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ABSTRACT. The recurrence on a torus is studied by making use of
iteration formulae providing an essential tool to calculate the rigor-
ous (non statistical) state of the system in the long run. It is a fast
method, in the sense that each one of the iterations corresponds to a
position of the representative point of the system one half (at least)
closer to the initial position than the preceding iteration. The cor-
responding inverse formulae are also calculated. Both are applied in
geometric theory of numbers leading to an almost intuitive method
of approximation of irrationals. An application is also given pro-
viding the calculation and ordering of Poincaré recurrent cycles of a
dynamical system with two normal modes.

RÉSUMÉ. On étudie la récurrence sur un tore en faisant emploi de
formules d’itération fournissant une méthode rigoureuse (c’est à dire
non statistique ) pour déterminer l’état du système à tout instant.
Il s’agit d’une méthode rapide, en ce sens qu’à chaque itération le
point représentatif du système se trouve à une distance de sa posi-
tion de départ qui est égale ou inférieure à la moitié de la distance
correspondante fournie par l’itération précédente. On déduit aussi
les formules de l’itération inverse. Ces deux ensembles d’équations
sont appliqués en théorie géométrique des nombres conduisant à
une méthode presque intuitive d’approximation d’irrationnels. Les
mêmes formules sont aussi appliquées pour calculer et ordonner les
cycles récurrents de Poincaré d’un sytème dynamique à deux modes
normaux.

I - Introduction

Since the appearance of the recurrence theorem that bears the name
of Poincaré [1],[2], the logical inferences from that fascinating and yet



314 J. Vassalo Pereira

simple result have been the safe ground from which the most various and
unorthodox speculations have taken flight.

In fact, shortly after its appearance, this result was expectedly found
at the epicenter of a controversy between Boltzmann and Zermelo [3],[4],
which turned around what then seemed an intrinsic paradox: the actual
recurrence, after some very long interval of time, of the initial state of a
real physical system for which the hypothesis of Poincaré’s theorem hold
true (Needless to say, this last and essential requirement was the more
controversial).

The way found by Boltzmann to overcome this difficulty is well
known and lies in a famous example in which he took the molecules of
1 cm3 of a gas (with normal pression and temperature) and calculated
the expected value for the time needed for the molecules to be “near
enough” their initial state (The indiscernability was taken of the order
of 10 percent of the average distance between the molecules for positions,
and 1/500 for the velocities). This calculation, though performed with
the rudimentary “ergodic” tools of the early times (as far as we know, it
has never been improved since then), leaves no doubt as for the conclu-
sion: such interval of time (the so-called Poincaré cycle) is an enormous
one, far beyond what we nowadays assume to be the age of the solar sys-
tem. The unavoidable conclusion was that from a “practical” point of
view (if not in absolutely satisfactory philosophical grounds), recurrence
is actually avoided and removed: the time needed for the system (any
system ?) to recur over its initial state is overwhelmingly greater than
the duration of its own life-time.

Yet two features of Boltzmann’s reasoning deserve a careful thought:
the first one is that the “small” system considered by Boltzmann has
nevertheless a huge number of degrees of freedom (1018 molecules in the
cm3); the second one, which follows from the first, is that the calculation
performed by Boltzmann is naturally a statistical one, for this seems
the mathematical method more suited for dealing with such situations.
Actually, even in a calculation as the one given in 1947 by Kac [5], where
he integrates the recurrence times of a “simple” dynamical system over
all admissible initial conditions, the exact (non probabilistic) values of
such intervals of time are totally disregarded.

As far as we know, a deterministic calculation of a Poincaré cycle of
a system with few degrees of freedom has never been given, in spite of
all the importance attached by Quantum Mechanics (or, perhaps better,
the Theory of Quanta) to systems with a small number of vibration
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modes. In fact, even the study of such a “simple” system as the Lissajous
beats on the plane seems to have deserved no more than a statistical
treatment. On the other side, and still confining ourselves to systems
with few normal modes, it is hard to get rid of the feeling, underlying
Kac’s theorem, that such recurrence cycles may not be “very large” and
that they must depend, perhaps very sharply, on the values of the normal
frequencies and the initial conditions. In fact, such conjecture lies at
the very basis of the present work, in which we present a deterministic
(by opposition to statistical) method providing these recurrence times
predicted by Poincaré for a very broad class of dynamical systems. The
dynamical system we make use of in our work is the simplest one, with
only two normal modes. Yet we shall see that even such an “elementary”
situation brings about some considerable difficulties which express all the
richness and complexity of the underlying symmetries of the problem.
Its generalisation for a higher number of modes (which we shall not
treat in this work) does not seem to require any substantial change in
the fundamental ideas, though we may undoubtedly expect a somewhat
frightening weight for the corresponding formalism.

