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ABSTRACT. Quantum mechanics can be formulated in three ways,
as Heisenberg, Schrédinger and Feynman did respectively. For the
last way, an unknown (i.e. forgotten) forerunner exists, that we have
found in a paper by Gregor Wentzel, published before the famous
works by Heisenberg and Schrodinger, and contemporary with the
fundamental works of L. de Broglie. In that paper, one can find
the basic formulae and their interpretation as they were adopted by
Feynman twenty years later. We believe that Wentzel’s work was
forgotten for several reasons: (I) Schrodinger’s equation was much
simpler to deal with (Wentzel himself contributed to its development
in the same way as L.Brillouin and H.Kramers did). (II) The first
application was rejected by Heisenberg and Kramers. (IIT) The ap-
proximation used by Wentzel was too naive and failed. Nevertheless,
the foundation laid by Wentzel was sound, as it has been shown by
Feynman’s work. Therefore, Wentzel has to be considered as one of
the founders of quantum mechanics.

Our exposition aims at explaining some details. It is accompanied by
two appendices. They respectively provide a summary of the quoted
paper by Wentzel and of the theory of canonical transformations,
needed to understand the link between Wentzel’s and Feynman’s
formulations.

RESUME La mécanique quantique peut étre introduite de trois
maniéres, celle de Heisenberg, celle de Schrédinger, et celle de Feyn-
man. Pour la derniére, il existe un précurseur inconnu, c’est-a-dire
oublié, que nous avons trouvé dans un travail de Gregor Wentzel,
publié avant les travauz célébres de Heisenberg et Schrodinger, con-
temporain des travaur fondamentaur de L.de Broglie. On peut y
trouver les formules fondamentales et leur interpretation employées
par Feynman vingt ans apres. Nous croyons que le travail de Wentzel
a €été oublié pour plusieurs raisons.  Premiérement, [’équation
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de Schrodinger était plus simple o analyser (Wentzel lui-méme
contribuait simultanément a ce developpement avec L.Brillouin et
H.Kramers). Deuziémement, ’application premiére fut rejetée par
Heisenberg et Kramers. Troisiemement, [’approximation usée par
Wentzel était trop simple et échoua. Néanmoins, la fondation par
Wentzel était correcte, comme les travaur de Feynman l’ont montré.
Par conséquence, Wentzel doit étre considéré comme l'un des fon-
dateurs de la mécanique quantique.

Notre exposition veut expliquer quelques détails. Elle est accom-
pagnée de deuzr annexes, l'un résumant le travail cité de Wentzel,
lautre la théorie des transformations canoniques nécessaire pour
comprendre la connection des formules de Wentzel avec celles de
Feynman.

1 Introduction

Traditionally, we teach about three ways to quantum mechanics, at-
tributed to Heisenberg [33,5,4,20], Schrodinger [52,53,55,56], and Feyn-
man [30].

In the Heisenberg picture, Hilbert-space operators are substituted
for the classical variables, and these operators may be represented by
matrices. The classical canonical equations of motion are translated by
the correspondence [20] between the Poisson bracket and the commutator

into
dQ i

=+ (HQ-QH) . (1)

Q[t + dt] = exp[%Hét]Q[t] exp[fihH&] .

The state of the system in question is represented by a fixed Hilbert
vector, which is not necessarily made explicit, if the representation is
produced by the matrix elements themselves.

The central issue of the Schrodinger approach is the equation of
motion for a state Hilbert vector, whose representation in the function
space L? is the wave function [z, t]:

o

ih 5t

= H¢[$7t] ) (2)

Ve, t + 6t = exp[—%Hét]i/)[x,t] .
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This Hilbert vector moves on the unit sphere in Hilbert space,

d
&/wmwwuﬂmzo,

and it is used to calculate the distribution of the measured classical
variables. Eigenstates to the Hamilton operator characterize stationary
states. The approach is equivalent to that of Heisenberg [54].

