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An Oscillator Naturally Satisfying Lorentzean Properties
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ABSTRACT. In his 1923 paper de Broglie suggested the presence
of a small clock inside the particle, which is run by the self energy
but does not contribute to momentum of the particle. He further
indicated that its energy is similar to that of a heat-containing body
in an internal state of equilibrium. The author examines aspects of
an oscillator which satisfies many of such requirements, and show
how it can generate a wavy trajectory with a superpositioning of a
precession orbit.

RÉSUMÉ. Dans son article de 1923 de Broglie suggérait la présence
d’une petite horloge à l’intérieur de la particule, fonctionnant grâce
à son énergie propre mais ne contribuant pas à son impulsion. Il
indiquait en outre que son énergie est similaire à celle d’un corps
contenant de la chaleur et en équilibre interne. L’auteur étudie un
oscillateur qui satisfait à un grand nombre de ces exigences, et mon-
tre comment il engendre une trajectoire sinueuse se superposant à
une orbite avec précession.

1 Introduction

To make the argument of double solution and guidance wave work-
able as proposed by de Broglie, it is necessary to introduce a generator of
the u-wave with a prescribed wavelength and phase, over which the point
of singularity must ride for the particle position [1]. In his 1923 paper de
Broglie discussed a possibility of the presence of a small internal clock,
which was already at the very origin of wave mechanics, and suggested
that the clock may be driven by the self energy of the particle somewhat



56 M. Mizuki

similar to its internal heat [2]. However, any conventional clock or os-
cillator of known designs consumes energy, and therefore the suggested
internal heat will be eventually dissipated. Once the internal heat is
exhausted, the particle is expected to lose its means for generating the
u-wave and the double solution should collapse.

The author proposes an internal oscillator of a given electrical charge
of the particle under consideration propagating in case of the static par-
ticle along a circular orbit of an extremely small radius at the speed of
light. An evaluation of the self energy of such an oscillator is found to
be zero. In other words, such an oscillator can exist permanently as an
internal structure of each particle. When the particle is in motion, the
elongated corkscrew path of the charge propagation naturally satisfies
Lorentz transformation. This is an extremely favorable finding for the
consideration of modeling certain spin−1/2 particles, viz., charged lep-
tons and quarks, in sub-particle level giving logical support for naturally
defined particle spin and other inherent properties known in quantum
mechanics.

2 An oscillator inside the particle

The photon in vacuum 3-space is the mediator of the electromag-
netic force propagating at the speed of light c. It is plausible to stipulate
that the electrical charge of a given static particle propagates at the same
speed c in the confined space internal to the particle unless some strong
force constraints are imposed by the particle structure. Since observa-
tions of experimental physics confirm that no internal structure is known
to exist in charged leptons and quarks, it is safe to postulate that the
charge must satisfy the stipulated condition. The only possibility the
author can then visualize is that in case of static particle the charge
propagates along a circular orbit internal to the particle shell of some
kind.

Experimental physicists know that the particle charges are some-
how protected and not bare. If the charge propagates along an orbit, as
proposed here, then the closed loop generates a spherical magnetic shell,
very much like that of geomagnetosphere, enclosing the loop inside. The
charge of a static particle will then be unexposed and protected by the
magnetic shell. Physicists also know that at least charged leptons show
point-like structures with no extension, very much like the mathemat-
ically postulated points in pure abstraction, when they collide. Since
particles colliders provide relativistic particle velocities, the propagation



An Oscillator Naturally Satisfying Lorentzean Properties 57

paths of such internal oscillators form far extended corkscrews of nearly
linear shape in the laboratory frame. The magnetic shells then cannot
be observed in the laboratory frame. This will make the particles appear
to consist nothing but of the point charges.

When the particle defined in this way is in a linear motion, the
charge does not stay on the corkscrew path stretched out from the orbits
of the static particle. Instead, the motion of the charge produces a
magnetic field and yields magnetic moments which causes a precession.
Superpositioning of the precession orbit produces a wavy trajectory of
wavelength proportional to de Broglie wave. This explains the validy of
u-wave.

The last question remains as to whether Maxwell equations will hold
at the microscopic dimensions of quarks and charged leptons. The an-
swer is affirmative as explained next. Ashtekar introduced loop metric
and demonstrated that singularities experienced in the standard formu-
lation inside a black hole or in a domain of high energy condensation
could be avoided, and that Einstein’s equations hold down to Planck
scale of 10−33 cm [6,7]. Ashtekar and Rovelli then showed quantum
Maxwell field formulated using loop physics [9]. Their findings support
the validity and applicability of Maxwell equations in the standard for-
mulations as practiced in classical physics down to Planck scale. In the
following development the standard formulation in 3-space is used. The
propagation of an electric charge along a circular orbit forms a current
loop as previously envisioned [10].

