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On Quantum Optics

Gregor Wentzel∗

Since Einstein’s deduction of Planck’s radiation law, in quantum
statistics certain probabilities are usually attributed to emission and ab-
sorption processes without making more precise assertions over them.
We want to propose here a general ansatz for such probabilities, which
seems adequate to help in overcoming the contradiction present in theo-
retical optics – wave theory of interference and polarisation on one side,
quantum theory of spectral lines on the other one. We understand inter-
ference as expression of fundamental quantum statistical laws. To this
end, the instrument will be a quantum interpretation of the phase of light
in wave theory.

§ 1. The phase. Let us consider the path of a light ray from the
emitting atomic system E to the absorbing atomic system A. For the
undulatory theory of interference, the phase

ϕ =

A∫
E

ds

λ
=
ν

c

A∫
E

nds (1)

(ν = frequency, λ = wave length, n = refraction index, ds path element)
is essential. We claim that the phase ϕ can be seen in quantum theory
as a pure mechanical quantity.

Surely, the most important fundament of quantum theory is the
statement that an atomic system cannot radiate as long as it finds itself in

∗ Translation of the original article, received February 2, 1924, Zur Quanten-
theorie des Röntgenbremsspektrums, ZS f. Physik, 22, 193-199 by Dierck-
E.Liebscher
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a mechanical state, that is, that absorption and emission involve always
non-mechanical “transitions”. However, not only the acts of emission
and absorption will be non-mechanical; also along its whole path the
light will produce continuous non-mechanical perturbations in the atoms
of the traversed medium. In order to obtain an invariant measure for the
size of these perturbations, i.e. for the deviations of the internal atomic
motions from Hamiltonian mechanics, the motion of all atomic systems
touched by the process of light propagation will be described by a system
of canonical momentum and position coordinates αk, βk, most simply
a system whose momenta αk are constant in mechanical states (αk =
integration constant of Hamilton’s partial differential equation of the
total system). The desired measure for the deviations from mechanics
results in the integral

∫ ∑
k βkdαk, which should be extended over all

non-mechanical processes, i.e. over all variations of αk. We claim that
the phase ϕ, up to a universal dimensional factor h (the Planck quantum
of action), is identical with this integral:

ϕ =
1

h

∑∫
βkdαk . (2)

It is well known that, according to Jacobi, it is possible to introduce
the energy W as one of the momentum coordinates (α1); more exactly,
the sum of the energy of all participating atomic systems, by this way
supposing them all to be coupled in principle. Because the position co-
ordinate β1 conjugate to W is the time t, instead of eq.(2) we obtain

ϕ =
1

h

[∫
tdW +

∑
2

∫
βkdαk

]
. (3)

For the moment, we consider only the systems E and A, i.e. we
consider the case of the light propagation in vacuo. Provisionally, it is
supposed that the acts of emission and absorption happen in no time.
The emission, i.e. a reduction of the energy (at E) by a certain amount
−∆W takes place at the instant tE ; by the energy principle, at the
instant tA the system has to return to its original energy by the reas-
sumption of the energy amount +∆W (at A). Hence, eq.(3) yields

ϕ =
1

h

[
∆W (tA − tE) +

∑
2

∫
βkdαk

]
. (4)
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But tA− tE is equal to the length of the light path l divided by the light
velocity c (in vacuo). Consequently:

ϕ =
∆W

hc
· l +

1

h

∑
2

∫
βkdαk

=
l

λ0
+ . . .

(5)

where

λ0 =
hc

∆W
=
c

ν
(6)

is the vacuum wave length corresponding to Bohr’s hν principle.

The assumption of instantaneity of emission and absorption is not
essential; it is sufficient to suppose that each infinitesimal element of
energy dW needs the time l/c to get from E to A; then eq.(5) follows
from eq.(3). The only property of the “light quantum” that is essential
here is its propagation velocity c.

Apart from the contributions of the degrees of freedom k = 2, 3, . . .,
which we will not consider until §3, eq.(5) coincides with eq.(1) for n = 1.
By identification of eq.(1) with eq.(2) for arbitrary refracting media too,
we obtain by use of eq.(6):

n =
c

∆W
· d

ds

∑
1

∫
βkdαk . (7)

Hence, the refraction index measures quantally the deviation from me-
chanics per path and energy unit. Its dependence on ∆W and on the
medium is part of the subject of a quantum theory of dispersion which
Mr.K.F.Herzfeld will publish soon in this journal1. We can write Fer-
mat’s principle δ

∫
nds = 0 as δ

∑∫
βkdαk = 0, and we may state that

on the light paths of geometrical optics the overall deviation from me-
chanics is at minimum.