Perhaps we could condense the present paper (part I) by simply stat-
ing that it consists of a thorough investigation of the function (χ) mod 2π,
that is, the rotation of a circle, of its inverse function and of some re-
lated properties. From this, it is not unbecoming to expect our methods
to be extended as to include some homeomorphisms of the circle, such
conjecture (which we shall not develop here) being based on Denjoy’s
theorem [6] and subsequent developments - see, for instance, [7],[8] - by
which some very general homeomorphisms of the circle can be reduced
to a rotation.

Another aspects of these results are those developed in part II and
concerning some applications in dynamical systems (ordering the recur-
rence Poincaré cycles) and geometric theory of numbers. In fact, the
determination of a Poincaré cycle of our system (up to a certain order
of approximation of its initial state) provides an approximation (up to a
certain order, related to the former one) of an irrational number. This
amounts to saying that, under very broad terms, both problems are one
and the same.

To end up this introduction, let us point out that we expect our
methods to have also an useful application in two other mathematical
fields related to the above mentioned ones, namely, ergodic theory and
computational calculus. In ergodic theory it is our hope that by mak-
ing use of our simple algorithms (namely, those presented in paragraphs
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II and III of the present paper) some simple ergodic problems of itera-
tion that are only handled under a probabilistic or statistical way (viz,
Staeckle and Kac theorems) may be studied up to a rather accurate
approximation in a rigorous deterministic way. As for the computa-
tional applications, our belief is based upon the fact that our algorithms
should prove more performing or reliable, namely, in straightforward
calculations of long time simulations or of approximations of irrational
numbers where other methods seem less numerically accurate [9].

The structure of the present paper (part I) is the following:

In II we derive a deterministic method that allows us to carry out
the rigorous calculation of the consecutive instants of time (all of them
multiples of a certain elementary interval taken as unity) and the asso-
ciated values of the reduced phase at which the representative point of
a 2-normal mode system is found within an increasingly smaller neigh-
bourhood of its initial state. The inverse problem is treated in III and
IV: given a certain instant of time, we calculate the exact values of the
reduced phase taken by the representative point at that instant. Both
this method and the preceding one are the fundamental tools employed
throughout part II in approximating irrational numbers and ordering the
succession of the Poincaré recurrence cycles.

II - The iteration formulae.

Let us consider a dynamical system with two normal modes. The
evolution of its representative point on the torus may be followed by its
projection over two planes, that is, by two representative points denoted
by RPo and RP , each one of them describing a circle centered in the
origin of coordinates with constant velocity. We assume that at initial
time t = 0 the phases of RPo and RP are null and that in the course
of time they increase in clockwise sense. We denote by τ the constant
period of the periodical motion of RP and by τo that of RPo. In what
follows our concern will be the positions of the representative point of
the system at instants t = kτo (multiples of the period of RPo). This
means that we want to calculate the phases of RP at t = kτo, since at
these instants RPo will meet again the zero value of its initial phase. For
this elementary dynamical system the theorem of Liouville clearly holds
true and so does the recurrence property.

In this paper we always consider “reduced” phases, that is, mod(2π),
with their values in the interval (0, 2π). More precisely, φ(t) means the
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reduced phase of the representative point RP at instant t. Let then be
the RP starting with zero phase at t = 0, and let us denote by δo the
value of its reduced phase at t = τo:

δo ≡ φ(t = τo) = (2π
τo
τ

) mod 2π

For the sake of simplicity, we shall always assume in what follows
that δoε(0, π), since the case δoε(π, 2π) can be reduced to the preceding
one by means of a trivial shift in the phase, and the equality δo = π
means that the quotient of the periods τ and τo is a rational number.
Furthermore, we shall take a time scale unit τo = 1. (Nevertheless, and
whenever need is felt of recalling the dynamical meaning of τo, we shall
write it explicitly.)

Now, for any value of δo = (0, π), it is clear that it always exists an
infinite sequence of positive integers [l] ≡ [l1, l2, l3, . . .] such that

2 ≤ l1 < l2 < l3 < . . . < lχ < . . .

and
φ(t = lχτo)− φ(t = (1 + lχ)τo) > π

To each of these values χ = 0, 1, 2, . . ., we associate the following
couple of real numbers

V = V (χ) ≡ [φ(lχτo)− 2π < 0, φ((1 + lχ)τo) > 0]

and on some oriented line we represent at left the first of these values (the
negative one), and at right the positive one. If we take these horizontal
lines χ = 0, 1, 2, . . . altogether and place the origin of each one of them
on the same vertical line we obtain the diagram shown in figure 1. V will
be called the “phase shift” and takes values in the interval V ε(−δo,+δo),
while the domain for the reduced phase is the interval [0, 2π]. The integer
labeling each horizontal will be called its order number and is denoted
by q.