3 The current loop model.

Consider a static current loop of radius a and of an electric charge
q propagating at the velocity c. The loop generates a magnetic moment
µ = qcπa with the current i = qc/a at the angular velocity c/a with
the loop area of πa2. Suppose the loop propagates the charge counter-
clockwise on the (x, y)-plane of an Euclidean 3-space with its loop center
located at the origin.

The electric field surrounding the current loop is then given by

E0 =
qR−3

4πε0
(x, y, z) (3.1)

where R2 = x2 +y2 +z2 with the electrical vector pointing radially from
the origin to each surrounding coordinate position (x, y, z). The current
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loop also generates a magnetic shell defined by

H0 =
qaR−5

8ε0c
(3xz, 3yz,−R2 + 3z2)

=
qaR−3

4πε0
(3 cosφ cos θ, 3 sinφ cos θ,−1 + 3 sin θ)

(3.2)

at (x, y, z), cf. p. 14-8 of Feynman’s notes [11], or at (R,φ, θ) using a
polar coordinate expression. Note that the z-component has the (−1)-
term in the polar coordinates identifying the magnetic flux of strength
R−3 at distance R from the origin, pointed perpendicular to the loop.
The magnetic shell consists of multiple layers, each layer with strength
proportional to R−3. As the generic form of the model particle, the flux
component should represent an electromagnetically defined spin. Weis-
skopf describes Schrödinger’s notion of an irregular circular fluctuation
movement (Zitterbewegung) as a possible explanation for the electron
spin [12]. The present model has instead a built-in circular current loop
located inside a magnetic shell. Two spin orientations are defined as
“parallel” and “antiparallel” orientations with respect to an external
magnetic field. The definition of the helicity (right, or left handed screw
along the direction of the particle movement) results empirically from
variations of the precession orbit of the model particle discussed in Sec-
tion 4.

By examining (3.2), it is seen that, if q > 0, the flux is along the
positive z-axis, and individual magnetic field vectors deviate away from
the z-axis outward for positive z, point downwards near and on the
equatorial (x, y)-plane, and inward towards the z-axis for negative z
eventually converging back towards the spin flux direction along the z-
axis, thus forming circulation patterns of the field vectors on each layer
very much like that of geomagnetosphere. If q < 0, the magnetic shell is
inverted.

The total magnetic moment acting on the static current loup must
be computed by

p =

∫
[E0,H0]dr (3.3)

where [a, b] = a× b for the E0 and H0 of (3.1) and (3.2). The individual
magnetic moment vectors g(r) at r = (x, y, z) are given by

g(r) = [E0,H0] =
q2aR−6

16πε2
0c

(−y, x, z) (3.4)
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showing that each g(r) is perpendicular to the radial vector r and parallel
to the (x, y)-plane originating from the endpoint of the r, and all of them
pointing counterclockwise on every plane parallel to the (x, y)-plane.
On each of these planes parallel to the (x, y)-plane, the integration of
the g(r) becomes null due to the circular distribution pattern of the
individual vectors all pointed counterclockwise. Inside the loop for R <
a, only the spin magnetic flux exists, and the total magnetic moment
becomes null, because both E0 and H0-vectors point along the same or
the opposite directions, and do not contribute in total to (3.3). Therefore
the total integration of (3.3) becomes null.

The above finding of the totel magnetic moments of (3.3) being null
is extremely significant. This a conclusion that one hopes to find in the
proposed current loop model in which the charge is propagating at the
speed c, if possible at all, without any dissipation of energy while keeping
the oscillator going. A further consideration is given in Section 7 on this
subject. The current loop protected by the magnetic shell should then
be able to maintain its physical entities as a static particle and keep the
structure permanently without energy loss.

The total energy density s contained in the compact space surround-
ing the current loop is computed using

s =

∫
(E2

0 + H2
0)dr (3.5)

for the electric and magnetic vectors of (3.1) and (3.2). The lower limit
of the integration with respect to the variable R must be set equal to the
current loop radius a at which (3.2) ceases to apply. Calculations yield
an expression in the order of a−3. This is the second most significant
finding, implying that a high energy density, in the order of a−3, is
concentrated and always contained inside the magnetic shell.

