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ABSTRACT. The paper deals with the determination of the initial
wave function of the measured physical system, i.e. finding the func-
tion module and phase. A version of the Stern-Gerlach device with
a weak inhomogeneous magnetic field is suggested for the particle
spin state determination. It is shown that this version realizes quan-
tum measurement of a noncanonical kind. The comparison with the
conventional Stern-Gerlach measurement is presented. We discuss
the possibility of a reductionless measurement of the spin state when
this state does not alter during its measurement.

RÉSUMÉ. L’objet de cet article est la détermination de la fonc-
tion d’onde d’un système physique soumis à une mesure c’est-à-dire
la détermination du module et de la phase de cette fonction. Pour
déterminer l’état de spin d’une particule, on propose ici une version
de l’expérience de Stern–Gerlach utilisant un champ magnétique in-
homogène et faible. On montre que ce modèle correspond à une
mesure quantique de type non-canonique et on établit la compara-
ison avec l’expérience classique de Stern–Gerlach. Enfin on discute
la possibilité d’une mesure de l’état de spin sans réduction lorsque
l’état ne change pas pendant la mesure.

1 - Introduction.

Quantum measurement of an individual physical system gives a par-
ticular value of the observable. The value is usually of little interest. It
is the probabilities of particular values which are of real importance.
But the probabilities are the property of the state of the system under
measurement and not of the observable. This paper deals with the de-
termination of the initial spin wave function, i.e. modules and phases
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of a finite number of the function components (two for spin 1/2). This
determination is possible using the known Stern-Gerlach device (see [1]
and sect. 3.5 below) which is the popular example of the canonical
scheme of quantum measurement, e.g. see [2] [4]. The first purpose
of this paper is to show that this determination can be done in a way,
which is beyond the canonical scheme, by using a version of the Stern-
Gerlach experiment with a weak purely inhomogeneous magnetic field
b(x) (for definition see sect 2.2 below). The second purpose is to discuss
under what condition the initial spin state does not change during its
measurement and remains the same after the measurement as before it.

Section 2 presents a model of the Stern-Gerlach experiment with a
weak inhomogeneous field

B(x) = Bc + b(x)

New peculiarities that arise in this case (as compared to the conventional
Stern-Gerlach case) are stated in sect. 5. They are basically represented
(and are most prominent) when B(x) is the purely inhomogeneous field
b(x) (the case Bc = 0). This is the reason for calling section 2 “The
Stern-Gerlach experiment with a weak purely inhomogeneous magnetic
field”. This version is compared in sect 3 with the usual Stern-Gerlach
measurement.

In both the sections 2 and 3 we use from the outset the inhomo-
geneous magnetic field B(x) which satisfies the equations div B = 0
and rot B = 0 (we consider the most general case of this type of a
field provided it is linear in x). The so- called “impulsive measurement”
approximation [2],[1] is not employed in this paper.

In sect. 4, we discuss a reductionless way of the spin state determi-
nation suggested by Aharonov, Anandan and Vaidman [5]. The peculiar-
ities of the spin state determination proposed in sect 2 are commented
in sect 5.

2 - Version of the Stern-Gerlach experiment with a weak purely
inhomogeneous magnetic field.

Global movement of atoms or other neutral particles in the Stern-
Gerlach magnetic field depends upon particles’spin state. So the mea-
surement of particles’ position or momentum allows one to obtain infor-
mation on a spin state. This measurement is supposed to obey the usual
postulates of the quantum measurement.
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2.1. In the real Stern-Gerlach experiment the beam of atoms passes
through a region where there is a constant inhomogeneous magnetic
field. The following model of the experiment is used here.

