0]. With f constant, one has:

∇×B = χκB (7)



Smooth Vortex-Like de Broglie Particle/Waves 439

where χ = ±1 is chirality representing the parity group, and 0 < κ <∞
is the soliton wave number which represents the length scale invariance.
To find solutions representing the 3D rotation group, take the curl of
Eq.(7) and substitute from Eq.(7) into the result, giving

∇×∇×B = κ2B (8)

This is necessary but not sufficient for Eq.(7). It’s familiar solutions are
the spatial parts of the vector multipole fields. They are eigenfunctions
of parity which occur in pairs of opposite parity. The curl of one gives
(±iκ) times the other member of the pair, so they do not satisfy Eq.(7).
But the solutions to Eq.(7) are their chiral sum or difference:

Bχ
nm = Bnm(κr, θ, φ)− iχEnm(κr, θ, φ) (9)

where the magnetic multipole fields are given (cf. Jackson [16]) by:

Bnm = iκ−1∇× Enm

Enm = jn(κr)LYnm(θ, φ)

Here, jn(κr) is the spherical (half order) Bessel function of order n; and
Ynm(θ, φ) is the spherical harmonic of degree n and order m represent-
ing the 3D rotation group. The operator L is [L = (−ir × ∇)]. The
parameters [χ, n,m, κ] in Bχnm(κr, θ, φ) may be used as a representation
of the symmetry group of Eq.(7).

All solutions to the linear Eq.(7) are exact solutions to the non-linear
PEP Eq.(2). Any linear combination of the solutions to Eq.(7) with the
same values for κ and χ remain exact solutions to Eq.(7) and, therefore,
to the PEP Eq.(2). Any Lorentz transform of any of these solutions
becomes time dependent, the field E is non-zero and non-uniform, and
the charge density is non-zero and non-uniform, but it remains an exact
solution to the Lorentz invariant PEP Eq.(2).

The simplest solution of the above type, for the case n = 1, m = 1
in Eq.(9) is:

Br = 2bB∗{(κr)−1j1(κr)} cos θ

Bθ = bB∗{(κr)−1j1(κr)− j0(κr)} sin θ

Bφ = bχB∗{j1(κr)} sin θ

(10)
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with E = 0, j = χκB and ρ = 0. The factor b emphasizes the scale
invariance of the fields and may be adjusted to fit boundary conditions
for isolated solitons.

The magnetic field line components in a meridional plane are illus-
trated in Figure (1). They are the familiar standing wave dipole radia-
tion field lines, but here, the magnetic fied is time independent and has
an azimuthal (φ) component, also. The solid circles in Figure (1) have
radii Rn for which j1(κRn) = 0. When Figure (1) is rotated around its
polar axis, these circles form spheres which divide space into a central
3D sphere and concentric 3D spherical shells, each of which is a vorton
subspace. The radial component of B and j vanish on the 2D sphere
surfaces at r = Rn. Each closed or endless magnetic field line lies only
in one vorton subspace and there is no current flow across the boundaries
of a vorton subspace.

Figure 1. The meridional plane components of the magnetic field in the
meridional plane, for the array of PEP solitons given by Eq.(10).
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When Figure (1) is rotated around its polar axis, each set of nested
ellipse-like closed curves sweeps out a set of nested 2D toroidal surfaces
within each vorton subspace.

Figure 2. Schematic of magnetic field lines foliating the PEP in the central
sphere of the array in Fig.(1) and Eq.(10), with some of the outer field lines
fiolating 2D tori cut away to expose some of those inside in 3D perspective.

Figure (2) is a schematic of some of the magnetic field lines inside
the central 3D sphere. They foliate and define the set of nested 2D
toroidal surfaces in the central sphere. The 2D toroidal surfaces in turn
fill and foliate the 3D sphere. In Fig.(2), portions of the 2D sphere and
2D toroidal surfaces are cut away to expose those inside. The winding
number of field lines on each 2D toroid is constant, since field lines on it
do not intersect. But winding number varies from infinity on the inner-
most nested toroid (degenerate as a 1D circle), to zero on the outermost
(the sphere with its polar diameter as the degenerate toroid hole). Each
magnetic field line within that 3D sphere links with every other within
it. This is typical of a soliton chiral vorton subspace. Each concentric 3D
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spherical shell is a chiral vorton subspace with similar field line topology

and interlinking. A vorton subspace and its chirality are defined more

precisely and more generally in Sections (8) and (9) below.

One may extract the central 3D sphere vorton subspace, or any one

of the 3D spherical shell vorton subspaces from the array, and generate

an exact solution to the PEP Eq.(2) for an isolated soliton centered on

the single vorton subspace. One simply replaces the remainder of the

array by a solution to Maxwell’s free space equations which matches

the fields at the boundaries of the isolated vorton subspace retained.

That free space field, in each case, is the self field of the sources in the

retained vorton subspace, plus an externally applied “electromagnetic

bottle” field. The “bottle” field, in the interior of the retained vorton

subspace, replaces the external self fields of all the other vorton subspaces

removed from the original array. The “bottle” field has sources at infinity

or on a singular point at the origin.

The external free space field required to match the central 3D sphere

vorton subspace of Fig.(1), for r ≥ R∗ ∼= 4, 49/κ is:

Br = B∗[1− (R∗/r)3] cos θ

Bθ = B∗[1 +
1

2
(R∗/r)3] sin θ

(11)

with Bφ = 0, E = 0, j = 0, ρ = 0. The solution given in Eq.(10) above

for the array now applies only for r ≤ R∗ with b ∼= 6.9 to match Eq.(11)

at R = R∗, the first zero of j1(κr). The meridional plane components of

some of the magnetic fields lines are illustrated schematically in Fig.(3).

The externally applied “electromagnetic bottle” field is a uniform

magnetic field of magnitude B∗ parallel to the soliton polar axis. The

external self field of the sources inside the vorton subspace is identically

that of a magnetic point dipole at the origin. The self field inside the

vorton subspace generated by the retained vorton subspace sources is the

field given in Eq.(10) for [r ≤ R0], minus the applied uniform external

field. Any Lorentz transform of this solution is an isolated soliton with

non-uniform charge density propagating in orthogonal, uniform magnetic

and electric fields.
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Figure 3. Schematic of meridional plane components of the magnetic field in
the meridional plane of the central sphere PEP of Fig.(2) and Eq.(10), after
that PEP has been removed from the array and placed in a uniform external
magnetic field.

The total soliton consists of: (1) the vorton subspace containing the
sources; and (2) the self fields which fill the vorton subspace and ex-
tend outward falling to zero only at infinity. The soliton mass given by
Eq.(3), and momentum given by Eq.(3) exist entirely in this wave-like
self field which determines soliton propagation. However, the Permaflux
Theorem proven in Section (8) below, when applied to the PEP Eq.(2),
assures that these PEP solitons with vorton subspaces have a particle-
like topological integrity and permanence in random interactions of any
magnitude, so long as the PEP Eq.(2) is obeyed. A soliton chiral vor-
ton remains particle-like even for solutions unstable in the conventional
sense, and even if they become chaotic. This is proved in Sections (8)
and (9) below.

Because this isolated stationary soliton has an external self field equal
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to that of a point magnetic dipole, this soliton has a natural approxi-
mation as a point particle with magnetic point dipole moment (or as a
circular closed string of supercurrent). That approximation linearizes the
field theory, but adds the mechanics of relativistic point particles coupled
to the field. Both the point particle or closed string approximations are
entitled to inherit from the soliton its: (1) particle-like integrity and per-
manence; (2) its chirality; (3) its rest mass; and (4) magnetic moment.
But the infinite energy in the field of the point particle approximation
must be ignored [or re-normalized] in both the classical and quantized
systems.

5. PEP Bound States

Consider a massive point particle with a point magnetic dipole mo-
ment µ∗ in a uniform magnetic field B∗ parallel to its axis. The above
solution in Eq.(10) makes it possible to define discrete bound states for
purely electromagnetic solitons bound to that massive point dipole. Let
xn be the solutions to j1(xn) = 0, with x0 = 0. For (2m + 1) bound
solitons, use the solution of Eq.(10) for the region R2n ≤ r ≤ R2n−2m−1

where Rn = xn/κ. For the region r ≥ R2n use the solution of Eq.(11)
with R∗ = R2n. For the region r ≤ R2n−2m−1 use :

Br = µ∗(R2n−2m−1)−3[1− (R2n−2m−1/r)
3] cos θ

Bθ = µ∗(R2n−2m−1)−3[1 + (1/2)(R2n−2m−1/r)
3] sin θ

(12)

with Bφ = 0, E = 0, j = 0, ρ = 0. One may then adjust b and κ (which
also adjusts R2n and R2n−2m−1) to make the fields continuous at R2n

and R2n−2m−1.