The third method was published more than twenty years later by
Feynman [30,28]. It aims at the immediate calculation of transition
probabilities, which later on can be translated into the expressions for
a corresponding wave function. In this picture, transitions are given
by a set of mediating trajectories in configuration or phase space, each
contributing to the phase of a Hilbert vector, whose squared amplitude
is the desired probability. The phase of an individual path is the classical
action integral, and one obtains

M@Hwﬂ:/@wmwfﬂm'

with the transition contribution

T

(z]x')se = Kexp[%/ Lz, &,t]dt] . (3)

’

The total amplitude is the sum of the interfering contributions, formally

(aalae) = [ Daltexoly; [ Lig' d' 1)

With a suitable choice of K, this relation is equivalent, in simple exam-
ples, to Schrédinger’s equation ([30], eq.18). The main point of Feyn-
man’s approach is the notion of interference of paths, not the mere equiv-
alence of a mechanical path through configuration space with transver-
sals to the surfaces! of constant S. The mathematics of the integration
over paths is a problem in its own right [46,31,1].

Feynman cites suggestions and remarks of Dirac [21,22,23], which
are taken as hints to use a kind of Huygens’ principle to evaluate the

L The character S is used for both the solutions of the Hamilton-Jacobi equa-
tion H]g, %,t] + % = 0 and for the action integral S = f;, L{z, &, t]dt de-

pending on the path. We will try to avoid confusion.
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evolution in time of the quantum-mechanical wave function. He — and all
followers — did not cite nor recognize an early work by Gregor Wentzel
[63], where exactly the formulas written later by Feynman are derived
with the aim of obtaining the characteristics of wave propagation by
techniques of point mechanics. Wentzel’s paper reached the editor of
Zeitschrift fir Physik on February 2nd, 1924. It is the first paper which
describes a method like Feynman’s to construct transition probabili-
ties. This method was not applied in full [64,65]. Nevertheless, the
method was appropriate, and proven to be manageable by Feynman.
Thus, Wentzel’s paper should be acknowledged in the history of quan-
tum mechanics. Heisenberg’s famous article on matrix mechanics dates
from July 29th, 1925 [33], and is clearly second to Wentzel’s. Schrodinger
published about the quantum wave equation from January 27th, 1926
on [52,53,55,56]. Only DeBroglie wrote about matter waves already in
september 1923 [15,16,17], prior to G.Wentzel.

In the following, we first intend to sketch the derivation used by
Wentzel, and secondly, we will conjecture about the question, why this
article was never associated to the development of Feynman’s path inte-
gral approach. For the embedding of our particular topic into the history
of quantum mechanics, we recommend the book by F.Hund [35].

2 The value of interfering paths

Mechanics and geometrical optics are governed by integral princi-
ples which attribute a value to each path in configuration or phase space.
The actual motions or propagations are identified by local extrema of
this value which we call action. The simplest of these principles is Fer-
mat’s principle, where the action is the integral over the refraction in-
dex. In point mechanics, the integral in time of the Lagrange function
L[g, 4, t] = Exinetic — Epotential is the general rule. For time-independent
total energy F, it contains the Maupertuis-Jacobi principle, which iden-
tifies the refraction index with y/F — Epotential, thus providing the link
between mechanics and geometrical optics. The name of Fermat is asso-
ciated with the method of identifying the rays with minima of the integral
over the refraction index. The name of Hamilton is associated with the
connection to wave propagation. The surfaces of constant phase define
transversal rays which are solutions to Fermat’s principle. The phase
is proportional to some action. For wave phenomena, the ray is pro-
duced by the interference implicit in Huygens’ principle, which excludes
all other points of space in the limit of infinitesimally small wavelength.
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This is the argument to understand the meaning of the extremum princi-
ple for the action. Mechanics seems to fail only in explaining dispersion
and interference phenomena.

All this was known and used already in the discussion of early quan-
tum theory. The question then was how to distinguish between pure
paths of particles and true wave phenomena. In the realm of geomet-
rical optics this is not possible, and the history of this recognition was
deeply influenced by Einstein [25,26]. FEinstein constructs his results
with interfering paths too, but these paths are real paths from different
source events. In addition, the experiment which he proposed in [25] was
wrongly evaluated and ended in disappointment.