Initially at t = 0 the atom state is described by a wave packet, e.g.
being at rest. At t = 0 a magnetic field B is turned on in the region of
the packet localization. The field is turned out at t = T and then the
atom momentum is measured. The model Hamiltonian is

H = p2/2M + g(t)µσ ·B (1)

Here p = −i∇x is the atom momentum operator conjugated to
the atom center-of-mass coordinate x; M is the atom mass; 2µ is its
magnetic moment; σ = (σ1, σ2, σ3) are the Pauli matrices. The function
g(t) is zero outside the interval (0, T ) and realizes the smooth turning
on and out of the magnetic field. In the most part of (0, T ) the function
g(t) is unity so that ∫ T

0

g(t)dt ∼= T

There are more realistic models of the Stern-Gerlach device, see e.g.
[6], but the described one is simple and is of use [1].

2.2. Let us stress that the equations div B = 0 and rot B = 0 must
be satisfied when describing the inhomogeneous part of B = B(x) (rot
B = 0 is the Maxwell equation in the region where the current density
generating the magnetic field is zero). The homogeneous (x independent)
part of B(x), let us call it Bc, of course satisfies these equations. The
simplest inhomogeneous magnetic field (i.e. linear in x and vanishing at
x = 0) is of the form

bi(x) =
∑
j

Lijxj , i, j = 1, 2, 3 .

The equations div b = 0 and rot b = 0 lead to
∑
i Lii = 0 and Lij = Lji,

see [7]. The real symmetric matrix L is hermitian and can be diagonal-
ized, i.e. be represented as

Lij =
∑
α

〈i|να〉βα〈να|j〉 , α = 1, 2, 3 , β1 + β2 + β3 = 0 (2)

where its eigenvectors να are orthonormal and real:

〈i|να〉 = 〈να|i〉 = (να)i
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So
bi(x) =

∑
α

∑
j

〈i|να〉βα〈να|j〉xj

B(x) = Bc + b(x) = Bc +
∑
α

βα(x · να)να
(3)

The field b(x) is called purely inhomogeneous. For its realization see [8].

2.3. Let the initial atom state be described by the vector ψ0 =
ϕ0(x)χ0(m), ϕ0 and χ0 having a unit norm. The function ϕ0(x) is a
wave packet located in a region between current wires creating B(x).
The spin wave function χ0(m), m being spin projection, is unknown and
must be determined. Let us represent the solution of the Schroedinger
equation

i∂tψ(t) = [P 2/2M + g(t)µσ ·B(x)]ψ(t) , ψ(t = 0) = ψ0 (4)

as
ψ(t) = exp(−iH0t)ψI(t), H0 = P 2/2M

Then, one gets for ψI(t) the interaction picture equation

i∂tψI(t) = HI(t)ψI(t) = g(t)µσ ·B(x(t))ψI(t) (5)

HI(t) ≡ exp(iH0t)HI exp(−iH0t)

x(t) = exp(iH0t)x exp(−iH0t) = x + tp/M
(6)

Note that σ commutes with H0 and, therefore,

σ(t) ≡ exp(iH0t)σ exp(−iH0t) = σ (7)

The solution of eq.(5) is represented with the help of T -exponent

ψI(t) = T exp[−iµ
∫ t

0

dt′g(t′)σ ·B(x(t′))]ψI(0)ψI(0) = ψ0 (8)

because [HI(t1), HI(t2)] 6= 0. For the Texp definition see, e.g., eq.(21)
below.

Let us assume that the interaction HI is weak and, therefore, one
may calculate ψI(t) using perturbation theory. This means that the mag-
netic field or/and particle magnetic moment are supposed to be small.
The approximation is contrary to the usual impulsive one, when one
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supposes that H0 may be neglected as compared to HI in the interval
(0, T ), see e.g. [1,2]. Then, one has

ψI(t) ∼= [1− iµ
∫ t

0

dt′g(t′)σ ·B(x(t′))]ψ0 (9)

2.4. Let us show that the measurement of atoms’ momentum distribution
at t > T allows one to determine χ0. For this purpose, calculate the
average value of the momentum operator p at t > 0 in the state ψ(t) =
exp(−iH0t)ψI(t)

