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ABSTRACT. The dynamics of irreversible relaxation of non-equili-
brium macroscopic systems is discussed. Arguments are developed
showing that the general mechanism is supported by a succession
of two independent processes. One concerns dissemination of the
particles according straight conservative dynamics. It generates col-
lective motions without leading to thermodynamic equilibrium. The
second step involves dissipation to the outside world of the informa-
tion stored in the collective motion. This implies interactions with
the surroundings. The first step is isentropic. Entropy change im-
plies the second step. Interaction with the surroundings justifies
a global thermodynamic description of the non-equilibrium system.
On this basis, the transport coefficients are readily predicted.

RÉSUMÉ. La dynamique irréversible de relaxation des systèmes
macroscopiques hors équilibre est remise en chantier. On présente
des arguments tendant à démontrer que le mécanisme global en-
globe une succession de deux processus indépendants. L’un est la
dissémination des particules en parfait accord avec la mécanique
Hamiltonienne conservatrice traditionnelle. Il engendre des mouve-
ments collectifs mais ne conduit pas à l’équilibre thermodynamique.
La seconde étape implique la dissipation vers le milieu avoisinant
de l’information contenue dans le mouvement collectif et implique
donc une interaction avec le voisinage. La première étape est iso-
entropique. Pour le changement d’entropie la seconde étape est in-
dispensable. L’interaction avec l’environnement justifie un traite-
ment thermodynamique global des états hors équilibre. Il est aisé de
prédire les coefficients de transport à partir de ce formalisme.
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1. Introduction.

Distortion of macroscopic systems initiates spontaneous and irre-
versible processes tending to restore the previous state of equilibrium
or possibly to establish a new one. This fact is most often taken to be
a genuine property of isolated Hamiltonian systems. Conflict between
the time asymmetric behaviour of macroscopic relaxation and the strict
reversible nature of microscopic dynamics of isolated systems has been
the subject of discussions over nearly a century [1,2].

Results published in recent decennia in applied mathematics con-
cerning the time dependent transformation of systems where the number
of identical elements tends to infinity at constant density [3,4] have been
a stimulus for trying to solve the irreversibility paradox. The arguments
are related to the mathematical property of mixing. This expresses dis-
semination of the elements throughout the available space (phase space)
towards homogeneous and statistically independent distributions. It as-
sociates irreversibility to an infinite Poincaré recurrence time for any
possible initial fluctuation. Progress obtained in characterizing deter-
ministic chaotic motion (Lyapounov exponents) has also oriented theo-
retical research towards relating the relevant numbers to the transport
phenomena associated with irreversible relaxation dynamics of isolated
macroscopic systems. In this context chaotic scattering of particles on
hard disks (Lorentz gas) has been used as a model for describing irre-
versible diffusion in the context of reversible microscopic dynamics [5–8].

With Hamiltonian systems of ideal gases and a number of other
systems (Lorentz gas, baker transformation [9] etc.), the mathematical
property of mixing is brought in by performing limit operations, letting
both the number of particles and the volume go to infinity [3,5,10] while
performing simultaneously a scaling on the time parameter. This opera-
tion transforms discrete particles distributions into continuous functions
where statistics are readily applied. The mathematical operation results
however in levelling alternating fluctuations as soon as their wavelength
is short enough (limit operation) (e.g. the baker transformation). In
doing so the procedure by-passes or suppresses artificially an essential
ingredient in the dynamics of physical systems. No matter how short a
wavelength may be in whatever physical circumstances (e.g. ultrason-
ics, light, ...), it represents a coherent or correlated structure containing
information and it cannot be assimilated to a continuum or a vacuum.

Furthermore, by inspecting the literature applied to Hamiltonian
systems, when quoting the property of mixing, the authors refer to a
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truncated phase space. In the formal mathematical demonstrations, not
all aspects of the dynamics are indeed treated with the same priority
(configuration and momentum). The main question remains therefore
whether Hamiltonian dynamics is mixing at all.

The research trend that relies on the mixing paradigm insists ex-
plicitly on the fact that irreversible processes would occur in systems
that are isolated from the environment. The statistical properties of the
time dependent random forces acting on the particles are assumed to be
completely determined by the initial distribution and by the dynamics
of the system [5]. By performing the mathematical manipulations re-
ferred to above (rescaling), phenomenological parameters (e.g. viscous
drag controlling the motion of Brownian particles) are said to converge
to genuine irreversible properties of the fluid. As a result, dissipative
coupling with a reservoir is explicitly rejected by the relevant authors,
being considered to be “artificial and unnecessary” [2,6].

Contrasting with the latter, others insist on the unavoidable interac-
tion of macroscopic systems with their environment acting as a reservoir
or heat bath [11,12,13]. Stress is lead on the environment where the
fluctuating forces to be introduced into the equations of motion of the
system of interest come from. Dissipation arises from a back-reaction
of the environment to the evolution of the system [14]. As an example,
concerning the viscous drag mentioned above, the relevant dissipative
force is said to originate from the interaction of the Brownian parti-
cle with the surrounding fluid acting as a reservoir. The time average
value of this force gives rise to Stokes’ law, on which fluctuations are
superimposed. Still others have approximated successfully the necessary
additional non-Hamiltonian dissipative force by modelling the interven-
tion of the surroundings as a third-body potential [13].

The present paper strengthens and generalizes the arguments
favouring the second general line of thoughts. Its main originality lies in
the development of thermodynamic tools for describing interactions with
the neighbourhood. In a first section, Gay-Lussac’s experiment, often
used as a reference to the problem of irreversibility, will be rediscussed.
The next section concerns the definition of the concepts “microstate”
and “macrostate”. It stresses the implication of Hamiltonian dynam-
ics on the phase space trajectories and specifies the mechanism driving
jumps and transitions between trajectories. A general description of the
mechanical properties of the environment acting as a reservoir for heat,
possibly matter, and perhaps other parameters, implies a firm thermo-
dynamic construction. This will be the core of section three. In the last
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section, the arguments developed earlier will be applied to the prediction
of transport coefficients. For brevity, the discussion here will be limited
to viscosity and thermal conduction of one-component gases [15].