These discrete bound states for a bound soliton (or any odd integer
number of bound solitons) are time independent. They are non-radiating
because they have no time dependent multipole moment. These solu-
tions are not intended to represent anything in the real world. But they
do establish that time independent bound states for purely electromag-
netic solitons are possible, simply by permitting the soliton to form a
steady state, charge/current distribution symmetrically around the bind-
ing source. The PEP Eq.(2) requires that distribution to take a form
in which self field forces plus external binding forces cancel everywhere.
Rather interesting flowfield topology problems result.

It is no longer possible to find a plausible approximate solution for
the soliton as a non-radiating bound point particle. The assumption
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that radiation damping prevents permanent recirculation of a point par-
ticle in the Bohr Rutherford atom is valid. But there may be truth in
Schroedinger’s [2] conjecture, that the wave-particle duality of a soli-
ton permits such permanent recirculation. Schroedinger [2] noted that
mixing degenerate atomic eigenfunctions with complex coefficients de-
scribes a “stationary current distribution” in non-radiating atoms, and
commented, “...we may in a certain sense speak of a return to electro-
static and magnetostatic atomic models...”. If states of opposite par-
ity are mixed, as in Eq.(9) above, the charge/current density is chiral
and vortex-like. If any such steady state intra-atomic charge/current
densities exist, obey Maxwell’s equation, and obey the conservation
laws of relativistic mechanics, then they must, in the absence of non-
electromagnetic forces, obey the PEP equation for a time independent
charged PEP soliton in a point coulomb field as “electromagnetic bot-
tle”. For the time independent case, one may express the self fields in
Eq.(4) as integrals over the steady state charge and current densities to
obtain, in the presence of a point coulomb field:

j×
∫ [

r12 × j(r2)/r3
12

]
dV2 + ρ

{
Qr/r3 +

∫
[r12ρ(r2)/r3

12]dV2

}
= 0 (13)

Here r12 = (r2 − r) and
∫
ρdV = −Q for a neutral system. The fields

are required to vanish as r →∞.

One may define a 3D-vector field v = j/ρ and the normalized scalar
density ρ∗ = ρ/Q. Then one may replace ρ by (Qρ∗) and j by (Qρ∗v)
in Eq.(10), giving an equation for the field v and the normalized den-
sity ρ∗. The equation for this time independent neutral system is now
independent of the scale of Q and is invariant to scale changes in the
coordinates. It is also invariant to rotations on 3D space and to parity
transformations. One desires to find the solutions which vanish at infin-
ity. The topology of the simplest PEP vorton with total charge, total
mass and total spin angular momentum equal to those of an electron is
described in Section (10) below. The simplest steady state bound state
solution to Eq.(13) should be a PEP vorton of that structure centered
about the binding coulomb point charge.

The PEP Eq.(2) for the time independent purely magnetic case (in
that one Lorentz frame), when no external magnetic fields are present,
can be written in the form of Eq.(13) with ρ = 0 in the second term.
That case, described in Sections (4) and (5) above, was also invariant
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to the scale of the fields, to the scale of the coordinates, and to rota-
tions in 3D space and to the parity transformation. Consequently its
solutions were a representation of these groups. Each solution had two
continuous scale parameters for field and length scale invariances [the
field magnitude B∗ and the wave number κ = 4.49/R0 in Eqs.(9) and
(10)]. There were two solutions of opposite chirality corresponding to
each spherical harmonic representing the 3D rotation group. The two
solutions of opposite chirality were permuted by the parity operator, but
were not eigenfunctions of parity in this non-linear theory.

Eq.(13) with the coulomb field is invariant under these same groups,
and is the same equation with one more term and one more dependent
variable. One expects that its solutions will be representations of the
same groups, with two continuous scale parameters [Q and κ], with pairs
of solutions with opposite chirality, and with solutions for each spherical
harmonic. However, Eq.(13) has one important change from the purely
magnetic case. A fourth variable ρ has been introduced without increas-
ing the number of equations. The system may be underdetermined with
a plethora of solutions, absent some additional constraint.

Any solution to Eq.(13), if such exist, will have at least one physically
significant dimensionless topological invariant. It will be Q2{|

∫
r× (E×

B)dV |}−1. It is the ratio of total charge squared to total angular momen-
tum, and, for real world quantized systems, is related to [e2/~]. In less
symmetric solutions, the scalar angular momentum must be computed
from the conserved scalar [Ω2 = ΩjkΩjk] where [Ωjk =

∫ ∫ ∫
M4jkdV ]

and [M ijk = T ijxk − T ikxj ].

6. PEP Wave Equations

The solutions presented above suggest that there may be alternate
forms of the PEP equation which are more readily solved or which more
clearly relate to Schroedinger’s conjecture. Since [E ·B = 0] in regions
where [Jj 6= 0], one may resolve j onto the moving orthogonal triad
[E,B,E×B]. The result is:

j = ∇×B− Ė = χκB + ρE×B/B2

E ·B = 0

χ = ±1

κ = (
√
j2B2 − ρ2E2/B2

(14)
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Here, χ in [χκ = B · j/B2] indicates whether B has a component parallel
or antiparallel to j. Where [j = ∇×B−Ė 6= 0], usually ∇×B 6= 0. Then
[χκ = j ·B/B2 6= 0] implies [B · ∇ ×B 6= 0], so that the magnetic field
has circulation about its vector direction, giving its field lines helicity
with chirality χ.

If one takes the curl of Eq.(14), one obtains:

∇×∇×B + B̈ = κ2B + χ(∇κ)×B + χκĖ

+ χκρE×B/B2 +∇× [ρE×B/B2]
(15)

If one takes the time derivative of Eq.(14), one obtains:

∇×∇×E + Ë = χκ∇×E− χκ̇B− ∂

∂t
(ρE×B/B2) (16)

Time independent solutions (such as the bound states discussed above)
with [B2 � E2] present almost linear wave equations for B and E,
except for the troublesome topological constraints of [E ·B = 0], which,
with Eqs.(14) implies [E · j = 0], also.

The time independent solutions given by the chiral sum of vector
multipole fields in Eq.(9) which satisfy Eq.(7) in one singular Lorentz
frame, satisfy (χκ)−1∇×B = B = ∇×A and Eq.(15) with only the χ2B
term on the right. Therefore, with proper choice of gauge, the potential
Aj , which satisfies Eq.(7) in one singular Lorentz frame, satisfies:

Akj,k = κ2Aj (17)

in every Lorentz frame in the Lorentz gauge [Aj,j = 0]. This is the rela-
tivistic Schroedinger equation for a 4D vector particle [Proca Equation]
with rest mass κ. It is necessary but not sufficient for the PEP solitons
satisfying Eq.(7).

It seems plausible that the PEP self generated self interfering elec-
tromagnetic field, even if unmeasurable in regions where [jj 6= 0], may
be related to a self interfering wave field which is approximated by
Schroedinger’s wave function or a relativistic analog. The more complex
systems of fields above the PEP system in this hierarchy, as described
in Section (11), present other possibilities for a similar interpretation.
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7. The PEP Existence Theorem

Although a variety of exact analytic solutions to the PEP Eq.(2) have
been presented, it would be encouraging if an existence theorem for more
general solutions with conserved solitons could be established.

One may apply the Cauchy Kowalevsky existence theorem to the
PEP Eq.(4), since it can be solved for the time derivatives of the fields
in terms of the fields and their spatial derivatives. In regions where
[Jj = 0], Maxwell’s free space equations satisfy the PEP Eq.(2) so that
[Ė = ∇ × B] and [Ḃ = −∇ × E] with [∇ · B = 0] and [∇ · E = 0] as
initial conditions.