In the historical evolution, quantum mechanics turned out to be
wave mechanics. After the construction of the Schrodinger equation, i.e.
the appropriate wave equation, the wave function was interpreted as pro-
viding a probability phase [6,7], whose interferences produced transition
probabilities. Therefore, the notion used by Wentzel for reinstating the
particle concept is to interpret the result of interfering paths as transi-
tion probability, i.e. to translate the language of wave theory into the
language of particle statistics.

Feynman defines the value of a path ¢'[t] through the configura-
tion space by the action integral S = [ L[q%, ¢*,t]dt. This action integral
yields the contribution of the path in question to the transition amplitude
(galgg) from the configuration E to the configuration A. This contribu-
tion differs from path to path by a phase, and the total amplitude is the
sum of the interfering contributions.

In the first paper of 1924 [63], Gregor Wentzel anticipated this idea
in a strikingly explicit fashion. As we already noted, the discussion of
the quantisation postulate at that time opened a broad acknowledge-
ment of the correspondence between geometrical optics and point me-
chanics based on the variational principles of Fermat, Maupertuis and
Jacobi [8,9,12,24]. The main question was to implement wave char-
acteristics, and the general proposition was to use Huygens principle
[13,18,26,27,57]. This principle was usually formulated as integral the-
orem for the wave equation. The interference interpretation never in-
volved the contributions of individual virtual paths.

Wentzel is the first to consider the logical argument for the contri-
bution of such paths in phase space to a probability amplitude. The
central issue is the measure of the deviation from the classical path.
Wentzel chooses the integral [ >, Q'dP;, in the canonical coordinates
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where the momenta P; are constants of motion (see appendix B). In ex-
tended phase space, which can be constructed by (1) defining time as
an additional coordinate ¢°, (2) its conjugate momentum py = —W as
minus the energy, the Hamiltonian H|[q, p, o] + po vanishes. Here, in any
system of canonical coordinates we obtain

Ldt = Zpidqi = Zp;dq'i +dF
i=0 =0

and the variations §.5 = —357 of the integrals

A n
S = gt |
" ;p q
A n . n . .
S1= Zqzdpi = Z ((4'Pi)lata — (@'Pi)lase) = S
i=0 i=0

are canonical invariants. The phase ¢, at the moment identified with that
yielding the quantum-mechanical interference, is postulated by Wentzel
to be the partly invariant? measure

A n
¢ = —% / (; q:dp’ — tdW> (4)

E

in these coordinates, for any path®. The quantum interference is sup-
posed to be analogous to the wave interference. Wentzel writes: Indem
wir die klassische Wellenphase durch unsere Quantenphase ersetzen, ist
es nun leicht, die wellentheoretische Interferenzformel in die Sprache
der Quantenstatistik zu tlibersetzen: Stehen dem Lichtquant verschiedene
Wege s von E nach A zur Verfiigung, so ist die Wahrscheinlichkeit, dafs
es auf einem beliebigen der Wege s nach A gelangt und dort absorbiert

2 Canonical transformation possibly add a term not depending on the paths
between given endpoints. Hence, the interference of the different contributions
is not affected. The path-independent term corresponds to a phase factor in
quantum mechanics. Wentzel’s expression differs form Feynman’s by such a
path-independent term.