§ 2. The interference formula. By substitution of the classical wave
phase by our quantum phase, it is simple to translate the interference
formula of wave theory into the language of quantum statistics: If the

1 The author acknowledges many instigations to this work from the discussions
with Mr.Herzfeld about the possibilities of a quantum theory of interference
and dispersion.
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light quantum may choose different paths s from E to A, the probability
that it passes to A on some path and is absorbed there is not equal to
the sum of the a priori probabilities of the individual light paths, but J
times as much, where

J =
(FF̃)

| F0 |2
, (8)

F0 =
∑
s

fs , F =
∑
s

fse
2πi·ϕs (9)

Here, ϕs are the phases eq.(2), taken over the individual paths s, and fs
the vectorial amplitudes of the classical waves to whose quantal meaning
we come back in §3. In orthogonal xyz-coordinates the factor J reads:

J =

(
∑

fsx cosϕs)
2 + (

∑
fsx sinϕs)

2 + (
∑

fsy cosϕs)
2

+(
∑

fsy sinϕs)
2 + (

∑
fsz cosϕs)

2 + (
∑

fsz sinϕs)
2

(
∑

fsx)2 + (
∑

fsy)2 + (
∑

fsz)2
(10)

The formal coincidence of the numerator with the square of the ampli-
tude of superposed waves ensures the ansatz, eq.(8), to be universally
valid for the representation of interference phenomena of any kind. In
contrast with the wave theory our ansatz has the advantage that it guar-
antees a priori the identity of the “wave lengths” measured by interference
and by the photo effect. Schrödinger2 has shown that these wave lengths
show the correct Doppler shift too, if the systems E and A are moving.

For our ansatz, the assumption is essential that the emitting and
the absorbing system are coupled in principle, according to a general
thesis recently formulated by Smekal3. Firstly we had to assume in § 1 a
mechanical coupling, in order to relate mutually the evolution in time of
the different atomic systems in a unique way. Furthermore, formula (8)
puts the quantum processes in the individual systems in mutual depen-
dence. It is highly remarkable that according to our interpretation the
presence of the absorbing system A is indispensable for any interferences
to happen; in vacuo, such interferences are not only unobservable, but
not existing in principle. An intensity of light measured by the number
of light quanta per unit of time and area could never show interferences
slanted to the light path, as one can easily recognize with the example
of standing waves.

2 Phys.ZS.23, 301, 1922.
3 Wiener Anzeiger 1922, Nr.10, S.79
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In our conception, the emissions of two different atoms E, E′ are
obviously incoherent in principle, if light paths touching all three atoms
E, E′, A do not play a special rôle4.

§ 3. On the theory of spectra. Now we intend to consider in de-
tail the dependence of the interference phenomenon on the character of
the emitting atom E. We will suppose in particular that the system E
is conditionally periodic and that the corresponding partial differential
equation is separable. In conformity to this, the position coordinates βk
are chosen to be the so-called angle variables wk which, apart from their
linearity in time, are determined by the fact that the system is periodic
in the wk with period 1. It is well known that the conjugate momentum
constants αk = Ik are identical with the “phase integrals” (

∮
pkdqk) of

quantum theory.

In order to decompose the phase ϕ according to eq.(3) in these

4 The finite coherence length of the emissions of an atom can be taken into
account by a supplementary postulate. The phase differences in eqs.(8), (9)
for two light paths s and s′ can be written:

ϕs − ϕs′ = ∆W/hc ·
∫
nds,

where the integral is taken over the closed curve E → s → A → s′ → E.
We now require this curve to be closed not only in space, but also in time,
meaning that the energy quantum ∆W is present in the system also for the
times tEs− tEs′ and tAs− tAs′ respectively, i.e. is stored in the systems E and
A. To this end,

| tEs − tEs′ |< τE , | tAs − tAs′ |< τA

is required, if τE and τA are the times spent by the quantum ∆W in the
atoms E and A, respectively. In general, ∆W/h will not be an eigenfrequency
of the system A, and τA will be practically zero. The absorption times tA
to be substituted in eq.(4) have to coincide practically. This corresponds to
the circumstance that in wave theory those wave trains interfere which arrive
simultaneously at A. On the other hand, only those rays s and s′ interfere
whose emission times tE differ less than τE . The mean life time of the initial
state of E plays the part of a coherence time. In fact, the equation

coherence length = life time× light velocity

corresponds well to the known values: 102 cm = 10−8 s ·1010 cm/s.
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coordinates too, we use the relation

wk = t · ∂W
∂Ik

+ uk , (11)

where the uk mean undetermined phase constants. In this case, the
expression eq.(2), as far as system E is concerned, reads:

ϕ =
1

h

∫ ∑
wkdIk =

1

h

[ ∫
tdW +

∑∫
ukdIk

]
. (12)

It is assumed now that the phase constants uk remain unchanged during
the transition (i.e. while the Ik are changed by ∆Ik)5. Then, eq.(12)
yields

ϕ =
1

h

[ ∫
tdW +

∑
uk∆Ik

]
+ . . . (13)

For given values of ∆Ik, the transition still can occur with different
values of uk. Consequently, we have to generalize our probability ansatz
(§2) so that the probability of a transition with any value of uk differs
from the sum of the individual probabilities by a factor J again, where
the average must be taken now not only over the light paths s, but also
over the phase constants uk. For the vectorial coefficients fs (in eq.(9))
we will be able to write in general:

fs = Es(uk) · du1du2 . . . (14)

Hence, in place of eq.(9) we find

F0 =
∑
s

∫
. . .