〈pk〉 ≡ 〈e−iH0tψI(t) | pk | e−iH0tψI(t)〉 = 〈ψI(t) | pk | ψI(t)〉

∼= 〈ψ0 | [1 + iµ

∫ t

0

dt′g(t′)σ ·B(x(t′))]

pk[1− iµ
∫ t

0

dt′g(t′)σ ·B(x(t′))] | ψ0〉

∼= 〈ϕ0 | pk | ϕ0〉+ iµ

∫ t

0

dt′〈ψ0 | [σ · b(x(t′)), pk] | ψ0〉

= 〈pk〉0 − µ
∫ t

0

dt′g(t′)
∑
α

βαζ0 · να(bnuα)k

ζ0 ≡ 〈χ0 | σ | χ0〉

(10)

We have used here eqs.(9) and (3). Let us direct the coordinate axes
along να so that (να)k = δαk. Then, at t > T one can rewrite eq.(10) as

〈pk〉 = 〈pk〉0 − µTβkζ0k (11)

where 〈pk〉0 is the k− th projection of the initial average atom’s momen-
tum P0. Note that 〈pk〉 does not depend upon Bc but only on b(x).
If one knows µ, T, βk 6= 0 and measures 〈p〉 − p0, then one can deter-
mine ζ0k, i.e. the initial polarization vector. This is equivalent to the
determination of the initial spinor χ0 which is the σ · ζ0 eigenfunction
describing the spin directed along ζ0, see Appendix. Note that if βk = 0
for some value of k, then the related projection ζ0k cannot be found.

Note that the result (11) is true also in the case when atom’s initial
spin state is described by a density matrix ρ0 or by the polarization
vector ζ0 = Trρ0σ.
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Using eq.(9) one may calculate

ψ̃I(p,m, t) =

∫
d3xe−ip·xψI(x,m, t) (12)

and show that the maximum of the momentum distribution∑
m

| ψ̃I(p,m, t) |
2

is shifted as compared to the maximum of | ϕ̃0(p) |, and the shift value
is the same as 〈p〉 − p0, i.e., is equal to µTβkζ0k.

2.5. Let us investigate under what conditions the atom spin state af-
ter measurement is the same as the initial one. First of all, the state
must not change when atom interacts with the magnetic field (during
“premeasurement” [9]). After that it must not change when measuring
atoms’ momentum distribution after this interaction (this is needed to
calculate 〈pk〉).

For this investigation one must use the description of the spin state
at t > 0 by the density matrix

ρ(m1,m2) =

∫
d3xψ(x,m1, t)ψ

∗(x,m2t) (13)

because the atom wave function ψ(x,m, t) has not the form of a product
ϕ(x, t)χ(m, t) see e.g. eq.(9). Instead of ρ one can equivalently use the
polarization vector [10]

ζ = Trρσ =

∫
d3x

∑
m1m2

ψ∗(x,m2, t)σm2,m1ψ(x,m1, t) (14)

because ρ = (1 + ζ · σ)/2.

Using eq.(9) one can calculate zeta in complete analogy with the
〈pk〉 calculation in sect. 2.4

ζk = 〈ψI(t) | σk | ψI(t)

= ζ0k − 2µ

∫ t

0

dt′g(t′)
∑
m1n

εmkn〈ϕ0 | Bcm + bm(x(t′)) | ϕ0〉ζ0n
(15)



Measurement of spin state using Stern-Gerlach devices 397

The term ∼| B |2 is neglected, εmkn is the unit antisymmetric tensor.
The second term in the r.h.s. of eq.(15) vanishes if Bc = 0 or Bc ‖ ζ0
and if < ϕ0 | bm(x(t′)) | ϕ0 >= 0. The calculation of 〈ϕ0 | bm | ϕ0〉 due
to eqs.(3) and (6) is reduced to the integrals∫

d3xϕ∗0(x)xϕ0(x) ,

∫
d3xϕ∗0(x)(−i∇x)ϕ0(x) (16)