2. Gay-Lussac’s experiment.

In the literature, directionality of time’s arrow is often introduced
intuitively on the basis of a simplified representation of Gay-Lussac’s
experiment. A box is considered, consisting of two compartments, the
parts being filled with gas at different pressures. Prior to the experiment
the gas is assumed to be at equilibrium. The observed long time evo-
lution following the rupture of the division, towards a new equilibrium
distribution, is taken to be modelling the irreversible behaviour of the
global dynamics (non-recurrence of the initial conditions).

Gay-Lussac’s experiment has been repeated by Joule with great
accuracy. His purpose was to measure possible heat exchange with an
external calorimeter as the result of spontaneous expansion. With an
ideal gas, if no mechanical work is allowed to be performed, when the
system has reached its final equilibrium state, no net exchange of heat
with the surroundings is observed. Joule concluded that the system
behaved as if it was isolated.

The dictionary definition of the word “isolation” points to hypo-
thetical objects that are left completely alone, deprived from whatever
interaction with the surroundings. This definition is clearly much too
strong, as the system of interest are at least bound by walls. A slightly
weaker definition applies then and is traditionally adopted. It allows
elastic collisions with the boundaries. This implies absence of exchange
of energy or heat with the surroundings. A third much weaker definition
of the same word would allow possible fluctuating transient exchange of
energy, momentum, or other parameters, with zero balance when aver-
aged or integrated over the observation period. Joule’s observation does
by no means preclude the weakest unconventional definition.

Let us make the experiment more realistic by examining the effect
of pricking an air inflated balloon inside either an acoustic reverberation
hall or an anechoic chamber. In the two cases the excess air contained in
the balloon disseminates spontaneously throughout the rooms but the
subsequent process is very different indeed. In the reverberation hall
an acoustic perturbation is created and, the better the walls’ reflecting
quality, the longer it remains. By contrast, in the anechoic room, the
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perturbation vanishes promptly. In the reverberation room, some energy
is stored in a coherent or collective motion (acoustic perturbation) where
it remains as the memory of the initial conditions. With walls correctly
shaped, the initial information may even be partially retrieved as echoes.
By contrast, in the anechoic room, memory of the past is soon forgotten.

Initial and final conditions are identical in the two cases and so is
the air inside the rooms, and therefore the frequency and the quality
of the inter-particle collisions (Hamiltonian dynamics) that are assumed
elsewhere to be the source of relaxation. The only difference between
the experiments is the nature of the walls. One is therefore forced to
conclude that the relaxation dynamics of a spontaneously expanding gas
depends on the acoustic quality of the walls, representing the system’s
environment.

Two separate and independent mechanisms control the reflectivity
of the acoustic perturbations. One is the action of the walls perpendic-
ular to the direction of propagation of the compression wave, the other
is the shear effect caused by the gas sliding along the walls parallel to
the direction of propagation. For the first component, ideal reflection
locates acoustic nodes at the position of the walls, thereby inhibiting
exchange of momentum to the surroundings: The impedances do not
match. Changing the physical nature of the walls (softness) modifies the
coupling to the outside world.

Shear strain of the gas moving collectively past the walls parallel to
the direction of propagation is related to viscous effects. It causes the
well known ultrasonic absorption which cannot be eliminated completely
in real experiments (by no means restricted to the highest acoustic fre-
quencies [15]). That is why an ideal reverberation room, where the
acoustic perturbation would remain for ever, does not exist. At first,
this restriction may seem to weaken the argument leading to external
control of the relaxation dynamics. However, if the walls had not been
there at all, the jet would have remained. Viscous effects being the result
of transfer of collective shear momentum (correlated or coherent motion)
to the outside world, and its replacement by an incoherent distribution
of momentum, the role of the environment is trivial.

If the walls were ideally smooth, up to atomic dimensions, so that
on impact every particle conserves identically its tangential component
of momentum, reflections would be elastic, as implied by the traditional
isolation assumption. There would be no viscous effect. The collective
motion of the particles would not be slowed in the neighbourhood of
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an immobile wall. With elastic reflections, whatever the collective flow,
boundary layers do not behave differently from the bulk.

Contrasting with the latter extremely idealized model, physical walls
are not smooth up to atomic dimensions. An alternative ideal but equally
unphysical model assumes convex surface atoms that would be strictly
immobile both in tangential and normal directions (infinite masses). The
returning path of the particles following collision with the wall depends
then only on the relative position of the impact with respect to the
relevant surface atom. This picture is the analogous of the Sinai billiards
problem, the convex scatterers being replaced by defocussing walls [8].
On reflection, coherent parallel flows of particles are defocussed, but
the correlation of individual motions of the particles in the beam is not
lost. The process shows some analogy with reflection of a beam of laser
light. This too does not change its coherence properties by reflection on
a convex mirror or on any other strictly immobile defocussing object.
The particular shape of the reflecting surface only activates additional
collective modes but the global motion remains non-thermal.

Physical walls (finite mass of the surface atoms with thermally fluc-
tuating motions) superimpose on the effect just mentioned an incoherent
action tending to absorb and overrun the collective perturbation. In sys-
tems where transport of information through the bulk is relatively slow
(thermodynamic regime, i.e. non-Knudsen regime), impedance match
occurs in the boundary layers. The local properties depend on the cou-
pling efficiency to the walls at one end and to the resistance to transport
of collective momentum from the bulk to the walls at the other. Viscos-
ity measures the latter resistance but the source of relaxation is clearly
to be located in the exchange with the walls (environment), not in the
mechanism controlling the rate of transfer through the bulk.