In this phase shift diagram we are going to determine two infi-
nite sequences of points, P1, P2, . . . , Pk, . . . andP

′
1, P

′
2, . . . P

′k, . . . cor-
responding to the positions of RP at certain instants t = TK (for points
Pk) and t = T ′k (for points P ′k), all located near V = 0, and belonging to
certain horizontals with order number q = qk (for points Pk) and q = q′k
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(for points P ′k). We shall denote by V = δk (for the Pk) and by V = δ′k
(for the P ′k) their phase shifts. Then, by definition, we have:

a) Pk (k = 1, 2, . . .), is the first position (in the course of time) of
RP such that

| δj |<
1

2
| δj−1 | (j = 1, 2, 3, . . .) (2.1)

b) P ′k (k = 1, 2, . . .) is the first position of RP such that

| δj | + | δ′j |=| δj−1 | (j = 1, 2, 3, . . .) (2.2)

From the above it immediately follows that δk and δ′k have opposite
signs and also that

0 <| δ1 |<
δo
2
<| δ′1 |< δo

0 <| δk |<
1

2
| δk−1 |<| δ′k |<| δk−1 |<

δo
2k

, (k ≥ 2)

Figure 2 shows the position of points Pk, P
′
k (with k = 1, 2, 3). One

also sees that the “fundamental” direction of the diagram that goes
through the position of RP in t = τo = 1 intersects a certain finite
number of horizontals (in the figure, this number is equal to ν1 + 2 =

1 + 2, where ν1 is the integral part of the quotient | δ
′
1

δ1
|) in points with

positive phase shift, and intersects all the other horizontals in points
with negative phase shift. The last of the former ones and the first of
the later ones are obviously P2 and P ′2, and P2 is simply that of the
two which is the nearest to V = 0,that is, with the least value for the
absolute value of the phase shift.

We may remark that, due to the autonomy of our dynamical system,
the positions of RP over the horizontals with order number q such that
jq2 = 3j = (ν1 + 2)j ≤ q < 3(j + 1) = (ν1 + 2)(j + 1) (with j = 1, 2, . . .)
are obtained from the corresponding points over the first ν1 + 2 = 3
horizontals by displacing them at left of a length jδ2, which means,
more precisely, that to those values of the phase shift is now added the
algebraic value of the additional phase shift jδ2 (in the case of figure 2,
δ2 < 0).

If, in order to abridge our notation, we call “block [i]” the ensemble
of horizontals with order numbers q = 0, 1, . . . , qi − 1, then we may say
that a block [i] is followed by at least another ensemble of qi horizontals
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(q = qi, qi+1, qi+2, . . . , 2qi−1) which exactly reproduce the same block
[i] now displaced, as a whole, by a phase shift δi. We shall then speak
of the “displaced blocks” [i]δ1 , [i]2δ1 , . . . , [i]kδ1 , . . .. To be more precise,
[i]kδ1 is formed by the horizontals q = kqi, kqi + 1, kqi + 2, . . . , (k +
1)qi − 1 (k ≥ 1), and the phase shift of the position of RP in each
one of these is equal to that of the corresponding position of RP in [i],
increased (algebraically) by kδ1. Of course, for k = 0, we have [i]kδi = [i].

Let us point out that (with the obvious exception of t = 0) there is
no position of RP in block [i] with phase shift V such that | V |<| δ′i |,
which means that no position of RP can there be found in the | δ′i | -
neighbourhood of V = 0, and that in the most “unfavourable” situation
where q′i < qi. We only need to keep this remark in mind to conclude
from equations (2.7) below that between any two consecutive iterations
there is no better approximation of the RP to its initial situation.

Obviously, similar definitions are given for the points P ′i : Block [i]′ is
thus formed by the horizontals with order numbers q = 0, 1, . . . , q′i−1. It
then follows that [i]′ is either a block [i] extended with some additional
horizontals (if q′i > qi), or a block [i] in which a certain number of
its last horizontals are lacking (if q′i < qi). As for the displaced block
[i]′kδ1 , its properties are similar to those of [i]kδ1 , and it comprehends the
horizontals with order numbers q = kqi, kqi + 1, kqi + 2, . . . , kqi + q′i− 1.

Before proceeding with the deductions, we must introduce a nota-
tion of leading importance for what follows. In fact, one expects the
quotients of the form | δ′k/δk | to play a prominent role in our methods
of calculus. We shall then write

| δ
′
k

δk
|≡ νk + µk

where νk is the integral part of the quotient. We shall also denote by
ν̄k and ¯̄νk the two consecutive integers between which the real number
νk + µk is found, ν̄k being the nearest to νk + µk. In other words this
means that we have:

µk <
1

2
⇒ ν̄k = νk, ¯̄νk = νk + 1

and

µk >
1

2
⇒ ν̄k = νk + 1, ¯̄νk = νk
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(In the example of figure 2 we have ν̄o = νo, ν̄1 = ν1+1 = 2, ν̄2 = ν2 = 2).
Let then be the quotient

2π

δo
≡ νo + µo (2.3)

where νo ≥ 2, and 0 < µo < 1 is the integral part of the irrational
number 2π/δo. It is then clear that