They vanish if ϕ0(x) = ϕ0(−x) and average momentum of the state ϕ0 is
zero, e.g. ϕ0 = f(x2), f(x2) ∼ exp(−x2/l2). The first integral vanishes
also in the case of the moving packet ϕ0(x) = exp(ip0 · x)f(x2) but the
second is then equal to p0. The second term in the r.h.s. of eq.(15) will
still vanish in this case if one takes instead of (3) the “running” field bt
which moves together with the packet

b(x)→ bt(x) = b(x− vt) , v = p0/M (17)

So we have approximately ζ = ζ0 in the case of purely inhomo-
geneous magnetic field and under the conditions described above. In
particular, the spin state does not change provided the atom packet is at
rest and is located symmetrically in the field, i.e. ϕ0(x) = ϕ0(−x). This
result can also be obtained by using ψ̃I(p,m, t), see eq.(12), instead of
ψI(x,m, t). Then, the integrals∫

d3pϕ̃∗0(p)i∇pϕ̃0(p) ,

∫
d3pϕ̃∗0(p)pϕ̃0(p) (18)

appear instead of (16), the integration being over all possible p values
belonging to supp ϕ̃0.

Let us now examine the change of the spin state when the atom
momentum is measured. To determine the average momentum 〈p〉, see
eq.(11), one must find atoms’ momentum distribution, i.e., the probabil-
ities of finding the momentum in the regions S(p,4), p being the region
center and 4 its dimension. Each of these probabilities is given by the
expectation value of the projection observable

Πp(4) =

∫
S(p,4)

d3p′ | p′〉〈p′ |

in the state ψ(T ) (momentum distribution does not change after T ).
For the subensemble of atoms which suffer the reduction in S(p,4) the
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equality ζ = ζ0 does not hold in general, because the integrals (18) do
not vanish in general if they are taken over S(p,4). The exception
is the case when the center p of S(p,4) coincides with 〈p〉 and its
dimension ∆ is of an order of momentum uncertainty in the state ψ(T )
i.e., when S(p,4) is the effective supp ψ̃(T ). The expectation value of
the corresponding projector is almost unity: almost all atoms reduce in
the exceptional momentum region. Therefore, ζ = ζ0 can be valid for
the case. But the exceptional region is unknown until 〈p〉 is determined.

3 - Comparison with the conventional Stern-Gerlach measure-
ment.

The treatment of the conventional Stern-Gerlach measurement
needs an explicit expression for ψ(t) = exp(−iH0t)ψI(t) while only av-
erage values have been calculated in sect. 2.

3.1. Let us argue that under some condition one can simplify significantly
eq.(8) for ψI(t) replacing σ ·B(x(t′)) by σ ·Bc+σ ·b(x), i.e., neglecting
the term tσ · b(p)/M , see eq.(6) for x(t).

In the first approximation of perturbation theory one has

ψI(t) = [1− iµ
∫ t

0

dt′g(t′)σ ·B(x(t′))]ψ0 = ψ0 + ψB + ψx + ψp (19)

ψx ≡ −iµ
∫ t

0

dt′g(t′)σ · b(x)ϕ0χ0

ψp ≡ −iµ
∫ t

0

dt′g(t′)
t′

M
σ · b(p)ϕ0χ0

(20)

Let us compare the ψx and ψp norms in the case of the immovable
packet of the dimension l, e.g.

ϕ0(x) = f(x2) = N exp(−x2/l2)

Suppose l to be a macroscopic length, e.g. l = 0, 1 cm. In the first
integral of eqs.(20) we have xϕ0 ∼ lϕ0 whereas in the second one

t

M
pkϕ0 ∼

t

M

h

l
ϕ0 = ct

λc
c
ϕ0

where λc = h/Mc (the possible momentum values in the initial state are
confined in the sphere of the radius h/l). So the ratio ‖ ψp ‖ / ‖ ψx ‖
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is of the order (λc/l) · (cT/l) where λc/l ∼ 10−13 (the hydrogen mass is
substituted for M).