4 The current loop in motion.

Consider the above defined static model particle moving freely along
the x-axis at a uniform nonrelativistic velocity v = (v, 0, 0). The moving
charge E0 induces the magnetic field

Hv = c−2[v,E0] (4.1)

for which the generated magnetic moment along the x-axis is given by

px =
2

3
(
q

4πε0
)2 vε0

ac2
. (4.2)
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When the expression of this (4.2) is interpreted in the classical for-
mula of p = mv, the corresponding static mass m of the particle in
motion, as the coefficient of the v in (4.2), becomes inversely propor-
tional to the loop radius. This is consistent with the earlier findings
mentioned on p. 28-3 of Feynmann, loc. cit., and can be interpreted
as the one-dimensional component of the energy density s sensed along
the direction of the particle movement (or along the direction of the
gravitational pull).

The total magnetic moment along the y-axis for the half space of
x > 0 is shown to be

py(x > 0) =
q2π

32ε0ca
(4.3)

For x < 0, py(x < 0) = −py(x > 0) holds. The current loop with v then
experiences a precession due to the rotation of the magnetic sphere with
a differential angular increment

dρ = tan−1[py(x > 0)/px]dt =
3π2c

4v
dt. (4.4)

From the definitions of Planck length Lp = ( h̄Gc3 )1/2 = 1.6 × 10−33 cm

and Planck mass Mp = ( h̄cG )1/2 = 2.2×10−5 g, one obtains LpMp = h̄/c.
Using this result, (6.4) yields

dρ = m(.669× 1038)λdt cm−1 (4.5)

where λ = h/p for the particle static mass m. The precession orbit super-
imposed on top of a linear or a quasi-linear trajectory of a freely moving
model particle therefore shows a wavy motion, whose wavelength must
be proportional to the precession angular rate ρ, which is proportional
to the de Broglie wavelength λ.

5 Wavy motion of the current loop.

To associate the above dρ with the observed wavelength, the angular
velocity θ of the precession orbit must satisfy

θ = 2πv/λ = 2E/h̄

where
E = mv2/2. (5.1)
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(Note the presence of “2” in the last expression in comparison to that
of the group velocity of a wave packet). Let η denote the radius of the
precession orbit. Suppose the particle initially moves from the origin
along the x-axis and the precession orbit lies in the (x, y)-plane. Then
the physical de Broglie wave is defined by

χt = (xt, yt, 0) = (vt+ η sin θt, η cos θt, 0) (5.2)

near the origin for a linear segment of the trajectory. The temporal
travel density of the χt is given by the delta length of the sinusoid

dL(xt, yt) = [(dxt/dt)
2 + (dyt/dt)

2]1/2dt ∼ v(1 +
ηθ

v
)dt (5.3)

ignoring the second term. Note that ηθdt = η sin θdt, and therefore∫ t

0

dL(xt, yt) = vt+ sin θt (5.4)

The vt term represents the distance of the particle travel along the x-
axis, and should be subtracted from this to obtain the temporal density.
Finally, this yields the sinusoidal temporal density fluctuation of the
model particle of unit charge. The above precession orbit was defined in
the (x, y)-plane for the ease of discussion, but need not to. Variations of
the precession orbit, for instance defined in (y, z)-plane, can introduce
the helicity.

In presence of an external magnetic field, an additional field term
must be added to the H0 in (3.2), (3.3), (3.4), and to the Hv of (4.1).
As the result the precession orbit is significantly perturbed, and the ra-
dius η of the precession in (5.2) becomes enlarged and discernible under
microscopic inspection, e.g., seen as electron tracks on cloud chamber
photographs. To produce diffraction or interference patterns, a coherent
particle beam of uniform particle velocity is required. In case of the fa-
mous twin slit experiment, the insertion and on/off switching activation
of an electrode or an electromagnet behind the central wall separating
the two slits should affect the interference pattern due to the electro-
magnetic nature of (4.4) as predicted by Aharonov-Bohm [13].

6 Naturally defined Lorentz transformation.

The angular velocity of a static current loop with radius a is given by
ω0 = c/a. When the model particle moves with velocity v with respect to
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an inertial coordinate system, the angular velocity of the moving current
loop measured in the inertial frame is given by

ωv = (c2 − v2)1/2/a (6.1)

due to the constancy of c along the stretched corkscrew propagation
path. Obviously

ωv = ω0

√
1− β2 (6.2)

where β = v/c holds. Suppose the loop period defines the internal clock
time of the current loop. The time differential of the current loop with
velocity v with respect to an inertial frame is then given by

dtv = dt0
√

1− β2 (6.3)

In correspondence, one gets easily the coordinate relationship

dxt = dx0

√
1− β2

and

xv =
x0 − vt√

1− β2
(6.4)

Using tv = t0
√

1− β2 + xv/c,

tv =
t0 − vx0/c

2√
1− β2

(6.5)

is obtained. As deduced from (4.2), the static mass m0 of the current
loop is proportional to the ω0, and therefore the one moving at speed v
should satisfy

mv = m0/
√

1− β2 (6.6)

Here the Lorentz transformation is naturally defined and derived
from the model stipulation.