µo >
1

2
⇒ ν̄o ≡ νo + 1⇒

{
0 < (1− µo)δo ≡ δ1

0 > −µoδo ≡ δ′1

µo <
1

2
⇒ ν̄o ≡ νo ⇒

{
0 < (1− µo)δo ≡ δ′1

0 > −µoδo ≡ δ1

(2.4)

As for δ2 and δ′2, their expression is similarly obtained from the
quotient | δ′1/δ1 |≡ ν1 + µ1, and we have

µ1 >
1

2
⇒ ν̄1 ≡ ν1 + 1⇒

{
0 < (1− µ1) | δ1 |≡ δ2

0 > −µ1 | δ1 |≡ δ′2

µ1 <
1

2
⇒ ν̄1 ≡ ν1 ⇒

{
0 < (1− µ1) | δ1 |≡ δ′2

0 > −µ1 | δ1 |≡ δ2

More generally we have for k = 1, 2, . . .

| δ
′
k

δk
|≡ νk + µk (2.5)

µk >
1

2
⇒ ν̄k ≡ νk + 1⇒

{
0 < (1− µk) | δk |≡ δk+1

0 > −µk | δk |≡ δ′k+1

(2.6a)

µk <
1

2
⇒ ν̄k ≡ νk ⇒

{
0 < (1− µk) | δk |≡ δ′k+1

0 > −µk | δk |≡ δk+1

(2.6b)

Upon these expressions one may easily check formulae (2.1),(2.2).
By now taking in consideration what precedes we are finally able to
particularize the structure of blocks [i] and [i]′ defined above. We have
thus:
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a) Block [i+1] (with i = 2, 3, . . .) is formed by the sequence of ν̄i+1
blocks [i], [i]δ1 , [i]2δ1 , . . . , [i](ν̄i−1)δ1 , [i]

′
ν̄iδ1

b) Block [i+ 1]′ (with i = . . . 2, 3, . . .) is formed by the sequence of
¯̄νi + 1 blocks [i], [i]δ1 , [i]2δ1 , . . . , [i](¯̄νi−1)δ1 , [i]

′
¯̄νiδ1

We may leave aside the direct (and easy) proof of these assertions,
since they easily follow by means of a reasoning similar to the one exposed
in figure 2.

If we then denote by qi and Ti the order number and the instant of
time corresponding to point Pi, and by q′i ≡ qi + pi and T ′i ≡ Ti + θi
(with pi and θi positive or negative integers) the same entities attached
to P ′i , then the same kind of argument leads to

Pi+1 : qi+1 = (ν̄i + 1)qi + pi, Ti+1 = (ν̄i + 1)Ti + θi (2.7a)

P ′i+1 : q′i+1 = (¯̄νi + 1)qi + pi, T ′i+1 = (¯̄νi + 1)Ti + θi (2.7b)

with i = 2, 3, . . .

Let us recall that only i − 2 independent operations (the itera-
tions given by formula (2.7)) are needed in order to obtain the values
δi, δ

′
i, Ti, T

′
i , qi, q

′
i, (i ≥ 3) from δ2, δ

′
2, T2, T

′
2, q2, q

′
2 and that these, in turn,

are directly obtained from the “fundamental datum” δo, that is, the quo-
tient of the two periods: φ(t = τo) = (2πτo/τ) mod 2π

Let us also stress that Tk is the first instant of time at which the
RP is found within an arbitrarily small | δk | − neighbourhood of its
initial zero phase shift (with | δk |< δo

2k , k ≥ 1).

Our iteration formulae (2.7) thus provide a simple, deterministic
(that is, non statistical) method for the rigorous determination of the
first | δk |-recurrence of the dynamical system formed by RP and RPo.
Not only do they give the rigorous values of the instants of recurrence
and of the corresponding deviations of RP from the initial position, but
they are also “systematic” in the sense explained above, that is, they
assure the non existence of “better” approximations between any two
consecutive iterations.

Concerning the order of approximation carried by the δk, we must
add that formulae (2.2),(2.5) provide a rigorous expression that advan-
tageously replaces the upper bound δo/2

k. In fact, one gets from them

| δn |= δo.qnk=1(1 + νk + µk)−1 ≤ δo
2n
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III - The inverse problem.

In the present paragraph we are going to solve the following problem:
Given δo ≡ φ(t = τo) = (2πτo/τ) mod 2π and an instant of time t = T
(a positive integer, since τo = 1), find χ(t = T ) and φ(t = T ). We
shall of course assume that the method presented in the foregoing par-
agraph has already provided the basic tools needed in the sequel, viz, the
sequences δk, δ

′
k, Tk, T

′
k, qk, q

′
k, totally determined by the sole knowledge

of the value of δo.

We shall start by dismissing the two cases

0 ≤ T < T1(orT ′1)

and
0 ≤ T < T2(orT ′2)

The first one is trivial and is besides included in the second . Now
this later one (to which, as we shall see, all the others can be reduced) will
be, for this very reason, carefully investigated later on (see, for instance,
equations (α), (α′), (β), (γ)).