∫
du1du2 . . .Es(uk) ,

F =
∑
s

∫
. . .

∫
du1du2 . . .Es(uk)e2πi[

∑
uk∆Ik/h+

∫
tdW/h+...] .

(15)

5 Hence, we require that – in action-angle coordinates – the second of the two
Hamilton equations

Ik = const., uk = const.

remains valid also during non-mechanical transitions. But we have to restrict
this requirement explicitly to the spontaneous transitions; e.g., if we would ex-
tend it to processes which light arouses in the atoms of refracting media (§ 1),
the refraction index eq.(7) would yield 1 always. As opposite to the sponta-
neous processes, one can take the adiabatic ones, where the Ik are constant on
average over long time intervals, but where the uk are varying in general (note

added in proof).
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Now, by postulate the system E in toto is periodic with period 1 in the
wk and by eq.(11) in the uk too . Consequently, the function Es(uk) can
be expanded into a Fourier series of the following kind

Es(uk) =
∑
nk

D(s)
nk
e−2πi

∑
nkuk (16)

(nk integer). If eq.(16) is substituted into eq.(15) and integrated over all
uk from −∞ to +∞, assuming∑

s

D
(s)
0 6= 0

the probability expression, eq.(8), vanishes, except for the case of all
∆Ik being integer multiples of h. Hence, our formula yields that the
momenta Ik jump only by integer multiples of h, in conformity with the
well-known quantum conditions of separable systems:

∆Ik = nk · h . (17)

Once “quantized”, an atom will proceed to a quantized state again and
again.

By substitution of eq.(17) in eq.(15) and eq.(8), respectively, we
obtain a measure for the probability of transitions between quantized
states, i.e. for the intensity of the corresponding spectral lines. Now,
since the whole integrand of eq.(15) is periodic in the uk by eqs.(16) and
(17), it is sufficient to integrate over the unit cube 0 ≤ uk ≤ 1; then one
obtains:

F =
∑
s

D(s)
nk
· e2πi

∫
tdW/h+... =

∑
s

D(s)
nk
· e2πi

∫
ds
λ . (18)

Here, the coefficient D(s) is the amplitude of a certain harmonic in
eq.(16), namely the one of the order nk = ∆Ik/h. The formula eq.(18)
becomes identical with Bohr’s correspondence principle for intensity and
polarisation, if the vector Es of eqs.(14) and (16) is identified with
the wave-theoretical light vector radiated from the system E in position
wk = uk via the path s to A. According to Bohr, it remains undeter-
mined whether the classical radiation, eq.(16), has to be calculated for
the initial state, or for the final state, or else for an intermediate state. If
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the amplitude D of the harmonic in question vanishes for all intermediate
states, the correspondence principle sharpens to a selection rule.

The expression, eq.(18) is formally identical with the classical peri-
odic light vector; only the mechanical orbital frequency is replaced by the
quantum frequency ∆W/h, by averaging the former in the integration
procedure over uk and introducing the latter by the probability ansatz.
In the interference formula, eq.(10), one can replace the vectors fs di-

rectly by the classical light amplitudes D
(s)
nk . This offers the possibility to

take over the classical boundary conditions for D(s) at the boundaries of
different media (discontinuities of n) by correspondence; then evidently
result the laws of refraction, reflection, dichroism (polarisation) just as in
undulatory theory. In fact, Huygens’ principle rests upon interferences.

For the moment, the translation of the preceding considerations to
non-periodic systems E is opposed by the difficulty that in this case
the definition of a privileged system of position coordinates similar to
that of angle variables is not so simple. It would be only necessary to
uniquely define a system of normal coordinates whose phase constants
uk (see above) shall remain unchanged during the transition. The author
intends to consider this question soon in more detail elsewhere, in the
example of the continuous Röntgen spectrum.

While up to now in quantum theory the Planck quantum of action is
required at two essentially distinct points, namely in the hν principle and
in the quantum conditions, it is introduced here only once, namely in the
expression, eq.(2), for the phase ϕ. Here, we obtained the hν principle,
the quantum conditions, and the correspondence principle from the one
expression, eq.(2), together with the probability ansatz, eqs.(8, 15); the
hν principle without restrictive assumptions, the quantum conditions
and the correspondence principle by privileging the system of angle co-
ordinates.

Munich, Institute for Theoretical Physics, January 1924.