As soon as the membrane between the two parts of Gay-Lussac’s
box is ruptured, a stream of gas is ejected from the compartment at the
highest pressure, thereby creating a collective motion of the particles.
By performing work on itself, the system transfers energy adiabatically
into the jet. This energy is subtracted from the initial thermal supply
(adiabatic expansion). Loss of thermal energy is equivalent to cooling the
system, or else, if the system is strongly thermostated, heat is transiently
imported from the surroundings.

On reaching the wall opposite the puncture, the jet is reflected and
the initial collective motion turns progressively into an acoustic pertur-
bation with same energy. The spectrum and phases of this motion are
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the memory of the initial conditions and of the shape of the reverberating
walls (coherence).

Relaxation of the coherent motion starts now. It consists in rether-
malizing the energy initially accumulated in the jet and later stored in
the acoustic perturbation. As a result, if the system is an ideal gas (hard
spheres allowed), the initial temperature drop is neutralized or the heat
that was initially absorbed is identically reinjected into the neighbour-
hood, as expected by Joule’s result. When final equilibrium has been
reached, the collective motion has relaxed and information about the
initial conditions is completely lost.

Initial dissemination of the particles throughout the system is irre-
versible, according to the weak definition of this word. It says that the
Poincaré recurrence time of the initial conditions is extremely (infinitely)
long. However, information about the past is by no means forgotten, no
matter how intricate the motion of individual particles may be. In dy-
namics, the more subtle connotation of the word “irreversibility” refers
to processes that are asymmetric with respect to sign reversal of the
variable time. This stronger definition of the word does not cover the
initial dissemination step.

3. Microstate and macrostate.

The scenario discussed above shows that the global motion of macro-
scopic systems is governed partly by Hamiltonian dynamics (jet forming
and dissemination) and partly by dissipation of the collective motion by
incoherent interaction with the neighbourhood (final relaxation). The
two steps of the global process are very different in their dynamics. De-
pending on the system of interest, they may be almost concomitant but
we shall consider them here for simplicity as frankly separated in the
time. The Hamiltonian part comes first, so that in the relevant subsec-
tion, whatever would make strict isolation ineffective is neglected.

A. Hamiltonian dynamics:

The Hamiltonian may be stationary or explicitly time dependent.
Explicit time dependence denotes a correlated action from the outside
world. It does therefore not intervene in strictly isolated systems.

A system is said to be conservative if the force field is such that
work done around a closed orbit is zero. A stationary (time independent)
Hamiltonian produces by definition conservative dynamics. Physically
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it is clear that dynamics cannot be said to be conservative if friction or
other dissipation forces are included [16].

In classical mechanics, determinism or causality is the property ac-
cording to which, if two dynamical systems have the same laws of motion
and are in the same dynamic state at some particular time t0, then they
must be in the same dynamic state at all times [17]. The corollary is
that no more than one trajectory passes through each point in phase
space, or else that different phase space trajectories never cross. Let it
be stressed that the present discussion uses the word “trajectory” as a
reference to global many-particles motions but never to the individual
paths of separate particles.

In the contemporary literature, the words “determinism” and “con-
servation” are often taken for each other. This generates confusion be-
tween strictly Hamiltonian dynamics and hydrodynamics, where dissi-
pative forces are included (e.g. viscosity). The difference between the
two is most clearly highlighted in H. Schlichting’s textbook on hydro-
dynamics where it is stressed that the equations which relate the surface
forces to the flow field must be obtained by perceptive interpretation of
experimental results... [22]. Conservative motion is deterministic, but
the opposite may not be true.

The concepts “dynamic state” mentioned above and the word “mi-
crostate” used by many authors are synonymous. They represent a point
(p1...p3N , q1...q3N ) in the many-particle phase space.

A phase space trajectory is a line joining the succession of phase
points representing the system as time goes on. Hamilton’s canonical
equations are its parametric equations. Considering that only one tra-
jectory passes through a given phase point, there is a unique relationship
between any “microstate” and the “trajectory” it belongs to.

Two different situations may be considered. Sometimes the inves-
tigation concerns particular properties of individual phase points and
possibly changing properties of the system during the evolution of the
phase points as the trajectory unfolds in function of time. In particular,
with systems of particles, this may be the case when the experimen-
tal time resolution is made exceptionally fine compared to the internal
characteristic time of periodic motions (e.g. very short laser pulse exper-
iments). Contrasting with the latter situation, with time independent
Hamiltonians, the exact position of the phase point along a given trajec-
tory may possibly not be observable or may be irrelevant. The definition
of “microstate” may then be extended to the complete trajectory, the
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two words representing the same reality. In quantum mechanics, “mi-
crostate” and “quantum state” are synonymous.

With systems of many translating particles, if their velocity distri-
bution is broad, the physical perception of the initial conditions may
change strongly as time goes on. This perception concerns dissemina-
tion and redistribution of individual particles in the configuration space.
The relevant dynamics may be exemplified by a system of many non-
interacting particles, translating back and forth along a line between two
boundaries where reflection of the individual motions is elastic (energy
conservation).

Let us assume for instance a Gaussian (Boltzmannian) velocity dis-
tribution.

g(v) ' exp(−v2). (1)

If the initial conditions are represented by some δ-function density fluc-
tuation at some given position along the line, it is easy to compute the
density distribution at any later instant. The sharp fluctuation disap-
pears, leading at long times to a flat particle distribution, as if the initial
perturbation had relaxed.