In regions where [Jj 6= 0], [Ḃ = −∇ × E] still applies. However, Ė
must be derived from the PEP equation [j×B + ρE = 0] and [j ·E = 0].
Since [E·B = 0], one may resolve Ė onto the moving triad [E, B, E×B].
Rotating the triple product in [E · (j × B + ρE) = 0] one obtains the
component of Ė parallel to E × B. The component of Ė along E, is
given directly from [j ·E = 0]. Since [E ·B = 0] is independent of time,
[Ė ·B = −Ḃ · E = E · ∇ × E] gives the component of E parallel to B.
Therefore, Ė is given by:

Ė = −
[

E · (∇×B)

E2

]
E +

[
E · (∇×E)

B2

]
B

+

[
E · [B× (∇×B)]− E2(∇×E)

E2B2

]
(E×B)

(18)

The required initial conditions are now ∇ · B = 0 and E · B = 0. One
may prove that Eq.(18) is sufficient for the PEP Eq.(4) by substituting Ė
from Eq.(18) into Eq.(4) and using Maxwell’s equations in the presence
of sources. By the Cauchy Kowalevsky theorem, there will exist a time
integrated solution to the PEP Eq.(2) for initial fields satisfying [∇·B =
0] and [E ·B = 0] at all points where [Ḃ = −∇×E] and Ė (as given by
Eq.[18]) are real analytic functions.

Since [Ė = ∇×B] where [Jj = 0], but Ė is given by Eq.(18) where
[Jj 6= 0], one must identify the vorton subspace boundaries in the initial
fields. Those boundaries must be moved point by point at the velocity
[vN = (j/ρ)N = (E × B)N/B

2] where the subscript N indicates the
component normal to the boundary, while j and ρ are given inside the
vorton subspace where Jj 6= 0. This boundary velocity follows from the
flux conservation theorem proven below.
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8. Flux Conservation

The steady state vortex-like solutions to the PEP equation strongly
suggest an analog with classical vorticity conservation. That proves to
be the case, except that, in the PEP system, flux conservation is perfect,
there being no analog to viscosity, nor to the deviations from conserva-
tion caused by Euler’s equation itself. The PEP conserved flux may be
Lorentz transformed and is conserved in every Lorentz frame. This is es-
tablished by the theorem in 4D differential geometry stated and proved
in Appendix A, which was discovered in the evaluation of the PEP equa-
tion and its solutions. However, the meaning of the flux conservation
equations are physically clearer, and they are more readily compared
to vorticity, when presented as an integration of a formula derived by
Sommerfeld [15].

A permaflux field with the topological properties of a perfectly con-
served vorticity field is defined as a dynamic 3D pseudovector field whose
field lines are : (P1) pairwise disjoint; (P2) closed or endless; (P3) con-
served; and (P4) moving point by point at velocity v with a conserved
entity σ which obeys [σ̇ +∇ · (σv) = 0].

A field line representation of an N -dimensional vector field is defined
as a variable density foliation of N -dimensional space with 1-dimensional
curves whose tangent at each point gives the direction of the vector field,
and whose flux density at each point is proportional to the magnitude
of the vector field.

Property (P1) of a permaflux field G follows because G is well be-
haved. It cannot point in two directions from a single point when G 6= 0,
as would be required for two field lines of G to intersect, even for a mo-
ment. One permaflux field line cannot move so as to cross another,
as would be required to link or unlink. Property (P2) requires that
∇ ·G = 0.

Sommerfeld [15], in his textbook “The Dynamics of Deformable
Bodies”, derives a geometric/kinematic formula which he attributes to
Helmholtz, then uses it to derive necessary and sufficient equations for
a permaflux field. Consider two time dependent 3D vector fields, G and
v. In a field line representation of G, the flux of G (total number of G
field lines) through an arbitrary 2D surface increment Σ, bounded by a
closed 1D curve C, is given by:

N =

∫ ∫
[G]ndΣ (19)
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where the subscript n indicates the vector component normal to Σ at
each point. If the 2D surface increment Σ moves point by point at
velocity v, and maintains its continuity, Helmholtz’s formula (derived by
Sommerfeld [15]) gives the time rate of change of N due to motion and
deformation of Σ, as well as due to space and time variations in G. That
rate is:

δN/δt =

∫ ∫
[Ġ−∇× (v ×G) + v∇ ·G]ndΣ (20)

The continuity of Σ as it moves point by point at velocity v is assured
by associating v with the flowfield of a conserved entity σ which obeys:

σ̇ +∇ · (σv) = 0 , σv 6= 0 (21)

Eqs.(19)-(21) neither require nor imply any functional relationship be-
tween the fields G and v.

Sommerfeld [15] considered only G fields with closed or endless field
lines so that ∇ ·G = 0. He noted that (δN/δt = 0) everywhere for all
arbitrary 2D surface increments Σ, moving point by point at velocity v,
if and only if, each and every field line of G is conserved through time,
and moves point by point at the velocity v of earch arbitrary Σ which
it penetrates. Therefore, a permaflux field G has properties (P2), (P3)
and (P4), if and only if,

∇ ·G = 0 (22)

Ġ−∇× (v ×G) = 0 (23)

The field G is a permaflux field conserved and “dragged” by the flow field
(σv, σ), if and and only if the functional relationships of Eqs.(21)-(23)
are obeyed and G 6= 0, σv 6= 0.

The symmetry group of Eqs.(21)-(23) includes a Lorentz group. De-
fine the field:

F ≡ −v ×G (24)

and substitute into Eq.(23). Then Eqs.(22) and (23), analogous to
Maxwell’s equations, are the necessary and sufficient conditions for the
existence of fields Q and q for which:

∇×Q = G (25)

−Q̇−∇q = F = −v ×G (26)
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Taking the scalar product of Eq.(26) with (v·), one obtains:

v · (−Q̇−∇q) = v · F = 0 (27)

If one multiplies Eqs.(26) and (27) by σ, together they take the mani-
festly Lorentz invariant form:

P jGjk = 0 , Gjk ≡ (Qj,k −Qk,j) (28)

where P j ⇒ (σv, σ) and Qj ⇒ (Q, q) in each Lorentz frame. Here indices
take the values (1, 2, 3, 4); the metric signature is (−−−+); expressions
are summed on repeated indices; and indices after a comma indicate
covariant derivatives. Then Eq.(21) gives:

P j,j = 0 (29)

One may derive Eqs.(21), (22) and (23) from Eqs.(28) and (29). How-
ever, one must assure that the Σ surfaces, used to relate Eqs.(21), (22)
and (23) to flux conservation, remain continuous as they move, and that
they move forward in time in every Lorentz frame. With Eqs.(28) and
(29), it is sufficient to require:

P j 6= 0 , Gjk 6= 0 , GjkGjk ≥ 0 (30)

in the region of interest, since zero eigenvalue eigenvectors of a 4D an-
tisymmetric 2D tensor always occur in pairs. Therefore, Eqs.(28) and
(30) assure that one zero eigenvalue eigenvector of Gjk is time-like. That
is, given Eq.(28), with Pj 6= 0, it follows that: det|Gjk| = 0, and that
Gjk and its dual are simple bivectors:

Gjk = KjLk − LjKk = (1/2)εjklm(SlTm − T lSm) (31)

The vectors Kj , Lj ,Sj and Tj may be chosen to be orthogonal, with T j

time-like or null: T jTj ≥ 0, since: GjkG
jk ≥ 0. Obviously, SjGjk = 0

and T jGjk = 0 so that P j lies in the plane of Sj and T j . The vector
orthogonal to P j in that plane is: Rj = εjklmJkGlm. Every vector of
the form U j = αSj + βT j satisfies U jGjk = 0. If one treats U j,j = 0 as

a partial differential equation for α and β under the constraint that U j

be time-like or null, then non-unique solutions for α and β invariably
exist such that [U j,j = 0]; [U jUj ≥ 0] and [U jGjk = 0]. If P j in Eqs.(28)
and (29) is space-like, one may replace it by Uj which is time-like or
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null. This assures that Sommerfeld’s Σ surfaces remain continuous and
move forward in time in every Lorentz frame if GjkGjk ≥ 0 of Eq.(30)
is satisfied.

