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Constraints on gauge boson compositeness from
discrete time gauge boson spin polarization precession
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ABSTRACT. By studying the two preon composite structure of the
electroweak gauge bosons we arrive at criteria sufficient to place
constraints on the preon charges and masses and gauge boson electric
dipole moments using discrete time spin polarization precession.

RÉSUMÉ. Si l’on étudie la structure des bosons de jauge électro-
faible, composée de deux préons, on arrive à des critères suffisants
pour imposer des contraintes sur les charges et les masses du préon et
sur les moments dipolaires électriques du boson de jauge en utilisant
une précession à temps discret de la polarisation du spin.

1. Introduction.

The present frontier of physics suggests that there are three fun-
damental areas that require further investigation to ascertain the true
structural features of the underlying theory. The first involves a deeper
understanding of particle theory since the present structure of the Stan-
dard Model suggests an incomplete and cosmetic understanding of the
chirality of the weak interactions, a poorly understood picture of the
Higgs sector with its associated symmetry breaking properties and lastly
a fragmented understanding of the generation structure of the quarks
and leptons [1,2]. Compositeness [3], grand-unification [4], technicolor
[5] and perhaps superstrings[6] offer us directions in which the nature
of the true theory may emerge. The second area of exploration involves
the problem of gravitation and its possible emergence from possibly a
supergravity theory in higher dimensions [7], a superstring theory [6] or
possibly from a discrete pre-geometric theory of space and time[8]. The
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third fundamental area that borders on the frontier searches for the fun-
damental origin of quantum phenomena and the associated properties
of non-locality and incompleteness [9,10]. In search of a more primi-
tive origin to quantum phenomena and building upon previous sugges-
tions by Wheeler [11], Finkelstein [12], Recami [13], Caldirola [14,15]
and others [16,17] we have considered a discrete time quantum theory
[18;19;20;21;22] and the modifications it leaves on presently measurable
phenomena. The fundamental roots of such a theory emerge from the
belief that particles have a fundamental individuality prior to the birth
of Minkowski space-time and even after our averaged out sense of space-
time is “born” the particles frame may still fluctuate from the average,
thus to express this fact or “fundamental uncertainty principle in time” a
discrete time difference appears in the equations of motion. In a recent
work we have applied this idea to gauge boson spin-polarization pre-
cession which proved to be a probe to both the composite structure of
gauge bosons as well as a probe to discrete time effects [23]. A possible
probe to gauge boson structure within the present structure of parti-
cle theory is found by studying deviations of the magnetic moment and
electric quadripole moments of the w+, w− from standard model values
[24,25], also the appearance of an electric dipole moment would be a
signal of composite gauge boson structure. In what follows we study the
constraints on composite gauge boson structure implied by discrete time
spin polarization precession as well as the signatures in spin polarization
precession generated by a gauge boson electric dipole moment. Thus, the
analysis represents a probe to both discrete time effects and composite
gauge boson structure with more specific signatures than that discussed
in [23].

2. Composite gauge boson strucure and discrete time quantum
theory.

We consider a w− gauge boson to be composed of two preons with
charges −e1, −e2, the hamiltonian in a z component magnetic field Bz =
B and electric field Ex = E is

H =M0C
2 +

P 2
1

2m1
+

P 2
2

2m2
+

e1

m1
Sz1B +

e2

m2
Sz2B

+ P (Sx1
+ Sx2

)E + g
−→
S 1.
−→
S 2

(2.1)

Here M0C
2 = rest mass energy, g

−→
S 1.
−→
S 2 = spin-spin coupling.
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We employ the non-relativistic approximation since preons have
heavy masses m1, m2, the term containing B represents the magnetic
dipole interaction (g=2 for erach preon) and the term containing E is
the electric dipole interaction with the gauge boson admitting an electric
dipole movement (P ) in units of h̄. If we first consider the case P = 0
and the preons are confined to an infinite potential well from 0 to L we
have in the discrete time quantum formalism [23].[

M0C
2 − h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+
e1

m1
Sz1B +

e2

m2
Sz2B + g

−→
S 1.
−→
S 2

]
Ψ

= ih̄

[
Ψ
(
t+ τ

2

)
−Ψ

(
t− τ

2

)
τ

]
(2.2)

τ = discrete time interval.

We consider the separable function

Ψ = U(x1, x2)

[
a1αα+ a2ββ + a3

(αβ + βα)√
2

]
T (t) (2.3)

(αα = α(1)α(2), α = spin up; β = spin down function, αβ = α(1)β(2),
etc.) giving(

− h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+M0C
2

)
U(x1, x2) = E1U(x1, x2) (2.4)

(
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m1
Sz1B +

e2

m2
Sz2B + g
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S 1.
−→
S 2

)[
a1αα+ a2ββ + a3

(
αβ + βα√

2

)]
= E2

[
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(
αβ + βα)√

2

)]
(2.5)

(E1 + E2)T (t) = ih̄

[
T
(
t+ τ

2

)
− T

(
t− τ

2

)
τ

]
(2.6)

For the spatial solution we have

E1 = M0C
2 +

n2
1h

2

8m1L2
+

n2
2h

2

8m2L2
(2.7)
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U(x1, x2) =
1√
2

[
2

L
sin

n1πx1

L
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n2πx2

L
− 2

L
sin

n2πx1

L
sin

n1πx2

L

]
(2.8)

where we have constructed an antisymmetric spatial state. For the spin
state we have(

e1

m1
+

e2

m2

)
h̄

2
Bααa1 −

(
e1

m2
+

e2

m2

)
h̄

2
Bββa2

+B

(
e1

m1
− e2

m2

)(
αβ − βα√

2

)
h̄

2
a3

+
gh̄2

4

[
a1αα+ a2ββ + a3

(
αβ + βα√

2

)]
= E2

[
a1αα+ a2ββ + a3

(
αβ + βα√

2

)]
(2.9)