If the number of particles is high (N → ∞), the initial fluctua-
tion does not recur spontaneously after a reasonable delay (Poincaré
recurrence). The process responds to the weak colloquial meaning of
irreversibility, not to the strong thermodynamic definition of the word.
By reversing artificially the sign of the velocities of all the particles, the
global trajectory is made to run in the opposite direction and the initial
fluctuation is reproduced as an echo. The information represented by
the initial conditions was still present in the system although, due to the
diversity of the individual velocities, the sharp starting impression has
been progressively hidden to the observer.

The impression the observer has about the system’s conditions and
its change in the course of time may be expressed by the evolution of the
position of the centre of mass. Let X(t) be this position. If xi(v, t) is
the position of the i-th particle with velocity v at time t, X(t) is defined
as

X(t) =
∑
i

xi(v, t). (2)

Starting from the initial fluctuation, as time goes on the particles dis-
seminate and the centre of mass moves towards the system’s geometrical
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centre. By computation, the general expression for the dynamical evo-
lution of X(t) is easily shown to be an even function of time.

While the particle distribution in configuration space homogenizes,
the system’s average velocity

V (t) =
∑
i

vi(t) (3)

presents a strong permanent oscillating character due to the alternating
sign reversals of the individual velocities vi(t) every times a given particle
is reflected at one of the two boundaries. This oscillation does not relax
as time goes on. It is clearly in momentum space that this conservative
system stores the information about its initial conditions.

The oscillation, though extremely intricate, presents a periodic char-
acter. It may be made chaotic by having the motion performed in higher
dimensional space and with defocussing walls. However the system does
not grow ergodic. If the information concerning the initial conditions is
to vanish, something more is needed than mere elastic reflection at every
impact with the walls.

B. Dissipation and Fluctuations:

Conservative Hamiltonian motion, including inter-particle poten-
tials, defines trajectories in the many-particle phase space. By forbid-
ding transitions between such independent trajectories it preserves the
memory of the initial conditions. For transitions between trajectories
to occur, the conservative motion must be perturbed. This occurs ev-
ery times any of the system’s particles interacts with the boundaries or
with whatever represents the neighbourhood, like the ubiquitous thermal
electromagnetic radiation and the gravitation field. Export and import
of information being uncorrelated, the transitions cause loss of informa-
tion and irreversible relaxation of the initial microstate. Every collision
with a wall interrupts the running canonic global trajectory. A new one
starts, with possibly modified initial conditions. The average lifetime of
the trajectories depends on the impact frequency of particles with the
walls.

More assumptions are needed to predict the effect of collisions with
the walls. If the latter are perfectly rigid, so that they behave as infinite
mass particles, only momentum is transferred. When the impact is over,
the wall has gained momentum from the particle but no velocity. In
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the same time the wall renders to the particle an equal amount of mo-
mentum in the opposite direction, allowing the new trajectory to start
in conditions that are rigorously correlated with the previous one. The
conservative character of the motion remains.

Real atoms and molecules in the walls oscillate about their equilib-
rium positions. As a result, contrasting with the picture above, return
paths are unpredictable because the motions of the collision partners
are uncorrelated. They allow the system to perform stochastic jumps
between different accessible trajectories or to modify the phase informa-
tion of the running trajectory. Depending on whether during a particular
impact the relevant wall atom moves towards the colliding particle or in
the opposite direction, work is transferred to the system or to the envi-
ronment. Energy fluctuates about its average value. The condition that
average energy transfer is zero is the thermodynamic requirement that
the system and its neighbourhood be at the same temperature.

It is impossible to specify exactly the microstate of a complex macro-
scopic system. We must content ourselves with descriptions that are
considerably less than complete, the more that the short lifetime of the
global (multi-particle) trajectories and the transitions between them re-
duces drastically the number of relevant constrained properties. In fact,
our exact information about the properties of many-particle systems is
restricted to a small number of observables.

A “macrostate” is by definition the observational condition of a sys-
tem where many multi-particle trajectories in phase space (microstates)
are accessible. Frequent uncorrelated transitions occur between them.
The particular macrostate is defined unambiguously by specifying the
complete set of parameters representing the unavoidable constraints, ei-
ther external or internal, implied by the system’s particular observational
state.

4. Thermodynamics.

A. The Entropy:

Any function determined completely by the set of constraints that
define the particular macrostate of the system is a function of state.
In 1865 Clausius discovered a function of state that changes when heat
(energy, excluding work) is exchanged reversibly with the environment.
This function, Clausius’ entropy, is defined as a differential.

δS ≥ δQ

T
, (4)
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where T is the system’s temperature. The equal sign refers to reversible
processes. This fundamental experimental definition implies net transfer
of heat and therefore interaction of the system with its environment for
the entropy to change in reversible conditions.

Clausius’ requirement that the process would be reversible for the
equal sign to be valid means that the system may not depart from equi-
librium during the whole process. This specification is rather ambiguous,
as it relates to a property (equilibrium) that is by itself insufficiently de-
fined. Let us therefore forget the word equilibrium in this context and
define a process as reversible when no coherent or collective motion is
allowed to be generated by the process or that it has been allowed to
relax.

The physical meaning of the state function entropy and especially
the discovery that it increases when the system is the subject of sponta-
neous or irreversible processes in apparently isolated conditions (conser-
vation of energy and matter) has intrigued many physicists and philoso-
phers. Having established a relationship between the entropy and some
kind of observational probability, some try to attribute to this concept an
anthropomorphic character [18]. It would be the measure of our personal
lack of information concerning the system’s conditions. This suggestion
that personalizes a function of state indicates that profound confusion
still prevails concerning the definitions.