In any Lorentz frame with the identifications U j → (σu, σ) and
Gjk ⇒ (F,G), one has

σu×G + σF = 0 σu · F = 0

from which it follows that:

u = (u ·G/G2)G + F×G/G2

The velocity field u gives the point by point velocity of the field lines
of G. Since velocity of a closed or endless field line of G everywhere
parallel to itself does not displace the field line, the actual displacement
velocity of the field lines of G is (F ×G/G2). This component of u is
independent of the choice of α and β in U j = αSj + βT j , so that every
4D vector in the plane of Sj and T j leads to the same displacement
velocity (F×G/G2) for the field lines of G. But GjkGjk ≥ 0 in Eq.(30)
assures that G2 ≥ F 2 in every Lorentz frame, so that |F×G/G2| ≥ 1 in
every Lorentz frame. Disturbances can not propagate through the field
G with velocity greater than one, the Lorentz limiting velocity. Since this
is true in every Lorentz frame, disturbances can not propagate through
the fields F or Gjk faster than the Lorentz limit. It follows that the
condition GjkGjk ≥ 0 in Eq.(30) is the causality condition, applicable
even if P j in Eq.(28) is space-like.

The above analysis has proven the theorem required to establish the
field equations for property (F5) for the desired hierarchy of fields. It
is: The Permaflux Theorem : GIVEN the existence of the 4D vector
fields Pj and Qj with the defined field Gjk ≡ Qkj −Qj,k which in some
region satisfy:

P jGjk = P j(Qk,j −Qj,k) = 0 (32)

P j,j = 0 (33)

P j 6= 0 , Gjk 6= 0 , GjkGjk ≥ 0 (34)

THEN in that region, with the definitions P j ⇒ (σv, σ); Qj ⇒ (Q, q);
Gjk ⇒ (F,G), G ≡ ∇×Q and F ≡ −Q̇−∇q, in every Lorentz frame,
the 3D pseudovector field G is a permaflux field whose field lines are:
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(P1) pairwise disjoint, (P2) closed or endless, (P3) conserved, and (P4)
moving point by point with a conserved entity σ at velocity v satisfying:

v = αG + F×G/G2 (35)

|F×G/G2| ≤ 1 (36)

σ̇ +∇ · (σv) = 0 (37)

This theorem is proved again in Appendix A by 4D differential geome-
try. That proof emphasizes the 4D geometry and establishes a corollary
which assures that there exists a one-to-one correspondence between per-
maflux field lines before and after Lorentz transformation and/or prop-
agation through 4D space time.

Equations (32), (33) and (34) which are sufficient for the existence
of a permaflux field are an under-determined set. An auxiliary equation
is required to define well posed problems. Sommerfeld overlooked the
Lorentz invariance, and he used only Euler’s equation as the auxiliary
equation with his Eqs.(22) and (23) in order to determine conditions
under which perfect vorticity conservation occurs.

The above details regarding the 4D vector and tensor fields are im-
portant in applying the above results to the PEP system because the 4D
current vector Jk is invariably space-like, or null, or zero in the PEP sys-
tem. The auxiliary equation which must be imposed with the permaflux
field Eqs.(32) and (33) in order to define the PEP system is:

P j = Qj,m,m −Qm,j,m (38)

which causes Eq.(32) to take the form

(Qj,m,m −Qm,j,m )(Qj,k −Qk,j) = 0

This is the PEP Eq.(2) with Qj = Aj . Then by the auxiliary Eq.(38),
P j = Jj . That is, the PEP system is a permaflux field given by Eqs.
(32) and (33) with the auxiliary Eq.(38). In each Lorentz frame the other
permaflux fields corresponding to electromagnetic entities areGjk = Fjk,
F = E, G = B, σv = j and σ = ρ.

All of the above results for permaflux fields apply to the PEP system
in regions where Eq.(34) is satisfied corresponding to [Jj 6= 0], [Fjk 6= 0]
and [F jkFjk ≥ 0] or [B2 ≥ E2]. In such regions, Maxwell’s equations
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continue to be obeyed, but in addition, the magnetic field lines B embed-
ded in the charge/current density (j, ρ) are permaflux field lines (B = G)
with properties (P1) to (P4) in the permaflux definition above. The field
lines of B embedded in the charge/current density move with the charge
density flow at velocity (v = j/ρ). That velocity is greater than the
velocity of light, but it is of the form:

v = (j/ρ) = (j ·B/B2)B + E×B/B2

with only the component parallel to B superphotonic. The component
of B field line velocity parallel to B is a field line non-motion, and distur-
bances propagate through the B and E fields only at subluminal veloci-
ties because [F jkFjk ≥ 0] where [Jk 6= 0]. The component of charge flow
parallel to B is a pure recirculation along the closed or endless field lines
of B. There can be no net displacement of the charge/current density
at superphotonic velocities because it would carry with it a disturbance
in the B and E fields at superphotonic velocities which is prohibited by
[F jkFjk ≥ 0] where [Jk 6= 0]. The superphotonic component of PEP cur-
rent j parallel to B, is a non-motion which generates the magnetic forces
that cancel the electric self repulsion which Poincaré and Ehrenfest used
to prove their irrelevant PEP non-existence theorems. In regions outside
the charge/current density, where Jj = 0, the condition B2 ≥ E2 may
reverse itself because the theory admits electric charge but no magnetic
monopole density.

9. Vorton Conservation

The existence of a permaflux field with properties (P1) to (P4) in the
permaflux definition causes solitons to be inherent in the solutions to the
field equations. With each permaflux field there is the fluid-like entity σ,
which is conserved by [σ̇+∇·(σv) = 0], but which is not required to obey
fluid mechanics. It would have arbitrary structureless flow, except for
the permaflux field lines embedded in it, which move point by point with
σ at velocity v. As a result, σ seems to be composed of long, thin, flexible
but unbreakable molecules which are the permaflux field lines. There is
even more structure because these long thin molecules are 1D curves
which are a foliation of 3D space. If two field lines (molecules) have
infinitesimal separation at one point, they are almost congruent, and
have infinitesimal separation and near perfect congruence along their
entire closed or endless lengths. Any two such field lines may move,
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stretch and deform with the flow, but they remain nearly congruent in
that flow. The flowfield [σv, σ] takes on structure and even a degree of
local rigidity due to the embedded permaflux field.

Solitons are intimately associated with permaflux field line linking,
and the chirality of permaflux field lines. If two closed or endless field
lines are linked, they define a screw sense or chirality. But if two field
lines are linked in a space foliated by field lines, continuity requires a
continuum of linked field lines. It forces a torsion onto each individ-
ual field line in order that the two linked field lines may be part of one
continuous foliation by linked field lines. The chirality of an individual
permaflux field line is the sign of its average torsion, averaged over its
closed or endless length. If that average has any vlaue other than the
singular value zero, the field line cannot close on itself without wind-
ing around and linking with the field lines infinitesimally close to itself
in the foliation; nor could it continue endlessly (if not closed) without
winding around and linking with its neighbors. If the average torsion
and chirality of permaflux field lines do not have the singular value zero,
those field lines form chiral wreaths of twisted and mutually interlinked
field lines. Since the permaflux field lines are conserved and cannot un-
link [by property (P3) in the permaflux definition], these chiral wreaths
are topologically indestructible, and each forms a vorton or vortex-like
soliton/particle. Each such chiral wreath fills, foliates and defines a 3D
compact subspace called a 3D vorton subspace.

A chiral vorton subspace is defined as a compact 3D subspace
bounded by a closed oriented 2D surface which is foliated by a permaflux
field obeying Eqs.(32), (33) and (34), such that: (B1) the component of
the permaflux field normal to the 2D boundary surface is everywhere
zero on that surface; (B2) the permaflux field lines inside the vorton
subspace do not link with any permaflux field lines outside the vorton
subspace; and (B3) each and every permaflux field line inside the vorton
subspace links directly or in chains with every other permaflux field line
inside the vorton subspace.

The existence of such vorton subspaces is proven by example in the
PEP system. Equation (10) describes an array of such subspaces il-
lustrated in cross section in Fig.(1). A single vorton subspace with a
schematic illustration of some of the linked permaflux field lines is given
in Fig.(2). All of the PEP system solutions such as those given by Eq.(7),
which, in one singular Lorentz frame satisfy [∇×B = χκB] and [E = 0]
with [χκ 6= 0], are segregated into such vorton subspaces. These chiral
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vorton subspaces have topological integrity and permanence as estab-
lished by the following theorem:

Vorton Conservation Theorem: GIVEN that a 3D chiral vorton
subspace exists, THEN (V1) the permaflux field lines within it remain
forever within it; and no permaflux field line from outside may enter;
(V2) the topology of the knotting and linking of the permaflux field lines
inside never changes; (V3) the chirality of the vorton is invariant; (V4) no
increment of the conserved entity σ defined by P j ⇒ (σv, σ) may enter
or leave the vorton subspace; and (V5) the vorton subspace is pairwise
disjoint with respect to all other vorton subspaces. PROOF: Property
(V1) follows from (P3) the conservation of permaflux field lines and that
they cannot unlink to escape because by (P2) they are closed or endless
and by (P1) they are pairwise disjoint. Similarity, no new permaflux
field lines may be created, and no unlinked field line may penetrate from
the outside without producing a discontinuity in the permaflux field.
Property (V2) follows because the field lines are closed or endless and
pairwise disjoint. Property (V3) follows because linking defines chirality
and linking can not change. Property (V4) follows because the entity σ
moves point by point with the permaflux field lines and none of them
may enter or leave the vorton subspace. Property (V5) follows because
the permaflux field lines inside the vorton subspace are pairwise disjoint
with those outside.