3 The sign is corrected in Wentzel’s second article.
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wird, nicht etwa gleich der Summe der Apriori-Wahrscheinlichkeiten der
einzelnen Lichtwege s, sondern J mal so grofi*, wo

(3 £oe?m9e) (3 fem o)
| 2262 '

Wentzel identifies the principle of zero deviation from “mechanics” with
the Fermat-Jacobi principle of least refraction-corrected path, as was
general use in the discussion of the wave-particle duality at that time.
The decisive step however is to write an interference formula for all
different paths with the same start and the same end, independent of
their being “mechanical”, i.e. solution of the equation of motion, or not.
Such an interference formula did not exist before. This constitutes the
difference to all other attempts to interpret wave phenomena by particle
motion at that time. In the particular situation described by Wentzel,
the probability is related to the amplitude of light (fs is the vectorial
amplitude of the classical wave), but both the variables entering the for-
mulae and the basic philosophy are not merely characteristic for optics
alone, but for mechanics in general. Wentzel writes expressis verbis: Die
formale Ubereinstimmung des Zihlers mit dem Amplitudenquadrat su-
perponierter Wellen sichert dem Ansatz eine ausnahmslose Giiltigkeit,
was die Beschreibung irgendwelcher Interferenzphinomene anbelangt®.
We want to underline that the explicit use of the interference formula in-
troduced by Wentzel is the decisive step to quantum particle mechanics.
The same interference concept is the basic idea of Feynman’s approach
in 1948 too. The gap to this approach consists in the explicit technics
for handling a path integral, i.e. for really calculating a transition am-
plitude.

J =

()

3 The response to Wentzel’s article

Before the publication, in 1925, of Heisenberg’s method to calcu-
late matrix elements, dispersion theory was one of the central topics

4 By replacing the classical phase of the wave with our quantum phase, it turns
out to be simple to translate the interference formula of wave theory into the
language of quantum statistics: If the quantum of light may propagate along
different paths from E to A, the probability for going to A along any of them
and being absorbed there is not given by the sum of the a priori probabilities
of the individual paths s, but J times that value.

5 The formal coincidence of the numerator with the square of the amplitude
of superposed waves ensures the ansatz to be universally valid for the repre-
sentation of interference phenomena of any kind.
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of discussion. The question was how to get interference and dispersion
with a flow of particles (the quanta of light, named “Nadelstrahlung”)
[26,24,42,47,57,48,59,49]. The classical theory of dispersion explained the
relation between absorption lines and anomalous dispersion, but neither
the number nor the narrowness of lines. Guth [32] characterized that
time by the battle between wave and particle structure of light, the par-
ticle aspect always increasing its realm. Smekal [57] expected still a
much longer way to show that wave theory was not indispensable for
optics®. There had been several attempts to outline a particle-based
explanation of wave phenomena [26,24,42,47,48,49,44,60,45,61]. None of
them really reached the stage of a mathematically constructed theory,
and none of them reached the stage of a basis for mechanics in general
such as Wentzel’s.

Wentzel’s paper was always understood to be part of that discussion,
even by Wentzel himself, and the by far ampler importance of his pos-
tulates, for mechanics in general, went along unnoticed. In addition,
Wentzel used his scheme to argue for the adoption of an intermediate
orbit between initial and final state of an atom interacting with light,
and his results were not backed by experiment. Kramers and Heisen-
berg used only the initial orbit and could fit the data [38]. The formulas
which Wentzel developed for dispersion with his interference concept
in mind [65] were cited by Kramers and Heisenberg [38], but rejected
in a lengthy footnote”. The success of the formula found by Kramers
and Heisenberg and the change in direction of the following evolution
of quantum mechanics made this judgement final. So Wentzel himself
cites his paper only once, in the following article “Zur Quantentheorie
des Rontgenbremsspektrums’ [64]. Already there the exposition of the
method is banned to an appendix®. In the journal Physikalische Berichte

6 “Bis zur Verwirklichung derartiger Zukunftshoffnungen, welche in mancher-
lei Hinsicht geeignet waeren, das Dogma von der Unentbehrlichkeit wellenthe-
oretischer Ueberlegungen in der Optik der Reflexion und Interferenz zu zer-
stoeren, ist aber vielleicht noch ein sehr weiter Weg.” (For the realization of
such hopes for the future, which would be appropriate under several respects,
namely, to destroy the dogma of the indispensability of wave-theoretical argu-
ments in the optics of reflection and interference, perhaps there is still a much
longer way.)