It is reasonable to impose the requirement q ≥ h/l for the mo-
mentum change q of the atom beam after its interaction with the mag-
netic field during the time interval (0, T ) (see eq.(26) below for q). As
qk ∼ µTβk we derive an estimation on T and cT/l:

cT/l ≡ cTµβk/lµβk ≥ c
h

l
(lµβk)

−1

The inhomogeneous field b(x) changes from zero to lβk in the region
of the packet localization, see eq.(3). Assuming lβk = 1 gauss, l = 0, 1
cm and using µ ∼= 10−20 erg/gauss, c = 3 · 1010 cm/sec, h ∼= 10−27

erg/sec, we get the estimate cT/l ∼ 104. So the ratio ‖ ψp ‖ / ‖ ψx ‖
turns out to be of the order 10−13 · 104 � 1 (note that the ratio ∼ b−1).

We conclude that ψp in eq.(19) can be neglected as compared to ψx
in the case of immovable packet.

Note that the packet diffusion is quite negligible during the esti-
mated time T ∼ 104l/c ∼ 10−7 sec.

The inequality ‖ ψp ‖�‖ ψx ‖ may fail in the case of a movable
packet

ϕ0(x) = exp(ip0x)f(x2)

if p0 � h/l. In this case, one must replace b by the “running” field bt,
see eq.(17). Then, b(p− p0) substitutes b(p) in ψp and ‖ ψp ‖�‖ ψx ‖
as before.

One can apply the above considerations to the expression

ψI(t) = T exp[−i
∫ t

0

dt′HI(t
′)]ψ0

= lim
n→∞

[1− i
∫ t

tn

dt′HI(t
′)] . . .

. . . [1− i
∫ t2

t1

dt′HI(t
′)][1− i

∫ t1

0

dt′HI(t
′)]ψ0

(21)

to justify the omission of the term tσ · b(p)/M beyond perturbation
theory.
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3.2. The omission of the term tσ ·b(p)/M in eq.(8) turns Texp into the
simple exp because [H ′I(t1), H ′I(t2)] = 0 if

H ′I(t) = g(t)µσ ·B(x) , B(x) = Bc + b(x) (22)

Now one gets

ψI(t) ∼= exp[−ig1(t)µσ ·B(x)]ϕ0χ0 = ϕ0(x) exp[−ihσ · n(x)]χ0 (23)

g1(t) ≡
∫ t

0

dt′g(t′) , h ≡ g1(t)µ | B(x) |

n(x) = B(x)| B(x) |−1
(24)

The operator exp(−ihσ · n) in eq.(23) is the known operator of the
spin function rotation around the n direction, see e.g. [11]. So eq.(23)
describes precession of the atom spin (directed initially along the unit
vector ζ0) around n. If Bc � b(x) at x ∈ supp ϕ0(x), then n depends
on x weakly, n ∼= Bc/Bc, and the rotation axis is common for the whole
packet.

3.3. Several exact expressions for the r.h.s. of eq.(23) can be written.
Using (σ · n)2 = 1 one obtains [11]

ψI(t) = ϕ0(x)[cosh− i sinhσ · n(x)]χ0 (25)

Eq.(25) allows one to obtain the results of sect 2.

The expression for ψI(t) which is employed when discussing the con-
ventional Stern-Gerlach experiment can be obtained by a transformation
of eq.(25) but a simpler way is to expand χ0 in eigenstates χ± of the
operator σ · n(x)

χ0 = A+ χ+ +A−χ− , σ · n(x)χ± = ±χ± (26)

A± = 〈χ±, χ0〉 , χ0 =

(
cos θ0/2

sin θ0/2 exp iφ0

)
(27)