In principle, any finite, single valued and continuous fields obeying
the permaflux Eqs.(32), (33) and (34), in regions where chirality (and
average field line torsion) are not zero may be divided into discrete vorton
subspaces. One simply begins by selecting a single permaflux field line
and includes in the same vorton subspace with it all permaflux field lines
linked to it, directly or in chains. If there are any permaflux field lines
left outside, the process is repeated as often as necessary.

The boundary of a 3D vorton subspace is a closed oriented 2D surface
and therefore is, topologically, a sphere with 2p-holes connected by p-
handles. A sphere has p = 0 and the torus has p = 1, etc. Since that
2D surface is foliated by the divergenceless permaflux field lines with
no component normal to the surface, each field line in the surface must
lie in that surface over its entire closed or endless length. The only
closed oriented 2D surface which will support such a divergenceless field
is the torus. The 2D boundary of every soliton 3D vorton subspace
must be a 2D torus or disjoint linked 2D toruses. The torus may have
infinite radius corresponding to an infinitely long 2D cylindrical surface.
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If one admits zero valued topological singularities, contrary to Eq.(34),
boundary surfaces with genus member (p 6= 1) may be possible. It may,
or may not, be possible to decompose those vortons into systems of
degenerate, knotted and linked toroidal vortons.

Because each soliton 3D vorton subspace is conserved topologically, it
persists through time in the Lorentz frame in which it is defined, sweep-
ing out a compact 4D subspace with endless time-like extent on 4D
space-time. The closed or endless permaflux field lines foliating the vor-
ton subspace persists through time, also, and sweep out closed or endless
2D surfaces, each with endless time-like extent, foliating the 4D vorton
subspace. Because the permaflux field lines foliating the 3D vorton sub-
space are pairwise disjoint, the permaflux 2D surfaces foliating the 4D
vorton subspace are pairwise disjoint and do not intersect. Because the
permaflux field lines were interlinked and because the permaflux 2D sur-
faces have endless time-like extent, the permaflux 2D surfaces foliating
the 4D vorton subspace are interlinked.

In any Lorentz frame, the 3D space orthogonal to the time axis at any
time (t) intersects the 4D vorton subspace and the 2D surfaces foliating
it as a 3D vorton subspace foliated by permaflux 1D field lines. If a 3D
vorton subspace exists at any one time in any one Lorentz frame, it exists
in all Lorentz frames at all times so long as Eqs.(32), (33) and (34) are
obeyed. Because the 2D surfaces on 4D Lorentz space time are closed
or endless in all space-like and time-like directions, and because they are
pairwise disjoint (non-intersecting), the topology of the permaflux 1D
field line knotting and linking is preserved on Lorentz transformation or
on propagation through space-time.

In Appendix A it is proven that the 2D surfaces on 4D Lorentz
space-time which correspond to the permaflux field lines are well defined
Lorentz invariant 2D surfaces. At each point those 2D surfaces are
tangent to P j and [εjkmnPkGmn] where Pj and Gjk = Qj,k − Qk,j are
the fields appearing in the permaflux field Eqs.(32), (33) and (34).

The 4D vorton subspace on 4D space-time suggests the topological
possibility that the entire 4D vorton subspace, and the 2D surfaces foli-
ating it, may make a U -turn with respect to the time axis. This cannot
occur so long as all of Eqs. (32), (33) and (34) are obeyed exactly. If,
however, the time-like zero eigenvector of Gjk goes through zero every-
where on some 3D cross section of the 4D vorton subspace at the U -turn,
the permaflux conservation is not violated, it is simply not applicable
at the U -turn because Eq.(34) is not satisfied. In the PEP system, for
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example, the 4D current Jk is space-like, which may reverse its orien-
tation with respect to the time axis without the singularity of passing
through the light cone. This reversal simply changes the sign of the
time component of [j, ρ] which is the sign of the charge, corresponding
to charge conjugation. On the other hand, the field lines of the time-like
vector [εjkmnJkFmn] serve as the world lines of the individual conserved
field lines of B embedded in and moving with the charge/current density.
This time-like vector can pass from the forward light cone to the past
light cone at the U -turn only by passing through the light cone. In order
to do so, each field line of [εjkmnJkFmn] must pass through a point at
the U -turn where this field has the value zero. This corresponds to time
reversal of the soliton 4D vorton subspace. The PCT theorem of electro-
magnetic theory admits a parity transformation and charge conjugation
with the time reversal, as well. This reverses the chirality of the con-
served flux field, the magnetic field, in regions where Jk 6= 0. Whether
or not the chiral wreaths of conserved flux in two PEP subspaces, such
as that in Fig.(2), can be annihilated or created in pairs, if they have
opposite chiralities and charge densities is not determined here. But it
is not prohibited by permaflux conservation and vorton subspace con-
servation if Eqs.(32), (33) and (34) are not all satisfied exactly at the
U -turn with respect to time.

The pairwise disjoint property of the vorton subspaces, in property
(V5) of the Vorton Conservation Theorem, establishes that point by
point fields inside a vorton subspace cannot be measured under the con-
straint that fields are measured only by probe soliton/particles. Probe
solitons cannot penetrate or overlap the measured vorton subspace. Un-
der that measurement constraint, only soliton properties which are inte-
grated or averaged over the vorton subspace can be measured. Vorton
subspace centroids cannot be measured exactly. Soliton futures can-
not be determined by integrating the field equations, because initial
values of the fields inside the vorton subspace are unknown. This es-
tablishes a qualitative correspondence with the limited set of particle
observables, the uncertainty and the indeterminacy in modern quantum
theories. The use of ensembles and statistics seems necessary in the anal-
ysis of permaflux soliton systems, unless one can establish a quantitative
correspondence principle between such ensemble statistics and the quan-
tum probabilities obtained by quantizing point particle, string or soliton
approximations to the permaflux fields. Establishment of such a quan-
titative correspondence principle is not attempted here. Nor is there



Smooth Vortex-Like de Broglie Particle/Waves 459

any attempt to determine whether these hidden (unmeasurable) vorton
subspace theoreis are an exception to Bell’s hidden variable theorem.

10. Electron-Like PEP Vorton

The existence theorem for PEP solutions given in Section (7) above,
becomes an existence theorem for PEP solitons when combined with
the Vorton Conservation Theorem proved in Section (9) above. If a
vorton subspace is constructed into initial fields satisfying the existence
theorem, then a time integrated solution exists for a soliton with that
topologically indestructible vorton subspace conserved through time.

In order to illustrate the topology of the fields which one must build
into the initial fields to assure the existence of a time integrated soliton
with charge, rest mass, spin angular momentum and magnetic dipole mo-
ment (gyromagnetic ratio) which are initially equal to that of an electron,
an approximate solution is described briefly. From the infinitely long
cylinder of charge/current density given by Eq.(6), cut a length L, bend
it into a loop, and adjust the charge/current density cross section to as-
sure current conservation in the flow. Compute the self fields of this long,
thin, chiral charge/current loop and adjust the parameters b, R∗, v and L
so that [e =

∫
ρdV ]; [m0 =

∫
(1/2)(E2+B2)dV ]; [~/2 = |r×(E×B)dV |],

and so that the gyromagnetic ratio is 2, where e and m0 are the charge
and mass of the electron and ~ is Planck’s constant. This long, thin, chi-
ral charge/current loop and its self field are no longer an exact solution
to the PEP Eq.(4), but the magnetic forces cancel the electric forces with
a residue orders of magnitude smaller than either; and several orders of
magnitude smaller than in the Lorentz/Abraham electron model. Ex-
act solutions with topology similar to this would certainly change with
time without some externally imposed “electromagnetic bottle”. For ex-
ample, the coulomb field, as in Eq.(13) might provide such a “bottle”
field.