In statistical mechanics the definition of entropy goes back to Lud-
wig Boltzmann. It is summarized by his famous equation

S = kB ln[W (A)]. (5)

For the inventor, W (A) meant “wahrscheinlichkeit” which is probabil-
ity. Digging for the realities hidden behind this word may lead to some
controversies but, using the same initial letter, most authors wisely pre-
fer the English “weight of the given observational state or macrostate”.
The latter is interpreted as the total volume accessible to the motion in
phase space, given the set of constraints (represented here by the collec-
tive variable A) that describe the system’s particular macrostate. Let it
be noted that equilibrium macrostates are usually defined by their total
energy E, particle number of any sort Nr and physical volume V , which
are the traditional microcanonical variables. In the literature, extension
of the discussion to non-equilibrium macrostates is usually avoided.

As such, the definition of W (A) misses normalization. This leads
to the introduction of an arbitrary constant in the entropy. Planck
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filled the blank [19] by taking W (A) as the total number of indepen-
dent quantum states (quantum state = microstate) compatible with the
given macrostate. This is the third law of thermodynamics according to
which, if only one microstate is accessible, the entropy is zero.

Using Planck’s suggestion, Boltzmann’s entropy is now expressed in
terms of quantum mechanics. This does not refer directly to phase points
or trajectories in phase space as does classical mechanics. In order to
return to the usual classical description, the quantum-classic correspon-
dence is addressed. It implies that every global quantum state occupies
in the classical phase space a finite region with a 6N dimensional phase
volume measuring h3N . The number of available classical trajectories
respecting the state defining constraints equals then the ratio of the ac-
cessible phase space volume to h3N .

For Boltzmann’s entropy to be a pertinent function of state, prompt
accessibility of all the quantum states or trajectories belonging to the
given macrostate is required. In a strictly conservative environment, the
dynamics being described by a single multi-particle trajectory in phase
space, no matter how intricate (chaotic) this may be, transitions between
different trajectories or quantum states are not allowed. Then, according
to the definition, the entropy is zero and it does never change. This
conclusion is consistent with Liouville’s theorem that claims conservation
of the measure in phase space when the mechanics is conservative.

Relaxation implies relief of constraints. It opens the way to an
enhanced choice of quantum states or trajectories (microstates). Acces-
sibility of still more trajectories increases Boltzmann’s entropy.

Accessibility implies prompt incoherent transitions between the tra-
jectories or quantum states during the observation period. This depends
on fast uncorrelated action of the environment with fluctuating exchange
of mechanical properties (momentum, energy). As a corollary and as
expected by the statistical nature of the thermodynamic functions it
appears that the definition of the entropy implies some averaging over
the time. The time resolution linked to the definition of the entropy is
the average lifetime of the conservative trajectories. With macroscopic
systems, where the impact rate with the boundaries goes to infinity, the
average lifetime and the time resolution tend to zero.

In describing equilibrium states (say for a one-component gas), the
traditionally mentioned extensive variables are the basic microcanoni-
cal constraints E, V and N . In order to specify unambiguously non-
equilibrium macrostates, where more constraints prevail, additional ex-
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tensive properties must be included. This may be for example the mo-
mentum associated with a possible collective or coherent motion of the
system, where some of the total energy is stored (e.g. the jet or the acous-
tic motion in above mentioned Joule’s experiment). Many other possible
distortions with respect to equilibrium may occur, like moments of the
energy or density distribution, etc.

Let the list of the extensive properties of a macroscopic system
defining a particular macrostate be written Xr. The entropy is a function
of this collection of variables. By differentiating the entropy with respect
to the set of Xr, we get by definition the set of conjugate intensive
variables or intensities ξr.

dS =
∑
r

∂S

∂Xr
dXr = −kB

∑
r

ξr dXr. (6)

The equation may be considered as defining the temperature
(∂S/∂E)−1 and the chemical potential −T (∂S/∂N). In non-equilibrium
conditions it generalizes the definitions by proposing an intensity to be
conjugate to each of the additional non-equilibrium constraints.

Equation (6) is Gibbs’ celebrated equation, generalized to non-
equilibrium macrostates. In the simplified model of a spontaneously
expanding jet as mentioned above (velocity of the collective motion: ~v),
the new version of Gibbs’ equation reads

dS =
dE

T
+
p

T
dV − µ

T
dN − kB ~σ · d~P, (7)

where ~P = Nm~v is the collective momentum and ~σ the conjugate in-
tensity. It may be shown [15] that ~σ = ~v/kBT . In the last term of
equation (7), the differential of the collective or coherent energy is easily
recognized. We have therefore equivalently

dS =
dE

T
+
p

T
dV − µ

T
dN − 1

T
d(coherent energy). (8)

Energy conservation throughout the expansion makes dE = 0. Dur-
ing the adiabatic dissemination period, the second term (work made
available by the expansion) is very exactly balanced by the last contri-
bution (energy stored in the coherent motion), making dS = 0, in agree-
ment with Liouville’s theorem for isolated conservative motions. Final
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relaxation involves transformation of the coherent motion into thermal
energy. When this has been achieved, thanks to stochastic exchange at
every impact with the boundaries, integration of the last term vanishes
and the Gibbs equation yields the correct final equilibrium entropy after
expansion.

If the contribution relating to the non-equilibrium constraint had
been omitted in equations (7) and (8), we would not have been able to
describe the thermodynamics of the low entropy non-equilibrium tran-
sient state.

B. The generalized Massieu function:

The inconvenience when considering the entropy as the leading ther-
modynamic function is that this is an explicit function of the extensive
properties (Xr), while the intensities (ξr) are better measured and con-
trolled by the environment. For that reason, thermodynamics makes
widely use of potentials and other Massieu-Planck functions, obtained
from the entropy or the energy by Legendre transformations.