7 In short: “Es gibt keine experimentellen Griinde, die Giltigkeit einer ein-
facheren Formel anzuzweifeln.” (There is no experimental motive to doubt
the validity of the simpler (old) formula.)

8 “Zur Quantentheorie unperiodischer Systeme im allgemeinen”
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we find an abstract by Wentzel himself, which gives the impression too,
that he only marginally recognized the importance of his approach for

mechanics?.

Wentzel was quoted by his colleague in Miinchen K.F.Herzfeld [34].
It is not completely clear whether Herzfeld cites Wentzel in reference to a
program or to a theory in his article!?. As far as we found out, Herzfeld
[68] was the last one to give a full account of Wentzel’s approach, naming
it “Corpuscular theory of interference”. But new interest did not arise.
Citing Wentzel, Herzfeld mentioned also Beck [2]. This shows that the
interference notion seemed to him to be more important than the integral
over the manifold of paths.

Other authors quoted Wentzel’s concept occasionally. For instance,
when Epstein and Ehrenfest [27] wrote that coherence and interference
would resist any attempt to understand, Smekal [58] answered by citing
Wentzel as an example for such an understanding. A.Landé [43] too
presumably felt the importance of the concept, but he criticized it with
an argument based on causality. However, this argument would inval-
idate also Feynman, if correct and applicable. Pauli [50] cites Wentzel
and Herzfeld only together with Ornstein and Burger [47,48,49], which
proves that he did not notice the far more general importance and the
explicitness of Wentzel’s concept!!. Pringsheim [51] and Kulenkampff

9 Es wird versucht, die Interferenzerscheinungen vom Standpunkte der Licht-
quanten aus als fundamentale statistische Phdnomene zu verstehen. Die
Mdéglichkeit dazu ergibt sich daraus, dafi die Lichtphase fds/)\ durch die
Bohrsche Frequenzgleichung hc/X = AW eine einfache mechanische Bedeu-
tung erhdlt. .. (It is attempted to understand the interference phenomena from
the viewpoint of light quanta as fundamental statistical phenomena. From here
the possibility emerges that the phase of the light obtains a simple mechanical
meaning through Bohr’s frequency equation).

10 Herzfeld writes: Die zweite Aufgabe besteht ...in der quantentheoretis-
chen Deutung des Huygensschen Prinzips. Diese Aufgabe ist aber ... nicht
verschieden von der allgemeinen, welche die quantentheoretische Deutung der
Interferenz stellt. Sobald diese geldst ist [63], ist damit auch die Brechung usw.
erklart (The second task is the quantum interpretation of Huygens’ principle.
This task is not distinct from the general one to explain the interference in
quantum theory. As soon as this problem is solved, refraction etc. is explained
t00).

L “Die Versuche von G. Wentzel, K.F.Herzfeld und L.S.Ornstein u. H.C.Bur-
ger, die Ausbreitung des Lichtes in dispergierenden Medien vom reinen
Lichtquantenstandpunkt aus zu behandeln, kénnen vorldufig wohl noch kaum
als befriedigend angesehen werden.” (The attempts by G.Wentzel, K.F.Herzfeld
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[41] only quote the experimental argument against Wentzel’s dispersion
theory.

Presumably under the influence of the successes of quantum me-
chanics Wentzel changed his attitude and restricted his work to the use
of the classical (“mechanical”) solutions and to the correspondence of
the Hamilton-Jacobi function to a single phase. In this way, Wentzel
also found the approximation scheme now known as Wentzel-Brillouin-
Kramers method [66,11,10,39]. Here at last, the concept of interfering
paths is forgotten. All the studies concerning the correspondence be-
tween classical mechanics and quantum mechanics now concentrated on
geometrical optics and canonical transformation theory [36,37,62]. The
Schrédinger equation was fitted best to the task of calculating spectra
and underlying energy levels, and both the problem of second quantiza-
tion and of calculating transitions in more general problems were still
ahead.