For all other cases, it then exists an integer N ≥ 2 such that

T ⇒ ∃N ≥ 2 : TN ≤ T < TN+1 (3.1)

The integer T then unambiguously determines two other integers, aN
and bN in the following way:

T = aNTN + bN (3. (α1)a)

where aN is the greatest integer such that

1 ≤ aN < ν̄N (3. (α1)b)

It then follows that

if aN = ν̄N ⇒ bN = 0, 1, . . . , T ′N − 1

and for all other values of aN ,

bN = 0, 1, . . . , TN − 1
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Let us separately consider the two possible situations for δN :

δN < 0

Then

bN = 0⇒ φ(t = T ) = 2π − aN | δN |= 2π + aNδN

⇒ q(t = T ) = aNqN ⇒ χ(t = T ) + 1 = aNqN

And for the other values of bN , that is, bN = 1, 2, . . . , T ′N − 1 or
1, 2, . . . , TN − 1, we have

⇒ φ(t = T ) = φ(t = bN )− aN | δN |= φ(t = bN ) + aNδN

⇒ χ(t = T ) = aNqN + χ(bN )

Let us now assume that
δN > 0

if bN = 0⇒ φ(T ) = aNδN

⇒ χ(T ) = q(T ) = aNqN

And for all other values of bN , that is, for bN = 1, 2, . . . , T ′N−1 or TN−1,
we have

⇒ φ(t = T ) = φ(t = bN ) + aNδN

⇒ χ(T ) = aNqN + χ(bN )

We then see that the foregoing formulae concerning χ(T ) can be
summarized as follows:

if bN = 0⇒ χ(T ) =

{
aNqN − 1, if δN < 0
aNqN , if δN > 0

if bN 6= 0⇒ χ(T ) = aNqN + χ(bN )

(3. (β1))

As for the formulae concerning the reduced phase, they can be
abridgedly written under the form

if bN = 0⇒ φ(T ) =

{
2π + aNδN , if δN < 0
aNδN , if δN > 0

if bN 6= 0⇒ φ(T ) = aNδN + φ(t = bN )

(3. (γ1))

(Of course, bN 6= 0 means bN = 1, 2, . . . , T ′N−1 or bN = 1, 2, . . . , TN−1).
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If bN = 0, the method comes to its end. If not, we then have two
possibilities, wether we previously got

aN = ν̄N or aN 6= ν̄N ( that is , aN < ν̄N ).

In fact, and starting from the value of bN obtained above, one may
determine two other integers, aN−1 and bN−1, defined as follows:

bN = aN−1TN−1 + bN−1 (3. (α2)a)

where aN−1 is the greatest integer such that

0 ≤ aN−1 ≤ ¯̄νN−1, if aN = ν̄N

0 ≤ aN−1 ≤ ν̄N−1, if aN 6= ν̄N ( that is, if aN < ν̄N )
(3. (α2)b)

One is then found in one of the three possible cases:

aN−1 = ν̄N−1 , aN−1 = ¯̄νN−1 , aN−1 6= ν̄N−1, ¯̄νN−1

Let us assume that we have aN−1 = ν̄N−1. It then follows bN−1 =
= 0, 1, . . . , T ′N−1 − 1. Now

if bN−1 = 0⇒ φ(t = bN ) =

{
2π − aN−1 | δN−1 |, if δN−1 < 0

aN−1δN−1, if δN−1 > 0

⇒ χ(t = bN ) =

{
aN−1qN−1 − 1, if δN−1 < 0
aN−1qN−1, if δN−1 > 0

and

if bN−1 6= 0⇒ φ(t = bN ) = φ(t = bN−1) + aN−1δN−1,∀δN−1

⇒ χ(t = bN ) = χ(t = bN−1) + aN−1qN−1,∀δN−1

If we now consider the case aN−1 = ¯̄νN−1 a mere checking of the pre-
ceding formulae shows that they remain unchanged.

Finally, for all other values of aN−1, that is, if

aN−1 6= ν̄N−1, ¯̄νN−1 ,

the same formulae still hold true, with the only difference that we must
replace T ′N by TN .
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Let us sum up the foregoing conclusions:

if bN−1 = 0⇒ χ(t = bN ) =

{
aN−1qN−1 − 1, if δN−1 < 0
aN−1qN−1, if δN−1 > 0

(3.(β2)a)

if bN−1 6= 0⇒ χ(t = bN ) = aN−1qN−1 + χ(t = bN−1) (3.(β2)b)

As for the reduced phase, it is obtained by means of the following
formulae:

if bN−1 = 0⇒ φ(t = bN ) =

{
2π + aN−1δN−1, if δN−1 < 0
aN−1δN−1, if δN−1 > 0

(3.(γ2)a)

if bN−1 6= 0⇒ φ(t = bN ) = φ(t = bN−1) + aN−1δN−1 (3.(γ2)b)

In equations (3.(β2), (γ2)), the value bN−1 6= 0 obviously means that
bN−1 = 1, 2, . . . , TN−1 − 1 or bN−1 = 1, 2, . . . , T ′N−1 − 1.