Most popular are free energy transformations. However, contrast-
ing with the second law for the entropy, general laws involving the en-
ergy do not exist. It is therefore advisable to consider transformations
involving the entropy itself. If the additional parameters defining non-
equilibrium conditions are included in the definition we obtain the gen-
eralized Massieu function (the volume is not included in the transforma-
tion) M(ξr, V ):

M(ξr, V ) =
S

kB
+
∑
r

ξrXr. (9)

Unlike Massieu’s original function, M is an explicit function of all the
state defining intensities. It may be verified that

∂M(ξr, V )

∂ξr
= Xr. (10)

The advantage of referring to a state function depending explicitly
on intensities is that, with promptly exchangeable properties, the rel-
evant intensities of the system of interest remain at all times equal to
their value in the neighbourhood. We might call them strong intensities
(e.g. the temperature in an efficiently thermostated system). Investi-
gation concerning transient states refer to the intensities of the slowly
exchanging or soft properties.
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The Legendre transformation changes the maximum entropy condi-
tion with respect to fluctuations of the extensive variables into a min-
imum of the extended Massieu function with respect to the intensities
relating to non-exchangeable properties (e.g. particle numbers and their
distribution in closed systems). With transient effects, this fundamental
property defines the path followed by the system during relaxation. It
gives a key for treating coupled flows.

With ideal gases, when the collision time is very much shorter
than the time spent by the particles between individual collisions (hard
spheres approximation), the expression for the generalized Massieu func-
tion takes a very simple form. Individual motions being practically inde-
pendent, representation of the global motion may be approximated as a
swarm of points moving in a reduced 6-dimensional single-particle phase
space (Γ). Indeed, let f(Γ) be the most probable particle distribution:
that which maximizes the entropy. Every extensive property Xr is then
related to a particular generating function φr(Γ) so that

Xr =

∫
Γ

φr(Γ)f(Γ)dΓ. (11)

For the traditional microcanonical extensive properties N and E, the
relevant generating functions are respectively φN = 1 and φE = (p2

x +
p2
y + p2

z)/2m. For a fluid moving in the z-direction with average total
momentum Pz, the generating function φp = pz is the link between the
distribution function and the relevant extensive property.

With the appropriate set of generating functions, function f(Γ) is
readily known to be [15]

f(Γ) = exp[
∑
r

ξrφr(Γ)]. (12)

The intensities ξr are the Lagrange multipliers in the maximizing
process. It may then be verified that M takes the very simple form

M(ξr, V ) =

∫
Γ

exp[
∑
r

ξrφr(Γ)]dΓ. (13)

Its numerical value equals the (average) number of particles contained
in the system. Through the integration limits in configuration space it
has the system’s physical dimensions (volume) as one of its independent
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variables. By restricting the integration to the only momentum coor-
dinates, a local generalized Massieu function is obtained, the value of
which represents the average local density in configuration space.

With real gases, the generalized Massieu function is modified due
to the interaction potential between the particles. The simplified formu-
lation is however still useful as an approximation at low density, when
the duration of the inter-particle collisions is negligible compared to the
time separating collisions.

5. Transport coefficients.

One of the main objectives of the theory of non-equilibrium dy-
namics is prediction of the transport coefficients from first principles.
Comparison between the predicted and experimental results is often con-
sidered as a test for the validity of the relevant approach.

Since Boltzmann first proposed his kinetic equation there has been
a considerable literature concerning the calculation of the transport co-
efficients [10,23]. Most frequently cited are the traditional Chapman and
Enskog derivations [24] and the Green-Kubo formalism.

It has been stressed above that, for all but perhaps a few mechan-
ical properties, exchange occurs readily with the surroundings, tending
to equalize the conjugate intensities to the reservoir values. This justi-
fies the use of thermodynamic expressions based on intensities. When
intensities conjugate to exchangeable properties are different from the
reservoir values, we have transient conditions from where the system
tends to relax. By contrast, if the system of interest is connected to a
surroundings that is not at equilibrium, like a couple of thermostats at
different temperatures separated by some distance, the system reaches
and remains in a stationary state out of equilibrium. This is the condi-
tion we shall focus on now.

If the system is interacting with two reservoirs at different temper-
atures separated by some distance (here: 2D), the conditions of the sur-
roundings define and dictate to the system the genuine non-equilibrium
intensity “temperature gradient”. Similarly in the Couette flow problem,
the externally imposed gradient is caused by a couple of walls moving
in opposite directions. This generates in the system a non-equilibrium
intensity “gradient of shear momentum”. Asymmetric exchange with
the two reservoirs produces flows. In this section, the relevant transport
coefficients will be examined using a thermodynamic description. For
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simplicity, the discussion will however be limited to hard sphere atomic
gases.

In very low density systems, where the mean free path is compa-
rable or longer than the system’s physical dimensions (Knudsen gas),
properties picked up by any particle from one wall are transported in
a single jump to the opposite wall. Transport is very efficient indeed.
In the thermodynamic limit (non-Knudsen regime), head-on collisions of
like particles do not slow down the transport properties. By contrast,
parallactic or off-axis inter-particle collisions do. Their effect is one of
reducing the range of free transport, while information about the condi-
tions of the external reservoir available at the boundaries is transferred
to the relevant region of the bulk. In the same time, the local values
of the thermodynamic properties are justified. The flow rates depend
therefore on the average periodicity τ of the latter perturbing collisions.

Let us consider an arbitrary property Xr with generating function
φr(Γ). This may be any one of the generating functions defined above.
Still other generating functions are listed in the tables concerning the
applications discussed below. We assume that the property flows in the
z-direction. Furthermore, let us consider a plane positioned at coordinate
z∗. The basic equation for the flow Jr of the relevant property through
this plane is

Jr =
1

τ

∫ ∫ ∫
(
d~p

h
)3

∫ z∗

(z∗−pzτ/m)

φr(Γ) exp[
∑
l

ξlφl(Γ)] dz. (14)

The symbol (d~p)3 is a short form for dpxdpydpz. Integration limits in
momentum space are −∞ → ∞. As recalled above, Plank’s constant is
the norm in phase space. In the subsections to follow, this equation will
be applied to different types of flow.