χ+ =

(
cos θ/2

sin θ/2 exp iφ

)
, χ− =

(
sin θ/2

− cos θ/2 exp iφ

)
ψI(t) = ϕ0(x)[A+ e−ihχ+ +A− e+ihχ−] (28)
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Here, θ0 and φ0 are spherical angles of ζ0 and θ and φ are spherical
angles of n(x) which practically do not depend upon x if Bc � b. One
can show that exp(±ih) in eq.(28) may be approximated by the plane
waves if Bc � b(x) and Bc · b(x)� b2(x). For this purpose use eq.(29)
for h and the equation

B(x) =
√

[Bc + b(x)]2 ∼= Bc + n · b(x)

= Bc +
∑
k

nkβkxk = Bc + π · x

πk = nkβk , n = Bc/Bc

(29)

If ϕ0 = f(x2) exp(ip0x) is the packet having the (almost exact) mo-
mentum p0, ϕ0 exp ih describes the packet f(x2) exp(i(p0 + q)x) having
the (almost exact) momentum p0 + q

qk = g1(t)µπk = g1(t)µnkβk (30)

Here g1(t) = T at t > T , see sect 2.1.

3.4. The vector q is not parallel to Bc in general. But if one of the
b(x) eigenvectors vα (see sect 2.2), say v3, is directed along Bc, then
n1 = n2 = 0 along with q1 = q2 = 0, i.e., q ‖ Bc. In this case q and
ψI(t) depend, in fact, only on β3, i.e., on the b(x) component parallel
to Bc. This fact gives a simple justification for the approach which from
the beginning uses the unrealizable supposition b(x) ‖ Bc, see e.g. [2,3].
For another discussion of this topic see e.g. [1,3].

3.5. At t > T one can rewrite eq.(28) as

ψI(x,m, t) = ϕ0(x)[A+e
−iµTBce−iqxχ+(m) +A−e

+iµTBceiqxχ−(m)]
(31)

The function ψ(t) = exp(−iH0t)ψI(t) describes the propagation and
diffision of the packets φ0(x) exp(±iqx).

Eq.(31) reveals the specific correlation (entanglement): the atom
has the momentum p0 − q if its spin state is χ+, similarly p0 + q is
correlated with χ−, cf. [2,3]. The expansion in eigenstates χ± of the op-
erator σ ·n means that it is this operator which is measured [4]. This can
be realized by means of the atom momentum measurement. According
to quantum postulates, the probability to find the momentum value in
a sphere S− centered at the point p0 − q turns out to be equal to∫

S−

d3p
∑
m

|
∫
d3xe−ipxψI(x,m, t) |2=| A+ |2 (32)
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The sphere S− radius must be greater than the momentum uncer-
tainty h/l in the initial packet ϕ0 but smaller than | q | (one must
suppose that q > h/l). Reduction of the atom momentum to S− cor-
responds to the reduction of the atom spin state to χ+. One can show
that

|A±|2 = [1± ζ0 · n]/2 (33)

So the momentum measurement gives information on the A± modules.

Eq.(33) is valid also in the case when the initial spin state is de-
scribed by a density matrix (the case ζ20 < 1) [1]. In the real Stern-
Gerlach experiment, the change of atom’s coordinate is measured which
is determined by the momentum change q. It has been noted in [1] that
one can determine also A± phases, i.e. one can find χ0 = A+χ++A−χ−.
For this purpose one must repeat the measurement of the same atoms’
ensemble using two other magnetic fields B′(x) and B′′(x). B′(x) is ob-
tained by a rotation of the Stern-Gerlach magnet about the beam axis
(it is convenient to have n′⊥n). B′′ must have n′′ which is linearly inde-
pendent of n and n′. Determination of | A± |2 in three experiments gives
three angles between the unknown ζ0 and n,n′,n′′. This allows one to
find ζ0, which is equivalent to the χ0 determination, see Appendix. In
the real experiment, to obtain n′′ one should rotate about an axis per-
pendicular to the beam. This would result in the beam impinging on the
magnetic poles. To circumvent the difficulty, one can turn the atom spin
in a known and needed way before atom’s entering the Stern-Gerlach
magnet (using, e.g., an additional constant magnetic field) [1].