The method is thus carried on as long as br is not zero , and we have
(with r = N − 1, N − 2, . . . , 3, 2.) two integers ar and br unambiguously
determined by br+1 in the following way:

br+1 = arTr + br (3. (α3)a)

where ar is the greatest integer such that

0 ≤ ar ≤
{

¯̄νr, if ar+1 = ν̄r+1, or ¯̄νr+1

ν̄r, if ar+1 6= ν̄r+1, or ¯̄νr+1
(3. (γ3)b)

It then follows that br can only take certain values, which are:

if ar = ν̄r or ¯̄νr ⇒ br = 0, 1, 2, . . . , T ′r − 1

if ar 6= ν̄r or ¯̄νr ⇒ br = 0, 1, 2, . . . , Tr − 1

One may then verify that we have

if br = 0⇒ χ(t = br+1) =

{
arqr − 1, if δr < 0
arqr, if δr > 0

(3.(β3)a)

if br 6= 0⇒ χ(br+1) = arqr + χ(t = br) (3.(β3)b)
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And for the reduced phase:

if br = 0⇒ φ(t = br+1) =

{
2π + arδr, if δr < 0
arδr, if δr > 0

(3.(γ3)a)

if br 6= 0⇒ φ(t = br+1) = φ(t = br) + arδr (3.(γ3)b)

If we now take in consideration the whole assemblage formed by
equations (α3), (β3), (γ3), with r = N − 1, N − 2, . . . , 3, 2 we see that
the solution for the problem stated at the beginning of this paragraph
is reduced to finding the values φ(t) and χ(t) for the instants of time
t = b2, with

b2 = 0, 1, 2, . . . , T2 − 1

and
b2 = 0, 1, 2, . . . , T ′2 − 1

Now this is a straightforward investigation that can be carried on directly
by making use of the fundamental lattices as the one shown in figure 1,
in which we represent the positions of RP at instants

t = 0, 1, 2, . . . , T2 − 1 and t = 0, 1, 2, . . . , T ′2 − 1

By simple inspection the reader could thus easily check the following two
properties:

a) Assume that we have ν̄o = νo + 1; let

t ≡ b2 ∈ [0, 1, 2, . . . , T2 − 1] or t ≡ b2 ∈ [0, 1, 2, . . . , T ′2 − 1]

and a1 and b1 be two positive integers defined by means of b2 in the
following way:

b2 = a1T1 + b1 (3. (α)a)

where a1 is the greatest integer such that

0 ≤ a1 ≤
{
ν̄1, if b2 ∈ [0, 1, 2, . . . , T2 − 1]
¯̄ν1, if b2 ∈ [0, 1, 2, . . . , T ′2 − 1]

(3. (α)b)

It then follows that

if a1 = ν̄1, oτ ¯̄ν1 ⇒ b1 ∈ [0, 1, 2, . . . , T ′1 − 1]

if a1 6= ν̄1, ¯̄ν1 ⇒ b1 ∈ [0, 1, 2, . . . , T1 − 1]
(3. (α)c)
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Furthermore, and under the same conditions, we have

χ(t = b2) = a1 (3.(β))

φ(t = b2) = a1δ1 + b1δ0 (3.(γ))

b) If we now go over the case ν̄0 = ν0 and let again

t ≡ b2 ∈ [0, 1, 2, . . . , T2 − 1]

or
t ≡ b2 ∈ [0, 1, 2, . . . , T ′2 − 1]

this integer unambiguously defines two positive integers a1 and b1 as
follows:

b2 = a1T
′
1 + b1 (3. (α′)a)

where a1 is the greatest integer such that

0 ≤ a1 ≤
{
ν̄1, if b2 ∈ [O, 1, 2, . . . , T2 − 1]
¯̄ν1, if b2 ∈ [0, 1, 2, . . . , T ′2 − 1]

(3. (α′)b)

It then follows that

if a1 = 0⇒ b1 ∈ [0, 1, 2, . . . , T ′1 − 1]

if a1 6= 0⇒ b1 ∈ [0, 1, 2, . . . , T1 − 1]
(3. (α′)c)

and we can also verify that

χ(t = b2) = a1 (3.(β))

φ(t = b2) = a1δ1 + b1δ0 (3.(γ))

It is important to stress that (unlike what happened for r = 3, 4, . . .)
the formulae defining ar−1 = a1 and br−1 = b1 (with r = 2), are different
according wether we have ν̄0 = ν0 or ν̄0 = ν0 +1, though, once ar and br
are obtained, the expressions (β), (γ) providing χ(t = b2) and φ(t = b2)
are the same. One must always keep this fact in mind when dealing with
the subsequent algorithms.