This loop with diameter of the order of the Compton wave length
is not adequate as a model of an electron in most circumstances. But
it is a conserved vorton whose conserved magnetic field lines are a per-
maflux field with properties (P1)-(P4). Heuristically, one might conjec-
ture that the conserved magnetic flux moving point by point with the
charge/current density [established in Sections (8) and (9) above] causes
magnetic field lines to act as pucker strings, permitting the charge cur-
rent distribution in which it is embedded to expand, contract and deform
to fit its environment. However, for any intra-system observers who are
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part of the system, such conjectures must remain forever heuristic, be-
cause as proven in Section (9), it is topologically, and therefore experi-
mentally, impossible for intra-system observers to make direct, point by
point measurements of fields in regions where [Jk 6= 0].

11. The PEP Hierarchy

The PEP system was derived as the simplest possible system with
properties (F1)-(F4). Property (F5) was actually discovered in the evalu-
ation of the inherent properties of that simplest system. In that simplest
system, all fields are derived from a single 4D vector field Aj ; the field
equations are polynomials of second degree in Aj and its derivatives; and
the second order derivative of Aj is the highest order derivative in the
field equations.

One could, in a variety of ways, generate a hierarchy of increasingly
more complex systems with properties (F1)-(F5) using the PEP system
as the lowest level in the hierarchy. One quickly arrives at a stage of
complexity which discourages pursuit of the more complex. But some of
the simpler systems are interesting.

Consider only those systems in which all fields may be expressed
as functions of a single vector field V j and its derivatives. Consider
only field equations which are polynomials no higher than second degree
in V j and its derivatives. This permits only pairwise forces between
solitons. Then permit field equations which, at each succeeding level in
the hierarchy, may include derivatives of V j of one higher order, with the
constraint that properties (F1)-(F5) be obeyed in all cases. This requires
that P j and Qj , in Eqs.(32), (33) and (34), each be linear functions of
V j and its derivatives, and that Sjk be a quadratic function of V j and
its derivatives. It further requires that the equation [Sjk,j = 0] and

Eq.(32) must be identical after each are expressed in terms of V j and
its derivatives.

The only case limited to first order derivatives of V j is P j = Qj = V j

with:

Sjk = V jVk − (1/2)V mVmδ
j
k (39)

Then Eq.(33) becomes V j,j = 0 and the conservation law is:

Sjk,j = V j(Vj,k − Vk,j) = 0 (40)
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Eq.(40) is identical in form with Eq.(32). It is well known that Sjk
given by Eq.(39) is the SEM tensor of the relativistic superfluid with
velocity of sound equal to the velocity of light. It is a compressible fluid
[p = σc2 = σ] with compressibility [c−2 = 1]. It is generally believed that
this superfluid has conserved vorticity only when σ in V j ⇒ (σv, σ) is
constant and uniform, and only in the Lorentz frame where σ is uniform.
That is true if vorticity is defined as [∇ × v]. If one defines relativistic
fluid vorticity as [∇× (σv)], then it is a conserved flux in every solution
to Eq.(40) in every Lorentz frame.

In any Lorentz frame, using the conventional fluid notation
V j ⇒ (σv, σ), the three independent components of Eq.(40) take the
form:

(σv)× [∇× (σv)] + σ[−∂(σv)/∂t)−∇σ] = 0

Consider only those solutions which in one singular Lorentz frame are
time independent and have uniform, constant σ so that
σv × [∇ × (σv)] = 0. Obviously, the solutions given in Section (4) for
Eq.(7) are solutions to the relativistic superfluid Eq.(40) with B replaced
by (σv). Figure (1) then represents the parallel vorticity and flow field
lines in an ordered array of ring vortices described by Eq.(10) with B
replaced by (σv). The central sphere in Fig.(2) is a smoke ring vortex in
which the toroidal region of smoke and vorticity has a degenerate central
hole squeezed down onto a diameter of the sphere.

With the rest of the array removed and replaced by a circulation
free flowfield, as in Eq.(11), the central sphere represents that smoke
ring vortex stationary in the flowing bulk fluid as in Fig. (3). It has
spin angular momentum Ω due to the φ component of flow about its
symmetry axis. If the bulk fluid is Lorentz transformed to rest, the smoke
ring vortex propagates through the bulk fluid with linear momentum
P inside the central sphere (ellipse). The spin angular momentum Ω
is chirally oriented with respect to propagation through the bulk fluid
with the same chirality as the vorticity field inside the sphere. The Biot
Savart velocity field outside the sphere generated by the sphere (ellipse)
of vorticity, is a wave propagating with the vortex which moves bulk fluid
out from in front of the sphere, around the sphere, and in behind it. Its
wavelength is approximately twice the spin angular momentum (2Ω)
divided by the linear momentum P , satisfying a de Broglie relationship
with Planck’s constant replaced by twice the spin angular momentum.
But again, this level of the hierarchy is not gauge invariant and any
electromagnetic interpretation is clumsy.
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The field [Gjk = Vj,k − Vk,j ] is a Maxwellian field. In order to inter-
pret it as an electromagnetic field as required for property (F3), one must
interpret Vj as the electromagnetic potential [Vj = Aj ], then define and

interpret [T jk = GjmGmk − (1/4)(GmnGnm)δjk] as the electromagnetic

SEM tensor, which is included in Sjk of Eq. (39) by implication. Then

one must interpret [W j
k = Sjk−T

j
k ] as a non-electromagnetic SEM tensor.

There is no reasonable physical interpretation for (Wjk = Sjk − Tjk) in
this superfluid. It strains the imagination to interpret (Vj,k−Vk,j) in this
system as an electromagnetic field. But it is interesting to compare the
electromagnetic interpretation of (Vj,k − Vk,j) with the hydrodynamic
interpretation. The magnetic field is the conserved relativistic vortic-
ity [B = ∇ × (σv)]. The electric field times the σ density gives that
portion of the virtual force of fluid acceleration not caused by the con-
servative force arising from the pressure gradient with [p = σc2]. That
“non-conservative” force [−∂(σv)/∂t−∇σ] is strongly dependent on the
Lorentz coordinate system. It is equal to [v×∇×(σv)] and, at any point,
it vanishes in coordinate systems in which the fluid flow velocity is zero
[v = 0] at that point. If one interprets [∇× σv] as local circulation, this
force is like a coriolis force, except that it is caused by rotary circulation
in a uniformly moving coordinate system, rather than by a uniform mo-
tion in a rotating coordinate system. But this system does not satisfy
properties (F1)-(F5) for another reason. It is not gauge invariant. This
relativistic superfluid is interesting in its own right, and it establishes
the analog between vortices and vortons in general. But it is not gauge
invariant as required by property (F3).

If one admits derivatives of V j to second order, the only total system
SEM tensor permitted is:

Sjk = a[V jVk − (1/2)V mVmδ
j
k] + b[F jmFmk − (1/4)(FmnFnm)δjk] (41)

with a and b positive constants. Then, with [V j,j = 0], the conservation
law is:

Sjk,j = aV j(Vk,j − V j,k) + b(V j,m,m − V m,j,m )(Vk,j − Vj,k) = 0 (42)

This is the form of the permaflux Eq.(32) if one defines [Qj = Vj ] and
[P j = aV j + b(V j,mm − V m,jm )]. With a = 1 and b = 0 this is the su-
perfluid defined by Eqs.(39) and (40). With a = 0 and b = 1 it is the
PEP system. With b = 1 and arbitrary a, one may consistently interpret
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Vj as the electromagnetic potential [Vj = Aj ]. The non-electromagnetic

SEM tensor W j
k has a physically meaningful interpretation in terms of

a superfluid energy and momentum. In every Lorentz frame, using the
identification V j = Aj ⇒ (A, φ), and conventional electromagnetic no-
tation, Eq.(42) takes the form:

(aA + bj)×B + (aφ+ bρ)E = 0

Considering only those solutions which in one singular Lorentz frame are
time independent with E = 0 everywhere, this takes the form (a∇×A+
b∇×∇×A)×(∇×A) = 0. Obviously the solutions for B = ∇×A given
by Eqs. (7)-(10) satisfy Eq. (42). But the field given by Eq.(11) outside
the central sphere and illustrated by Fig.(3) is not a solution. This
electromagnetic fluid ether with [a 6= 0, b 6= 0] has soliton solutions with
permaflux vorton subspaces, but the electromagnetic field in free space
where [Jk = 0], is severely constrained by Eq.(42). With a 6= 0, Eqs.(41)
and (42) are not gauge invariant as required by property (F3), further
limiting the electromagnetic interpretation and violating property (F3)
of the hierarchy.