3.6. Precession of the spin about the Bc direction (see sect.3.2) means
that the atom’s spin state alters when the atom interacts with the mag-
netic field. The exception is the case ζ0 ‖ Bc. This allows one to measure
the spin state without changing it in the following way. Determine ζ0 in
the way described above. Take the Stern-Gerlach device with Bc ‖ ζ0.
In this case, χ0 = χ+ and, therefore, A− = 〈χ− | χ0〉 = 0. This means
that all atoms acquire momenta belonging to S− being in the initial
spin state χ0. So having measured χ0, one may indicate a measurement
which determines χ0 without altering it. Essentially, this is the well
known case when the measured wave function is the eigenstate of the
observable. The distinction is that one now fits the observable using
some preliminary information.

3.7. The peculiarities of the version considered in sect.2, as compared
to the conventional Stern-Gerlach case, are rooted in that the Stern-
Gerlach magnetic field B(x) is strong enough for splitting the initial
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packet ϕ0 into two ones ϕ0 exp(±iqx). One cannot describe the splitting
using the first nonvanishing order of the perturbation theory. In this
section, we have used instead the exact solution (after simplifying the
interaction Hamiltonian, see eq.(22)) together with the inequality Bc �
b(x). There is no such a splitting when atoms interact with the weak field
B(x) which was considered in sect 2 (to justify the use of perturbation
theory). Instead, ϕ0 suffers a shift 〈pk〉−p0k see eq.(11) and a spreading.
Measuring the shift allows one to determine χ0 without the rotations of
the Stern-Gerlach device described in sect. 3.5.

4 - On the “protective” spin state measurement by Aharonov,
Anandan and Vaidman.

“Protective” measurement suggested by Aharonov, Anandan and
Vaidman (AAV) [5] is based upon eq.(30) for the momentum change q
acquired by atoms when interacting with the magnetic field. Note that to
find | A+ |2 using eq.(32), one need not a precise measurement of q. The
radius of the sphere S− can be rather large: one must only require that
the spheres S− and S+ centered at p0 − q and p0 + q do not intersect.
What additional information is provided by a precise q measurement
? Eq.(30) allows, e.g., determining nk if βk and qk are known. So if
the purely inhomogeneous part b(x) of the field B(x) = Bc + b(x) is
known, then the atom momentum measurement can play the role of the
magnetometer which determines the direction of Bc (under the condition
Bc � b).

Now the AAV suggestion may be represented as follows. Somebody
(he may be called preparater) prepares atoms in a spin state χ0 (polariza-
tion vector ζ0) and simultaneously imposes on the atoms a homogeneous
magnetic field B0 ‖ ζ0. The field B0 is much stronger than the Stern-
Gerlach field B(x) used by another person (experimenter) to determine
χ0 that is unknown to him. B0 acts on the atoms at all times. The
result is the absence of a sensible spin precession in the field B0 + B(x)
during the experiment (see sect. 3.2). Spin state does also not change
when measuring the atom momentum: one has χ0

∼= χ+ and, therefore,
A− = 〈χ− | χ0〉 = 0. This means that all atoms acquire the same (al-
most precise) momentum p0−q and, therefore, one needs only one atom
to measure q and then to find n which is now practically the B0 direc-
tion. As B0 ‖ ζ0, this is equivalent to the ζ0 or χ0 determination. AAV
say that B0 “protects” χ0 against changing during the measurement.

I note that the AAV “protection” allows one to measure ζ0 without
measuring even a single atom. An experimenter may simply determine
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the B0 direction using a macroscopic magnetometer. It is unreasonable
to suppose that the experimenter knows the field b(x) but he is unable to
employ a usual magnetometer to determine the stronger field B0 which
is present along with b(x). So if “protection” is present, then one need
not do just the quantum measurement. It is sufficient to measure only
“protection”. Note a similarity between the conditions for the reduc-
tionless spin state measurement discussed in sections 2.5, 3.6 and the
AAV protective condition: somebody (the preparater) must know a spin
state in order its reductionless determination can be realized.