Even in F.Hund [35], who explicitely aims to answer the question
whether quantum mechanics could have evolved differently, we find no
hint to Wentzel’s path integrals.

Dirac was the next to express the idea of getting probabilities by
superposition of paths [21]. Dirac connected it mainly to the canonical
tranformation theory in the direction of the Wentzel-Brillouin-Kramers
approximation, i.e. to geometrical optics. The interference principle
is formulated, but not explicitly. The identification of a phase with
the action integral is the result of the construction of the unitary evo-
lution operator. This construction is not possible without the knowl-
edge of quantum mechanics existing at that time in the Heisenberg or
Schrodinger form. Feynman [30] asserts that his work was inspired by
Dirac’s publications. Now Dirac was always very sparing of citations, so
it is difficult to draw conclusions from his not mentioning Wentzel. In
the end, nobody recognized the outline already formulated by Wentzel;
even he himself apparently never came back to the driving idea of his
early work on quantum optics.

The reader of older literature is often suspected of falling into the
trap of reading things into a book instead of reading out of a book.
However, any book is complete only with the reader and changes with

and L.S.Ornstein and H.C.Burger to deal with the propagation of light in dis-
persive media from a pure light-quantum viewpoint at present cannot yet be
considered satisfactory.)
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its reader. At any time, literature is lost if not read anew, with the
knowledge and the capabilities added by the time between, not only
knowledge of more physics, but also capability of deeper reading!?.

We want to thank H.-J.Treder for discussion and help with his pri-
vate library, and to acknowledge the contribution of L.Mihich (Pavia)
and F.Antoci for help and hints with the citations.

Appendices

A Wentzel’s paper

At the beginning of his article “Zur Quantenoptik” Wentzel observes
that since Einstein’s derivation of Planck’s radiation law certain prob-
abilities are attributed to the emission and absorption processes, but
no more precise assertions are made. He intends to propose a general
hypothesis for such probabilities, that in his opinion can help in over-
coming the contradiction existing in theoretical optics: wave theory of
interference and polarization on one side, quantum theory of the spectral
lines on the other side. To this end, he interprets the interferences as
the offspring of underlying quantum-statistical laws.

In Section 1 of his paper Wentzel remembers that the most im-
portant foundation of the quantum theory is certainly the law that an
atomic system cannot radiate if it finds itself in what he calls a me-
chanical state, i.e. a state in which the laws of classical mechanics are
obeyed.Radiative processes are instead invariably associated with “tran-
sitions” for which the laws of classical mechanics do not hold. But not
only the acts of emission and of absorption are “non-mechanical”, since
the very presence of light propagating through a transparent medium
will cause non-mechanical perturbations in the atoms involved in the
process.

12 J.L.Borges writes in the essay Fl libro [3]: Cada vez que leemos un libro, el
libro ha cambiado, la connotacion de las palabras es otra. Ademds, los libros
estan cargados de pasado ... Si leemos un libro antiguo es como si leyéramos
todo el tiempo que ha transcurrido desde el dia en que fue escrito y nosotros.
(Every time when we read a book, the book has changed, the connotation of
the words is different. In addition, the books are loaded with past ...If we
read an ancient book, it is as if we read all the time elapsed between the day
when it was written and us.)



360 S. Antoci, D.-E.Liebscher

In order to provide an invariant measure of the deviations of the
intra-atomic motions from Hamiltonian mechanics, Wentzel considers
the canonical coordinates §; and the conjugate momenta «; associated
with the atomic systems involved in the propagation of light. For sim-
plicity, the aj are assumed to be constant in the mechanical states. Then
the desired measure is provided by the integral [ >, Brday. This inte-
gral is extended to the particular path in phase space that corresponds
to the deviations from mechanics caused by a light quantum going from
an emitting atom E to an absorbing atom A in a certain way. Wentzel
attributes to any path of this kind a phase

o= [ 3 fudar. (©
k

where h is Planck’s constant. ¢ provides the sought-after bridge between
the quantum behaviour and the wave-like phenomena.