It may be useful to stress the difference between equation (14) and
that proposed elsewhere, in its own different context, for flows of exten-
sive properties [24,23]:

Jr =

∫ ∫ ∫
pz
m
φr(Γ) exp[

∑
l

ξlφl(Γ)] (
d~p

h
)3. (15)

Equation (14) confirms that transport occurs during the free motion
time separating relaxing collisions. The lesser the collision frequency,
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the more effective is the transport. Collisions do not activate transport
but they increase resistance to transport.

A. Viscosity:

We consider a fluid bound by a pair of walls moving in opposite
directions (Couette flow). Excepting negligible higher order corrections
(proportional to τ2(βmD2)−1), the system’s conditions are defined com-
pletely (at the lowest order in τ) by the set of constraints listed in table
I, where the symbols used for the relevant intensities are given.

The intensities under direct control of the surroundings (exchange-
able properties) are the particles number, the kinetic energy (kBT =
β−1), and the intensity conjugate to the gradient of shear momentum.
It may readily be verified that the velocity of the walls (y-direction)
equals ±σy/β. Two variables remain to be determined, namely θ2 and
γ2. They require two independent equations.

In stationary conditions there is no local accumulation of the trans-
verse component of momentum (pz) (no pressure gradient, no acoustic
perturbation). The relevant flow is therefore independent of z∗. Like-
wise, the total flow of energy through the system is zero. By imple-
menting equation (14) with the two relevant generating functions, the
conditions ∂Jpz/∂z = 0 and JU = 0 yield together

θ2 = 0,
5

2

γ2

β
=
mσ2

2β
. (16)

The flow of the shear component of momentum may now be de-
termined by implementing equation (14) with the generating function
φp = py, where θ2 and γ2 have been replaced by their values given
above. This yields

Jpy = − σy
2βD

nτ

β
, (17)

where n =M/V represents the particle density.

The phenomenological reaction at the plates’ level compensating for
transfer of momentum from wall to wall is friction. Shear viscosity is the
ratio of the sum of the forces applied to the two plates to the velocity
gradient (σy (2βD)−1). Following equation (17), its value is

η = n
τ

β
. (18)
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B. Thermal conduction:

Now we consider a system in thermal contact with a couple of heat
reservoirs at different temperatures separated by a distance 2D. The
system’s stationary non-equilibrium conditions are completely described
(at the lowest order in τ) by the set of constraints listed in table II,
where again the symbols used for the relevant intensities are given. By
inspecting the definition of the generating function conjugate to the tem-
perature gradient it is clear that kB∇T = −γ1 (β2D)−1.

Knowing that the system is bound by a pair of impervious walls it
may look strange that collective motion of the particles perpendicularly
to the walls needs to be foreseen in constructing the expression for the
most probable non-equilibrium distribution function f (equation 12).

In a system controlled by two heat reservoirs at different temper-
atures, kinetic energy is not uniformly distributed among the particles.
Those moving towards the cold wall have been equilibrated with the sys-
tem upstream in a hotter region at the instant of their previous collision
and vice-versa. In moving from the hot wall to the cold one, particles
travel on the average faster than in their return cycle. If the particles are
to change their average kinetic energy in a correlated fashion on impact
with either walls, while the container (the pair of walls) is to remain
immobile, collective momentum is indeed transferred by the container
to the system.

The intensities under direct control of the surroundings (exchange-
able properties) are the particles number, the average kinetic energy and
the temperature gradient. Two intensities remain to be determined: θ1

and σz. This requires two independent equations. One is stationar-
ity. The other equation describes mechanical equilibrium of the system
between its walls.

According to the local description, at any point in the bulk of the
system, the average particles density n responds to the equation

n(z∗) =
1

h3

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy

∫ ∞
−∞

dpz exp{
∑
r

ξr φr[(z = z∗), px, py, pz]}.

(19)

We consider at any position z∗ the partial density n+(z∗) of the
only particles with positive velocity along the z-direction. Stationarity
implies that this partial density equals the sum of the densities of the
particles in regions from where they will be reaching this position without
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disturbance after one collision period, their velocities having opposite
orientation. Hence

n+(z∗) =
1

h3

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy

∫ 0

−∞
dpz

exp{
∑
r

ξr φr[(z = z∗ − pzτ

m
), px, py, pz]}.

(20)

This equation yields to the lowest order in τ

(θ1 − 2
γ1

β
)

τ

mD
= 2σz. (21)

The second equation expresses position independence of flow of mo-
mentum across the system. In other words, there are no pressure gradi-
ents. Equation (14) is used with φp = pz as the flow defining generating
function. The condition ∂Jpz/∂z = 0 yields

θ1 =
5

2

γ1

β
. (22)

Flow of energy (heat) through the system is given by this same gen-
eral equation (14) where the flow defining generating function is now
φE =

∑
(p2/2m). For particles associated with internal rotational mo-

tion (Eucken correction [24,20]), the relevant contribution to the energy
should be added to the latter generating function. With atomic gases
the result reads

JU =
15

8

γ1

β2D
n

τ

βm
. (23)

Heat conductivity (λ) is the ratio between the sum of the rates of
heat exchange at either walls (2JU ) and the temperature gradient. Hence

λ =
15

4
kB n

τ

βm
. (24)

In equations (18) and (24) the transport coefficients are expressed
in terms of the effective collision periodicity τ . For comparison with
experimental results, an additional expression is required that relates
the collision periodicity to the mechanical properties of the colliding
species (mass and cross-section) at the given temperature. Only the ratio
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between viscosity and heat conductivity is independent of the particular
collisional dynamics. This ratio is given by Prandtl’s number

Pr =
η cp
mλ

, (25)

with cp as the constant pressure heat capacity. By implementing this
definition with the results obtained above, the experimental values are
obtained identically, thereby confirming the general model.