7 Null self force and no radiation of the current loop.

The revolving point charge moving along the x-axis at a constant
velocity v shows obviously an electric oscillator defined in the (x, y)-
plane, where x = vt+a sinωt, y = a cosωt, ω = ω0 of (6.2), and therefore
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the point charge has acceleration in both x and y-axes. The self force
function of the electron acting on itself is given by Eq. (28.6) on p. 28-6
of Feynman [11] for a single axis component as

F = α
e2

ac2
ẍ− 2

3

e2

c3
...
x + γ

e2a

c4
....
x + . . . (7.1)

where e = q/4πε0, and α and γ are numerical constants of the order of
unity. By inserting the derivatives in (7.1), one obtains

F

aω2
= −α e2

ac2
sinωt+

2

3

e2ω

c3
cosωt+

γe2aω2

c4
sinωt+ . . . (7.2)

It is surprising to observe that, if

cotωt =
3

2aωc
[αc2 − γa2ω2] (7.3)

is satisfied for all t, the null force F = 0 can be achieved. The right hand
side of (7.3) is not a function of t, and therefore F = 0 is satisfied only
when cotωt = 0. This yields

ω =
c

a

√
α

γ
(7.4)

indicating that the state of null self energy F = 0 is achieved when the ω
takes on the largest possible value ω0 = c/a as postulated in the current
loop model and when the effect of α and γ becomes negligible. Exactly
the same result is obtained for the orthogonal y-axis component.

That no energy is lost in the current loop is an obvious logical
corollary to the charge being carried by the photon, because the photon
should propagate the charge through space without dissipating its energy
by definition.

An equivalent result can be obtained by demonstrating that the
moving point charge at the velocity c along the loop does not radiate.
Jackson [14] pp. 654-657 shows a formula for evaluating the amount of
radiation of a moving charge. Let r(t) = (−a(1− cos | ωt |),−a sin | ωt |
, 0) denote the position of the point charge at t < 0. Let n denote a unit
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vector from the r(t) pointed to the origin with Rn = −r(t), and let β
denote the normalized velocity β = v(t)/c, then

R = 2a sin(| ωt | /2)

n = a((1− cos | ωt |)/R, sin | ωt | /R, 0)

β = (sin | ωt |, cos | ωt |, 0) and β̇ = (ω cos | ωt |,−ω sin | ωt |, 0)
(7.5)

According to Eq. (14.13) and (14.14) on p. 657, the generated fields
are given by

B = [n×E]ret (7.6)

E[r, t]ret = e
[ ζ

γ2η3R2

]
ret

+
e

c

[n× (ζ× β̇)

η3R

]
ret

(7.7)

where ζ = (n − β), η = (1 − β.n), and γ = (1 − (v/c)2)−1/2, and the
subscript “ret” identifies that the quantities are evaluated at retarded
time. Consider the field E at t = ∆t for the ease of computation. The
first “velocity field” term of the E vanishes due to the infinity of the γ
in the denominator for v = c, and the second “acceleration field” term
becomes infinitesimal for ω∆t as verified from

β.n = a/R

n− β ∼ (− | ω∆t | /2, 0, 0)

(n− β)× β̇ ∼ (0, 0, 0)

(7.8)

which hold for a sufficiently small ∆t. Consequently the B field becomes
also null.

This finding is explained by the fact that the charge being carried
by the photon is by itself an element of radiation, and restates that a
radiating element cannot radiate by itself.

8 The loop radius.

The above discussion indicates the permanence of both the charge q
and the loop radius a, the latter inversely proportional to the mass of the
particle (or as a single axis component of the total energy density of the
current loop). Since the energy density is proportional to a−3, a larger
energy density is achieved by making the radius a′ smaller (a′ < a). The
currently accepted view of three generations and three flavors of quarks
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and three geerations of leptons may be explained in terms of contem-
poraneous energy density of the universe at the time of the respective
individual particle creations and at the time of the shifting from one
generation to the next. The ability of making a direct translation of
the energy and mass relationship via the current loop radius renders the
present model quite attractive to the future research.
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