Wentzel introduces the total energy W of the atomic systems as one
of the momenta (ay), and the time ¢ as the coordinate 1 conjugated to
it; the phase ¢ is then defined as'?

1
= ([ tdw + Brday) . (7)
¥ h/ /zz:k k

As a check of his ideas within geometrical optics Wentzel envisages the
simple system constituted by the atoms E and A exchanging a light
quantum of energy AW that travels in vacuo with the velocity ¢ along
the path joining the two atoms, and from his definition (7) of the phase,
by retaining only the first addendum, he recovers Bohr's AW = hv
principle. Section 1 ends with the definition of the refractive index n,
and with the remark that Fermat’s principle ¢ [nds = 0 can now be
rewritten as § Y [ Brday, = 0, i.e. as the requirement that for the rays

13 Since Wentzel does not write the upper limit to the summation index k,
it is possible to interpret this new definition in two ways: either it is the
outcome of a canonical transformation performed in ordinary phase space, or
it corresponds to an extension of the phase space itself by the addition of
energy and time as a further conjugate pair. In the latter case the phase
introduced by Wentzel is just the one considered by Feynman (apart for a
wrong sign, and a path-independent term). In the appendix to a subsequent
paper [64] Wentzel clearly chooses the latter option, and also corrects the sign

error of eq.(7).
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of geometrical optics the integrated deviation from mechanics shall be a
minimum.

In Section 2, Wentzel defines his interference formula.

If the light quantum has several paths at his disposal for going from
an emitting atom E to an absorbing atom A, the overall probability of
the process is not equal to the sum of the a priori probabilities associated
with the individual paths, which is given by

| Fo [P=1) £ 2, (®)

where f, is the vector amplitude of the classical wave associated with
the s-th path. The overall probability is instead supposed to be J times
the a priori probability, where

(FF)

J= 9
and the complex amplitude F is given by
F = Z fs exp(2mipy) (10)

where ¢, is the quantum phase defined by (6) or by (7). Wentzel em-
phasizes the general validity of his formula for interference processes of
any kind, and the advantage of ensuring a priori that the “wavelength”
measured through the interferences and through the photoelectric effect
are one and the same thing.

He further notices an essential feature: in his conception the emit-
ting and the absorbing systems are intrinsically coupled. To him it is also
noteworthy that no interference is conceivable without the presence of
the absorbing system. Section 2 ends with a long Note dealing with the
issue of the coherence length, as it can be confronted from the proposed
viewpoint.

In Section 3 Wentzel outlines a theory of discrete spectra through
a specialized use of his phase and interference formulae. While contem-
plating only the degrees of freedom of the emitting atom, he introduces
the action variables I}, and the conjugated angle variables

ow
=t. — 11
Wy alk + ug ) ( )
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as it is customary when dealing with “conditionally periodic” systems.
The uy appearing in (11) are undetermined phases, which are constant
in the mechanical motions. Wentzel tentatively'# postulates that they
remain constant also during the transitions, and assumes that, in order
to get the transition probability, one shall modify the interference for-
mula proposed in Section 2, since one shall not only sum the amplitudes
associated with the individual paths, but also take the average over the
undetermined phases uj. Under these assumptions, he finds that the
probability of transition can be nonvanishing only when the action vari-
ables change by an integer multiple of Planck’s action quantum:

Therefore, if initially “quantized”, the atom will find itself after the
transition in another quantized state.

Under the mentioned assumptions Wentzel calculates the expression
for the amplitude F and finds agreement with Bohr’s correspondence
principle for the intensity and for the polarization. Then he compares
his result with the predictions of the classical wave theory, and asserts
that through his theory one can describe refraction, reflection and double
refraction just as it is done classically; in fact, he adds, Huygens’ principle
is just based on interferences.

Wentzel ends the Section and the paper by observing that, while in
the former quantum theory the action quantum h had to be introduced
twice, i.e. once in the AW = hv principle, and a second time in the
quantum conditions, his theory allows to introduce it just once, in the
expression (6) for the quantum phase.