If one admits derivatives of V j to third order in the field equations,
the SEM tensor is:

Sjk = a[JjJk− (1/2)(JmJm)δjk]+ b[F jmFmj− (1/4)(FmnFnm)δjk] (43)

The conservation law is:

Sjkj = aJj(Jk,j − Jj,k) + bJjFkj = 0 (44)

This is identical to Eqs.(32) and (33) with [P j = Jj ] and [Qj = aJj +
bAj ]. It has been assumed that Vj is the electromagnetic potential [Vj =
Aj ] and the electromagnetic definitions of Fjk and Jj and Jj have been
used. With a = 0 and b = 1 it is the PEP theory. With b = 1 and a
an arbitrary positive constant, this becomes a theory of electromagnetic
conserved flux solitons in which the vorton subspaces, where [Jk 6= 0],
includes hydrodynamic masses, momenta and forces. The charge current
density is also an inertial superfluid flowfield with velocity of sound equal
to the velocity of light.

In each Lorentz frame, using conventional electromagnetic notation,
so that P j = Jj ⇒ (j, ρ) and Qj = Aj + aJj ⇒ (A + aj, φ + bρ), the
three independent components of Eq.(44) are:

j × (B + a∇× j) + ρ(E− aj̇− a∇ρ) = 0
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Consider only those solutions which, in one singular Lorentz frame, are
time independent with E = 0 everywhere. This equation becomes (∇×
B) × (B × a∇ × ∇ × B) = 0. Obviously the solutions to Eq.(7), are
solutions to Eq.(44) in this singular Lorentz frame. The solutions for
the isolated vorton given in Section (4) and Fig.(3) is a solution, also.

This model has interesting possibilities because a may be positive
or negative, and the constraint S44 ≥ 0 may be relaxed inside the
charge/current density (where physical measurements by intra-system
observers are impossible), so long as the integral of S44 over each vorton
droplet is positive. If a is negative, the hydrodynamic analogue to a
pressure field in Euler’s equation is replaced by the analogue of a grav-
itational potential in Euler’s equation, which is generated by the fluid
itself. However, this conjecture has not been examined for more basic
inconsistencies, and this level of the PEP based hierarchy has received
very little attention.

The characteristic topology of chiral permaflux fields, the existence
of chiral vortons at all levels of the PEP hierarchy, and the analogy with
vortices in the relativistic superfluid are supported by the fact that the
potential fields (A, φ) given by:

Aχ
mn(κr) = Bnm(κr)− iχEnm(κr) (45)

with [φ = 0], are exact analytic solutions to each of Eqs.(40),(42) and
(44) in one singular Lorentz frame. Here, Bnm and Enm are the vector
multipole fields used in Eq.(9) above. Linear combinations of these fields
with the same values for χ and κ are also exact analytic solutions to each
of the above systems. Lorentz transforms of any of these solutions remain
solutions to each of the above systems. These solutions to Eq.(45) satisfy
the permaflux field Eqs.(32),(33) and (34) with a variety of auxiliary
equations, suggesting that the topologies of the linked field lines in the
chiral vorton subspaces inherent in these solutions is fundamental to a
permaflux field.

One could extend the hierarchy above. One could produce branches
in the hierarchy by admitting field equations with polynomials of suc-
ceedingly higher degree in V j and its derivatives. One could add further
complexity by introducing fields other than V j with auxiliary equations
as required to determine the added fields.

Eqs.(32),(33) and (34) for P j and Qj are underdetermined and are
compatible with the conservation law [Sjk,j = 0] when Sjk is almost any
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arbitrary symmetric tensor function of P j , Qj and their derivatives.
One could build a hierarchy by starting with Sjk as polynomials of some
maximum degree in P j , Qj and their derivatives of some maximum order.
One could introduce additional fields P̃ j and Q̃j which independently
satisfy equations of the form of Eqs.(32),(33) and (34), also. Then Sjk

may be a function of P j , Qj , P̃ j and Q̃j and their derivatives with two
types of permaflux vorton subspaces which may be coupled through the
definition of Sjk.

One may include spinor fields in Sjk, also, if one provides auxiliary
equations to determine those fields. There are standard methodes for
converting vectors such as P j or Qi, and tensors such as (Qj,k −Qk,j),
into spinor form and one may define spinor fields which correspond to
permaflux solitons and vorton subspaces.

All of these methods of constructing more complex fields can be car-
ried out so as to generate only systems with properties (F1)-(F5) above.
However, as indicated, one quickly arrives at a level of complexity which
discourages pursuit of the more complex. This is amplified by the fact
that the simplest system is defined by the intractable non-linear Ein-
stein/Pauli PEP equation.

Summary and Discussion

Einstein in 1919 and Pauli in 1921 each gave the PEP Eq.(2) as the
necessary and sufficient condition for the existence of a Purely Elec-
tromagnetic Particle (PEP). That PEP Eq.(2) was derived here as the
simplest in a hierarchy of theoretical models which include only finite
continuous fields which obey the conservation laws of relativistic me-
chanics and include an electromagnetic field with sources. All levels of
the hierarchy share these properties, and have, in each Lorentz frame,
a conserved flux field whose field lines are closed or endless, conserved
and pairwise disjoint. These form solitons centered on vortex-like vor-
ton subspaces with topological integrity and permanence. A myriad of
exact analytic solutions to the PEP Eq.(2) with these properties are pre-
sented. An existence theorem for more general PEP solutions is proven.
The solitons centered on vortex-like vorton subspaces have natural ap-
proximations as point particles or strings. The particles or strings may
inherit the solitons topological permanence and integrity, its conserved
integrals of charge, mass (energy), linear momentum and spin angular
momentum, and its field chirality and higher order electric and mag-
netic multipole moments, all of which are intrinsic properties of these
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vortex-like solitons. The points and strings obey linear mechanics and
are bilinearly coupled to the linear electromagnetic field.

The PEP model was obtained by accepting electromagnetic theory
for macroscopic systems in free space, where slowly varying fields may
be measured accurately with probe particles, then extrapolating it down
to the microscopic, where probe particle measurements are impossible,
while requiring the electromagnetic field to be finite, single valued and
continuous. The extrapolation is made more plausible by recognizing
that all of electromagnetic theory follows from definitions alone, given
the existence of a twice differentiable 4D vector field (Aj the potential)
and the conservation laws of relativistic mechanics. The extrapolation
is really only an extrapolation of a differentiable field Aj and the invari-
ance properties which give the conservation laws. The simplest possible
model satisfying this extrapolation is defined by the PEP Eq.(2), and
has the properties described in the preceding paragraph above. The
charge/current density in the system is then enclosed in the soliton
vortex-like vorton subspaces which are topologically pairwise disjoint.

If one assumes that intra-system observers can measure field values
only by means of probe particle/solitons, the probe soliton cannot over-
lap or penetrate the measured vorton subspace. It is impossible to probe
and measure point by point fields inside the pairwise disjoint vorton
subspaces. Fields cannot be measured in a region where charge/current
density is not zero. Only a limited set of integrated or averaged soliton
properties can be measured. There is uncertainty in centroid positions
and other observables. Soliton futures are indeterminant, since initial
field values inside vorton subspaces can not be measured and used for
time integration of the PEP Eq.(2). The theory itself identifies these in-
ternal PEP fields as unmeasurable, yet the unmeasurable fields remain in
the deterministic field equations which may be used in ensemble analysis.

The PEP deterministic equations but unmeasurable fields have phys-
ical meaning when used to compute the deterministic propagation of
individual hypothetical solitons in an ensemble of single soliton systems.
Each single soliton in the ensemble must be consistent with the initial
limited set of soliton observables and their uncertainties as measured in
a soliton experiment. The mass (energy), and momentum of a PEP soli-
ton/particle which determines soliton propagation resides entirely in the
solitons self interfering electromagnetic wave, generated by the sources
in the vorton subspace. This suggests a compatibility with the heuristic
computations of uncertainties [17-19] and probabilities using self interfer-
ing wave/particles often used in the early years of the quantum theory.
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It also suggests compatibility with the more elaborate analysis of en-
sembles of self interfering wave/particles by Barut [3]. However, each
system must be analyzed in detail to determine whether there is a quan-
titative correspondence principle between ensemble probabilities and the
quantum theory probabilities.