It must also be remarked, in connection with the admissible values
for a1, which are (and whatever the value for ν̄0 = ν0 or ν̄0 = ν0 + 1, -
see (α), (α′))

0 ≤ a1 ≤
{
ν̄1, if b2 ∈ [0, 1, 2, . . . , T2 − 1]
¯̄ν1, if b2 ∈ [0, 1, 2, . . . , T ′2 − 1]

(3.2)
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that these inequalities are equivalent to

0 ≤ a1 ≤
{

ν̄1, if a2 6= ν̄2, ¯̄ν2

¯̄ν1, if a2 = ν̄2, or ¯̄ν2
(3.3)

Let us then resume the reasoning leading to formulae (α3), (β3), (γ3)
to which we now add formulae (α)− oτ(α′)− (β) and (γ). We see that
our method, starting from an integer T , unambiguously determines two
sequences of integers,

aN , aN−1, . . . , a2, a1.

bN , bN−1, . . . , b2, b1.

(From these couples ak, bk, only a1, b1 is differently calculated according
to wether we have ν̄0 = ν0 or ν̄0 = ν0 + 1).

Let us assume that we have ν̄0 = ν0 + 1: Then these two sequences
of integers are obtained by means of formulae (α1), (α2), (α3), and (α) -
in that order. And if all the br are different from zero, we have

T =

k=N∑
k=1

akTk + b1 (3.4)

χ(T ) =

k=N∑
k=2

akqk + a1 (3.5)

φ(T ) =

k=N∑
k=1

akδk + b1δ0 (3.6)

If, on the contrary, a certain bs, with s ∈ [N,N−1, . . . , 3, 2] is zero, then
we find the following “truncated” formulae:

T =

k=N∑
k=s

akTk (3.7)

χ(T ) =

k=N∑
k=s

akqk +

{
−1, if δs < 0
0, if δs > 0

(3.8)
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φ(T ) =

k=N∑
k=s

akδk +

{
2π, if δs < 0
0, if δs > 0

(3.9)

Going over the case ν̄0 = ν0, we have seen that the procedure is the
same, with the only difference that formulae (α) must now be replaced
by (α′). This amounts to saying that the sequence of integers ak, bk is
now generated by equations (α1), (α2), (α3), and (α′) - in that order.
One then finds, by assembling together these equations, and assuming
that all the bs are non zero,

T =

k=N∑
k=2

akTk + a1T
′
1 + b1 (3.10)

while the formulae for χ(T ) and φ(T ) - as well as their truncated version
- remain the same as those given above in the case ν̄0 = ν0 + 1.

We have thus completely answered the question stated at the be-
ginning of this paragraph, namely, the determination of χ(T ) and φ(T )
given the value of δ0 and the instant T .

IV - The inverse problem (cont).

We shall now consider another problem, in close connection with the
preceding one: Given δ0 ≡ φ(t = 1) and an integer χ (that is, a certain
horizontal line in our fundamental lattice), to find the reduced phase and
the instants of time corresponding to all the positions of the RP on the
χ -horizontal. This amounts to saying that we want to determine (see
figure 1)
a) the integers T such that lχ + 1 ≤ T ≤ lχ+1.
b) the values of φ(t = T ), where T is any integer given by a)

Now, only problem a) actually matters since, once it is solved, prob-
lem b) immediately follows by making use of the method presented in
the preceding paragraph.

We begin by considering again the three formulae (3.4), (3.5), (3.6).
(In what follows we are less concerned by the corresponding truncated
formulae). We see that the integers aN , aN−1, . . . , a2, a1 and b1 appear in
all of them, while b1 appears in the first two, but not in the last one. In
other words: the ensemble of the positions of RP on the χ(T )-horizontal
(that is, the values of their reduced phases and the corresponding instants
of time) is completely identified by the integers aN , aN−1, . . . , a2, a1, and
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each particular position on this ensemble only differs from the others by
the value of b1, the which can take any admissible value compatible with
those of the aN , aN−1, . . . , a2, a1.

This last point deserves some further comments. We first recall the
sequence of inequalities given in paragraph III and which confine the
integers ar to a certain domain of admissible values:

1 ≤ aN < ν̄N (4.1)

1 ≤ aN−1

{
ν̄N−1, if aN 6= ν̄N
¯̄νN−1, if aN = ν̄N

(4.2)

0 ≤ ar ≤
{

ν̄r, if ar+1 6= ν̄r+1, ¯̄νr+1

¯̄νr, if ar+1 = ν̄r+1 or ¯̄νr+1

(r = N − 2, N − 3, . . . , 3, 2)

(4.3)

As for r = 1, we have seen that ar = a1 is calculated differently according
to the value of ν̄0 = ν0 or ν̄0 = ν0 + 1: see (3. (α), (α′)). And we have
(see the equivalent inequalities (3.2) and (3.3))

0 ≤ a1 ≤
{

ν̄1, if a2 6= ν̄2, ¯̄ν2

¯̄ν1, if a2 = ν̄2 or, ¯̄ν2
(4.4)

Finally, if ν̄0 = ν0 + 1,

a1 =

{
= ν̄1, or ¯̄ν1 ⇒ b1 ∈ [0, 1, . . . , T ′1 − 1]
6= ν̄1, ¯̄ν1 ⇒ b1 ∈ [0, 1, . . . , T1 − 1]

(4.5)

and if ν̄0 = ν0,

a1 =

{
= 0⇒ b1 ∈ [0, 1, . . . , T ′1 − 1]
6= 0⇒ b1 ∈ [0, 1, . . . , T1 − 1]

(4.6)

It is now clear that the chain of upper bounds for the as (whose
structure is entirely determined by the sequence of integers ν̄k, νk, with
k = N,N − 1, . . . , 2, 1 and 0 ) assigns precise upper bounds for the
admissible values of b1.