B Canonical transformations

Canonical coordinates (q°,px) are coordinates of the phase space.
They are defined by the canonical form of the equations of motion,

d¢' _ 0Hlg,p,tY] dpe _  9H[g,p,t]

dt Op; Toodt Oq*k

14 Already in the subsequent paper [64] dealing with continuous spectra
Wentzel changes his mind, and assumes that the emission and the absorp-
tion processes are characterized by the variation in time of both the action
variables and of the undetermined phases.
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Because of the sign, we identify configuration coordinates ¢* and conju-
gate momenta py. Canonical transformations are transitions from one
set of canonical coordinates (g, p) to another one (@, P). The method of
interest to generate canonical transformations is a Legendre transform.
We assume the existence of a generating function Flg, P,t] depending
on the old configuration coordinates ¢* and the new momenta Pj. The
function F[q, P, t] generates the transformation by

OF[q, P, 1] OFlg, P 1]

Q" = o, Pr= g

The new Hamilton function is then given by

Hdt — znj PdQ' = Hdt — zn:pidqi +d(F — zn: Q'P)
=1 =1 i=1

or
oF

ot
Any new Hamiltonian H[Q, P, t] can be constructed as long as the partial
differential equation

H=H+

OF B OF OF[q, P,t]
Pat]_H[lL 6q7t]+ 8t

can be solved. The Hamilton-Jacobi transformation aims at a vanishing
new Hamiltonian and constant configuration coordinates and momenta:

aS a8 oS 35
87 ]+7 07 pi = Ql

S:S[Q,P,t]7 I:I:H[(L 8t 87(]2-’ P

Hdt—iPidQ’ Hdt—Zpldq +d(S[q, P, 1] — ZQ’
=1

i=1

Then we get

n

> Q'dP; = —Ldt+dS .

i=1

By this transform, the congruence of paths in phase space can be mapped
onto the initial values Q%, P;(i = 1,...,n) of coordinates and momenta
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at some time tg. If we characterize the states by ordinary coordinates
g[t] and conjugate momenta pl[t], the integral

A
/ZQi g, p, t]dPi[q,p, 1]
B =1

vanishes for the classical solution. The definition of the generating func-
tion yields

A n ) A '
/E ;Q lq,p, t]dPi[q, p,t] = —/ Llg, 4, t]dt

E

+S[CIA,PA7tA] - S[CIE;PE,tE]

A
= —5/ L{q,q,t]dt .
E

Because the left-hand side vanishes for the solutions of the canonical
equations (the “mechanical” paths in Wentzel’s language), the right-
hand side is not merely the action integral corrected by the path-
independent term S4 — Sg, but the deviation in the action integral,
which is zero for the extremal.

If the Hamilton function does not depend on time explicitly, we may
look for action-angle variables by separating the time from the Hamilton-
Jacobi function. We obtain

OH

H:H[Qap]v E

=0, Sq,Pt]=W]Jq,P]— E[P]t

with the new transformation

Hdt - PdQ = Hdt—Zpldq +d(W ZQI . (13)
i=1 i=1
ow oW W, -
pi*aiqi’ Q*aipiv [q,Tq}*E[P]*H[P]'

The canonical equation now determine the motion to follow

.. OH . 0H
g = = S P = -
Q ap, const , P; a0

=0.
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One may interpret Wentzel’s introduction of the energy as canonical
momentum as follows. We solve E = E[P)] for the first momentum P,
and use F instead of the old P; for the first new momentum, separating
it from the others (P, ..., P,). We then obtain

. OH : )
Ql:ﬁ:1 — Q1:t+t05 Q27"'7Qn:0-

and our special formula changes from (13) to

Hdt - PdQ' — Edt = —Ldt + d(W — Bt — Y _Q'Py)
i=2 =2

> QP +tdE = —Ldt + dW — Edt = —Ldt+dW ,
=2

where L = 1 prd” is the reduced Lagrangian. This is Wentzel’s formula
in the ordinary phase space interpretation.
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