5 - Comments.

5.1. The way of the spin state determination proposed in sect.2 differs
in many respects from the canonical scheme of quantum measurement,
e.g., see [2,3,4,9]. The cause of the peculiarities was discussed in sect
3.7, the peculiarities themselves can be stated as follows.

One cannot point out any definite spin observable which is mea-
sured, e.g., such as the operator σ · n in the conventional Stern-Gerlach
case, see sect 3.5. In this respect, our proposition differs also from the
“general quantum theory of measurement” by A.Fine [12].

Our interaction Hamiltonian HI = g(t)µσ · B(x) is not a product
of a single spin observable and a single apparatus observable [2]. Three
independent spin operators σ1, σ2, σ3 enter into HI . Note that to de-
termine χ0 using the conventional Stern-Gerlach device, one must also
measure successively three independent observables σ · n,σ · n′,σ · n′′
see sect 3.5.

The atom wave function ψ(t) during and after the magnetic field
action is not an expansion of the kind ϕ+(x, t)χ+ + ϕ−(x, t)χ−, χ+ and
χ− being independent of x. This expansion is characteristic of the con-
ventional Stern-Gerlach case, see eq.(31). In our case, the expansion is
replaced by eq.(28) provided the inequality Bc � b(x) does not hold.
Then, χ± entering into eq.(28) depend appreciably upon x. This means
that there is no strong correlation (entanglement) between the atom spin
state and the atom momentum.

The so-called “impulsive measurement” approximation [2] has not
been used in this paper. The interval (0, T ), during which the interaction
HI takes place, is not considered to be small and HI is not supposed to
be stronger than H0 = p2/2M .
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5.2. It has been shown in sections 2.5 and 3.6 that there are exceptional
measurements which determine the spin state χ0 without altering it (so
that χ0 suffers no reduction under the measurement). They must satisfy
some conditions. To realize these measurements, one must preliminarily
determine χ0 employing usual measurements which alter χ0.

The “protection” used in the AAV way of the reductionless spin
state determination seems to be an example of too restrictive condition.
Under this condition the problem of quantum measurement of the wave
function is reduced to a classical measurement of the “protection”, see
sect 4.
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Appendix. Spin state description.

One can show that an arbitrary normalized spinor χ0 = (αβ ) may

be represented in the form given in eq.(27) (the common phase of the
spinor being irrelevant).

One can verify also that any χ0 is the eigenstate of a spin operator
σ ·n0 belonging to the eigenvalue +1. The spherical angles θ0, φ0 of the
unit vector n0 are determined by the spinor components α and β which
can be parametrized as

α = cos θ0/2, β = sin θ0/2 exp iφ0

The words “spin is directed along n0” may have the sense that the
related spin state χ0 is the eigenstate of the operator (σ · n0). Another
possible sense is that the related polarization vector ζ0 = 〈χ0 | σ | χ0〉
coincides with n0.
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(Manuscrit reçu le 13 juin 1995)

Note added in proof.

Recently two comments on AAV paper [5] have appeared. W. Un-
ruh (Phys. Rev. A, 1994, 50, 882) discusses the way of “protection”
(measuring interaction switches on and out adiabatically slow) which is
different from that used in reality by AAV in their sect. VB. The pa-
per by C. Rovelli (Phys. Rev. A, 1994, 50, 2788) deals with the AAV

protectionby means of the strong magnetic field ~B0. Rovelli argues that
the AAV suggestion can be reduced to the well-known case of measur-
ing the observable whose eignestate coincides with the measured state
χ0. I share Rovelli’s criticism though my comment on AVV is somewhat
different (see the end of my sect.4): the AAV “protection” is so restric-

tive a supposition that experimenter neeeds only to measure ~B0 (using a
classical magnetometer) in order to obtain the information on χ0 which
alredy has the preparater. The problem of getting the information is
really moved aside to the preparater.