Let then be an integer χ, labeling some horizontal line in the di-
agram of the reduced phase, and let T be an instant of time (that is,
a positive integer) corresponding to some position of RP on the χ -
horizontal: lχ + 1 ≤ T ≤ lχ+1. Assuming that χ is known, we want to
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determine the possible values of T . Of course, if we knew one of these
admissible values of T we could (starting with T and making use of the
method of paragraph III ) obtain the sequence of the integers

N, aN , bN , aN−1, bN−1, . . . ,

and introduce these values in formulae (3.4), (3.5), (3.6) or (3.7), (3.8),
(3.9). Now we may reason more particularly starting from χ. In fact, it
exists an integer N such that

χ⇒ ∃N : qN ≤ χ < qN+1 (4.7)

Let us then define two integers aN , b
′
N in the following way:

χ = aNqN + b′N (4. (A1)a)

where aN is the greatest integer such that

1 ≤ aN < ν̄N (4. (A1)b)

It then follows that

aN =

{
= ν̄N ⇒ b′N ∈ [0, 1, . . . , q′N − 1]
6= ν̄N ⇒ b′N ∈ [0, 1, . . . , qN − 1]

(4. (A1)b)

Now it is of full significance to remark that N and aN (as well as the
integers aN−1, aN−2, . . . that will appear in the sequel) are the same
N, aN , aN−1, aN−2, . . . that would be obtained by the method of the
preceding paragraph (namely, equations (α1), (α2), (α3)) starting from
the value of any T on the χ -horizontal, that is, lχ + 1 ≤ T ≤ lχ+1.
Needless to say, there is “a priori” no reason for having b′N = bN , b

′
N−1 =

bN−1, b
′
N−2 = bN−2, . . . etc.

From b′N we define, in a similar way, aN−1 and b′N−1:

b′N = aN−1qN−1 + b′N−1 (4. (A2)a)

where aN−1 is the greatest integer such that

0 ≤ aN−1 ≤
{
ν̄N−1, if aN 6= ν̄N
¯̄νN−1, if aN = ν̄N

(4. (A2)b)
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We then have

aN−1 =

{
= ν̄N−1, or ¯̄νN−1 ⇒ b′N−1 ∈ [0, 1, . . . , q′N−1 − 1]
6= ν̄N−1, ¯̄νN−1 ⇒ b′N−1 ∈ [0, 1, . . . , qN−1 − 1]

As long as the b′s are non zero, the method is carried on:

b′r+1 = arqr + b′r(r = N − 1, N − 2, . . . , 3, 2) (4. (A3)a)

where ar is the greatest integer such that

0 ≤ ar ≤
{

ν̄r, if ar+1 6= ν̄r+1, ¯̄νr+1

¯̄νr, if ar+1 = ν̄r+1 or ¯̄νr+1
(4. (A3)b)

It then follows that

ar =

{
= ν̄r, or ¯̄νr ⇒ b′r ∈ [0, 1, . . . , q′r − 1]
6= ν̄r, ¯̄νr ⇒ b′r ∈ [0, 1, . . . , qr − 1]

From formulae (A1), (A2), (A3) we may now infer that

χ =

k=N∑
k=2

akqk + b′2

if we assume that all the b′s are different from zero. If, on the contrary,
we have, for some s, b′s = 0, then we find

χ =

k=N∑
k=s

akqk

We now recall the remark stated at the beginning of this paragraph,
and keep in mind that if we knew any T such that lχ+ 1 ≤ T ≤ lχ+1, its
value would be fixed, according to the method exposed in the preceding
paragraph, by the same integers ar which we have just obtained starting
from given χ, and also by a1 and b1. From this we conclude that

a1 = b′2 (4.8)

We now see that the integers T : lχ + 1 ≤ T ≤ lχ+1 are given by the
same formula (3.4) of paragraph III in which:



Fast iterative method for the recurrence . . . 333

1) integers aN , aN−1, . . . , a3, a2 are those we have just calculated
directly from χ, following formulae (A1), (A2), (A3);

2) integer a1 is equal to b′2, which has also been obtained by direct
calculation from χ;

3) integer b1 may have any value compatible (in the sense explained
above, in connection with formulae (4.1) to (4.6)) with the values taken
by aN , aN−1, . . . , a3, a2, a1.

The problem stated at the beginning of this paragraph is then com-
pletely solved.
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