The eigenstates are for the spin component

E2+ =

(
e1

m1
+

e2

m2

)
h̄B

2
+
gh̄2

4
, Ψ+ =

 1
0
0

 , Ψ+ = αα (2.10)

E2− = −
(
e1

m1
+

e2

m2

)
h̄B

2
+
gh̄2

4
, Ψ− =

 0
0
1

 , Ψ− = ββ (2.11)

E20 =
gh̄2

4
, Ψ0 =

 0
1
0

 , Ψ0 =
αβ + βα√

2
(2.12)

providing e1/m1 = e2/m2. Thus in order to generate the three eigen-
states we must have the constraint e1/m1 = e2/m2 for the preons. The
solution to Eq.(2.6) is

T (t) = Ce
− 2
τ

(
sin−1 (E1+E2)τ

2h̄

)
it

(2.13)

If we study gauge boson spin polarization and insist that

〈Sx〉t=0 = 〈Sx1 + Sx2〉t=0 = h̄
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we have for the initial spin state

Ψspin =
αα

2
+
ββ

2
+

1√
2

(
αβ + βα√

2

)
(2.14)

calling

a1 =
2

τ
sin−1

[
(E1 + E2+)τ

2h̄

]
, Sz = +1

a2 =
2

τ
sin−1

[
(E1 + E2−)τ

2h̄

]
, Sz = −1
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2

τ
sin−1

[
(E1 + E20)τ

2h̄

]
, Sz = 0

(2.15)

we have the total wave function

Ψ =
1√
2

(
2

L
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n1πx1

L
sin

n2πx2

L
− 2

L
sin

n1πx2

L
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L

)
×(

1

2
ααe−ia1t +

1

2
ββe−ia2t +

1

2
(αβ + βα)e−ia3t

) (2.16)

Evaluating 〈Sx1
+ Sx2

〉t = h̄ we have from (Ref. 23)

〈Sx1 + Sx2〉t =
h̄

2
cos(a1 − a3)t+

h̄

2
cos(a3 − a2)t (2.17)

Thus two sinusoidal terms in the x spin polarization of a w gauge boson
would signal both composite gauge boson structure and discrete time ef-
fects and the added preon constraint e1/m1 = e2/m2. If e1/m1 6= e2/m2

we find that only the Sz = ±1 solution appear thus generating no x spin
polarization precession. Thus the assumption of compositeness and the
experimental existence of spin precession enforce the preon constraint
e1/m1 = e2/m2.

If we now consider the added feature of the electric dipole moment
of the w we have from Eq. (2.1)(

− h̄2
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2

)] (2.19)
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[
e1

m1
=

e2

m2
=

e

m

]
In Eq. (2.19) we equate coefficients of αα, ββ, (αβ + βα)/

√
2 to find(

e

m
h̄B + g

h̄2

4
− E2

)
a1 +

(
PEh̄√

2

)
a3 = 0 (2.20)

(
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4
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PEh̄√
2
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(
PEh̄√

2

)
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(
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2

)
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(
gh̄2

4
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)
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The eigenvalues of the above system are

E2± =
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4
±

√
(PEh̄)2 +

(
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m

)2

E20 =
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4

(2.21)

with normalized eigenstates in the basis

+
−
0

 for Sz,
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1√
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2
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1
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2
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1
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 (2.22)
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 K = eh̄B
m ,

S =
√

(PEh̄)2 +K2


When the linear combination of the three eigenstates in Eq. (2.22)

is taken to insure
〈Sx1

+ Sx2
〉t=0 = h̄

or

Ψspin =
αα

2
+
ββ

2
+
αβ + βα

2
(2.23)

and the x spin polarization is found at time t to be

〈Sx1
+ Sx2

〉t (2.24)

we obtain a linear combination of three sinusoidal functions with three
distinct frequencies that depend both on the spin quantum numbers and
the spatial quantum numbers where we use the spatial energy and wave
function from Eq. (2.7) and Eq. (2.8). Thus the signature to identify a w
electric dipole moment would be a combination of tree distinct sinusoidal
functions in the x spin polarization of the w−. The magnitude of the
frequencies would be a function of P and thus the diffferent frequencies
would be a probe to P .

Conclusion.

It is interesting that a strong constraint on the two preon com-
posite structure of the w− follows simply from the fact that the w−

precesses in an external magnetic field. If (e1/m1) 6= (e2/m2) then the
state (αβ + βα)/

√
2 is not permitted. This might also suggest that the

preons electromagnetic properties are deeply related to the mechanism
that generates their masses m1, m2. It might be that there is no need
for “hypercolour” and the binding of the preons is purely electromag-
netic in much the spirit of the binding mechanism that generates the 1.8
MeV(e+ e−) peaks in heavy ion collisions, namely a strongly coupled
phase of Q.E.D.[26] The fact that an electric dipole moment for the w−

will generate three distinct sinusoidal functions in the (x) spin polariza-
tion while a pure magnetic dipole moment only generates two compo-
nents Eq. (2.17) provides us with another probe to compositeness, the
standart model predicts that w− should have zero electric dipole mo-
ment and a non-zero electric dipole moment would most certainly arise
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from a composite w− structure. The great experimental problem with
w− spin polarization is to obtain a significant number of precessions be-
fore the w− decays. The only possible laboratory to obtain high fields is
in the field of a pulsar where B ' 1012 gauss. If w−, w+ are produced
by some mechanism in a pulsar atmosphere, then a signature for w−

discrete time spin polarization precession would be temporal variations
of the spin polarization induced in neighboring particles that we may
observe in the cosmic rays. Thus w− spin polarization would most likely
have to be looked for in an astrophysical setting.
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