The PEP model is only the simplest in a hierarchy of theoretical
models which share the above properties. Each model at different lev-
els in the hierarchy adopts a different form for the non-electromagnetic
portion [W j

k = Sjk − T
j
k ] of the total system SEM tensor Sjk. The form

of, and the fields included in, W j
k are inaccessible to direct experimental

measurement with the technology available today. The PEP model as-
sumes [W j

k = 0]. Higher levels in the hierarchy assume increasingly more

complex forms for W j
k , under the constraint that all must include a con-

served flux field satisfying Eqs.(32),(33) and (34) which forms vortex-like
soliton/particles with pairwise disjoint vorton subspaces. As a result, all
levels of the hierarchy share the features of the PEP theory described
here. Since W j

k and the fields in it are not directly measurable, one must
choose between levels in the hierarchy on the basis of differences in the
symmetry groups of their field equations, and the statistical behavior of
their solutions.

The point particle versus particle/wave has, over the past few
decades, appeared at the heart of the question, “Does God play dice
with the universe?”, and its more pragmatic re-statements. One might
argue that the PEP hierarchy of wave/particle theories supports the
Copenhagen school because it leads to intra-system observers with a
limited set of particle observables subject to uncertainty and indetermi-
nacy. One might argue that it supports the deterministic viewpoint, and
that ensemble statistics for deterministic systems will ultimately explain
quantum probabilities as a correspondence principle limiting approxima-
tion. Instead, one might hope that it will eliminate some of the argument
by illustrating that the Copenhagen uncertainty and indeterminacy lim-
itations on human knowledge may be valid, but that there may exist
underlying deterministic field equations which explain that uncertainty
and indeterminacy.

Appendix A

The permaflux Conservation Theorem: GIVEN the 4D vector
fields P j and Qj with the defined field [Gjk ≡ Qj,k−Qk,j ] which satisfy:

P jGjk = P j(Qj,k −Qk,j) = 0 (α1)
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P j,j = 0 (α2)

P j 6= 0 , Gjk 6= 0 , GikGjk ≥ 0 (α3)

THEN in each Lorentz frame with the definitions [P j ⇒ (σv, σ)], [Qj ⇒
(Q, Q)],, [Gjk → (G,F)], G ≡ ∇ × Q and F ≡ −Q̇ − ∇q the 3D
pseudovector field Q has field lines which are: (P1) pairwise disjoint;
(P2) closed or endless; (P3) conserved; and (P4) moving with a conserved
entity σ at the point by point velocity v which satisfies [σ̇+∇×(σv) = 0]
and [v = (v·G/G2)G+F×G/G2] in which the component [(v·G)/G2G]
contributes nothing to the displacement of the closed or endless field lines
of G.

PROOF: Properties (P1) and (P2) are proved trivially above. Prop-
erties (P3) and (P4) are proven here by 4D differential geometry. As
proven above, [GikGjk ≥ 0] assures that either P j or [εjkmnPjGmn] is
time-like and for simplicity P j is assumed time-like.

Construct an arbitrary 2D surface increment Σ bounded by a closed
1D curve C in a region where Eqs.(α1), (α2), and (α3) are satisfied. It
is intersected at each point by a field line of P j , so that Σ may be moved
point by point along these field lines in a manner which preserves its
continuity.

The integral [
∫ ∫

Gjkdx
jdxk] over the surface Σ is invariant as it is

moved along the field lines of P j as described. To prove this, let Σ1,
C1 represent the initial positions and Σ2, C2 the final positions. Map
the closed 1D interval 0 ≤ λ ≤ 2π onto the closed curve C1. Assign
to every point on each field line of P j the value of the parameter λ at
the point where that field line intersects C1. Map onto each and every
field line of P j intersecting C1, the closed 1D interval 1 ≤ µ ≤ 2 such
that µ = 1 on C1 and µ = 2 on C2 for every field line. Map intervening
values of µ by moving C uniformly and continuously from C1 to C2 along
the field lines of P j intersecting it, assigning the same value of µ to all
points on C as it moves from C1 to C2. This smoothly parametrizes with
(λ, µ) the open ended 2D cylindrical surface extending from C1 to C2

which is foliated by the field lines of P j intersecting C1. The functions
xj(λ, µ) are precisely defined on that surface. Since µ parametrizes the
field lines of Pj , it follows that: [∂xj/∂µ = h(µ, λ)P j ] where h(µ, λ) is a
smooth function. The integral of [

∫ ∫
Gjkdx

jdxk] over that open ended
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2D cylinder is equal to:∫ ∫
Gjk[

∂xj

∂µ

∂xk

∂λ
− ∂xk

∂µ

∂xj

∂λ
]dµdλ

=

∫ ∫
Gjk[P j

∂xk

∂λ
− P k ∂x

j

∂λ
]h(µ, λ)dµdλ = 0

by virtue of Eq.(α1). Therefore, by applying Stoke’s theorem twice, first
to the opend ended 2D cylinder bounded by C1 and C2, then second to
the endcaps which are Σ1 and Σ2, one obtains:∫

C1

Qjdx
j −

∫
C2

Qjdx
j

=

∫ ∫
Σ1

Gjkdx
jdxk −

∫ ∫
Σ2

Gjkdx
jdxk = 0

(α4)

This proves the first sentence of this paragraph.

In any specific Lorentz frame in which one defines [P j ⇒ (σv, σ)],
[Qj ⇒ (Q, q)] and [G ≡ ∇×Q], select an arbitrary 2D surface increment
Σ bounded by a closed 1D curve C which lies entirely within the 3D
space orthogonal to the time axis at time t and move Σ at velocity v for
a time interval dt. This moves Σ point by point along the field lines of
P j so that Eq.(α4) applies giving:

d

dt
[

∫ ∫
GndΣ] =

dN

dt
= 0

where the subscript n indicates the component normal to Σ at each point
on Σ. This integral gives N the total number of field lines of G through
Σ. Its time derivative may vanish for all such arbitrary Σ moving at
velocity v, if and only if, each field line of G is conserved, as in (P3),
and moves point by point at velocity v, as in (P4).

In each Lorentz frame, with [F ≡ −Q̇−∇q], Eq.(α1) takes the form
[v ×G + F = 0] and [v · F = 0] so that v = v ·G/G2 + F ×G/G2, as
in (P4). The Theorem is proved.

The Permaflux Corollary: GIVEN the conditions of the per-
maflux Theorem, THEN the 2D surfaces everywhere foliated by, and
tangent to, the field lines of P j and [Rj = εjkmnPjGmn] are: (α1) end-
less with respect to every time-like direction; (α2) closed or endless with
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respect to every space-like direction; (α3) pairwise disjoint; and (α4)
in each Lorentz, are at each point parallel to the two 4D vectors with
components [G, 0] and [F×G/G2, 1].

PROOF: By virtue of (P3) and (P4), in each Lorentz frame during
the time interval dt, each moving conserved field line of G sweeps at a 2D
surface increment everywhere parallel to [G, 0] and to [{v ·G)G/G2 +
F×G/G2}dt, dt]. If one divides the latter by dt, and subtracts [v·G/G2]
times the former from it, one obtains [F×G/G2, 1].

If one defines [Rj ⇒ (ρu, ρ)] in each Lorentz frame then, [RjGjk = 0],
follows from the definition of Rj , and takes the form u ×G + F = 0,
u·F = 0. It follows that [u = (u·G/G2)G+F×G/G2] so that ζ−1Rj ⇒
[(u ·G/G2)G+ F×G/G2, 1]. Similarly, σ−1P j ⇒ [(v ·G/G2)G + F×
G/G2, 1]. Therefore,

(ζ−1Rj − σ−1P j)⇒ (u ·G/G2 − v ·G/G2)[G, 0]

and

[(v·G/G2)ζ−1Rj−(u·G/G2)σ−1P j ]⇒ (v·G/G2−u·G/G2)[F×G/G2, 1]

It follows that, at each point in each Lorentz frame the 4D vectors P j and
Rj define the same 2D plane as the 4D vectors [G, 0] and [F×G/G2, 1].
This proves property (α4). Then properties (α1), (α2), and (α3) follow
from (P1),(P2) and (P3) of the theorem. The Corollary is proved.
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