In the literature there are different expressions for the effective col-
lision periodicity τ for different more or less realistic atomic models and
for the simple hard sphere model [24,23]. Depending on the author and
the procedure used to estimate the collision periodicity, the simple hard
sphere result differs by some minor correcting factor. When the rele-
vant data is imported in the expressions for the transport coefficients,
the same correcting factor holds, expressing the efficiency of the inter-
particles collisions with respect to transfer to the bulk of thermodynamic
information available at the boundaries.

6. Conclusions.

The main conclusion to be drawn from the discussion above is that,
contrasting with a widely adopted paradigm [10], the proposal according
to which dissipation of the non-equilibrium constraints of macroscopic
systems involves interaction with the outside world is strictly compatible
with the experiment.

The word “irreversibility” is ambiguous. If it is understood in the
sense of non-recurrent change in the course of time, conservative Hamil-
tonian dynamics of many-particles systems may indeed belong to that
class of phenomena. This weak form of irreversibility does however not
lead to thermodynamic equilibrium. Memory of the initial conditions is
indeed still present under hidden form (momentum space). By contrast,
the opening of the system to a broad choice of new accessible conditions
by exchange with the environment ensures the strict or strong irreversible
character of true dissipation.

An objection sometimes raised against the privileged role of the
neighbourhood is that the proposal merely moves the difficulty step-
wise further, while it is often assumed that the universe itself should
be isolated. To this it must be answered that extrapolating conclusions
valid at our observational level without proof to the whole universe,
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of which we know almost nothing, is illegal. Our first goal remains
understanding the facts that are directly accessible to the experiment
rather than elaborating a theory that is far beyond perceptional reach.

The properties of the environment are crucial in defining the very
notion of “state of equilibrium”. If the system’s container is moving,
equilibrium conditions imply that the system moves too. At equilibrium,
all the properties of the system and of its surroundings are related. The
intensities (differentials of the entropy with respect to the values of the
exchangeable extensive properties) in the system and in its neighbour-
hood are equal. It is therefore not correct to define the equilibrium state
on the only basis of the extremum conditions of functions of state [21],
without implying the environment.

Boltzmann’s dynamic equation

∂f1

∂t
= − p

m

∂f1

∂q
+ C(f1, f

′
1) (26)

had as its objective rationalizing in a single tractable equation the relax-
ation processes observed in macroscopic systems assumed to be isolated
from the outside world. It was obtained from mere intuitive arguments.
It describes the conservative flow of a density of points in a single parti-
cle phase space, perturbed by an interaction term representing the mod-
ification to single-particle trajectories brought about by inter-particle
collisions.

Referring to the alleged mixing property of complex Hamiltonian
dynamics of many-particles systems [3], confidence in Boltzmann’s equa-
tion has been enforced in recent years [2]. Contrasting with this stand-
point, the present paper asserts that, no matter possible complexity, the
global Hamiltonian motion remains conservative and therefore strictly
symmetrical with respect to the sign reversal of t, in contradiction with
Boltzmann’s equation.

Transport coefficients belong clearly to the realm of dissipative dy-
namics. They are meaningless in isolated systems. It must therefore
be stressed that the many types of phenomenological equations that
describe non-equilibrium dynamics or hydrodynamics where such coef-
ficients are introduced on intuitive arguments (Navier-Stokes equations,
Fokker-Planck equations etc.) all relate to non-isolated systems [22].
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Poincaré, 37:271–294, 1982.

[14] K.Lindenberg and B.J. West. The Nonequilibrium Statistical Mechanics
of Open and Closed Systems. VCH Publisher, New York (N.Y.), 1990.

[15] X. de Hemptinne. Non-equilibrium Statistical Thermodynamics applied
to Fluid Dynamics and Laser Physics. World Scientific, Singapore, 1992.

[16] H. Goldstein. Classical Mechanics. Addison-Wesley, Cambridge, (Mass),
1951.

[17] O. Penrose. Foundations of Statistical Mechanics: a deductive treatment.
Pergamon Press, Oxford, 1970.

[18] E.T. Jaynes. Gibbs vs boltzmann entropies. Am. J. Phys, 33:391–398,
1965.

[19] R.K. Pathria. Statistical mechanics. International series of monographs
in natural philosophy 45. Pergamon Press, Oxford, 1972.

[20] A. Eucken. Physik. Zeitschr., 14:324–332, 1913.
[21] G. Nicolis. Introductory remarks: Thermodynamics today. Physica A,

213:1–7, 1995.
[22] H. Schlichting. Boundary-layer Theory. McGraw-Hill, New York (N.Y.),

1968.
[23] J.F Clarke and M. McChesney. Dynamics of relaxing gases. Butterworth

& Co, London, second edition edition, 1976.



The source of irreversibility in macroscopic dynamics 85

[24] J.O. Hirschfelder, C.F. Curtiss and R.B. Bird. Molecular theory of gases
and liquids. Wiley, New York (N.Y.), 1954.
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Xr φr(Γ) ξr

Particles number 1 α
2nd moment of particle distribution [(z/D)2 − 1] θ2

Kinetic energy (= U)
∑

( p
2

2m ) −β
2nd moment of energy distribution [(z/D)2 − 1]

∑
( p

2

2m ) −γ2

Gradient of shear momentum (z/D) py σy

Table I. List of the main constraints for Couette flow (distance between

the walls: 2D)

Xr φr(Γ) ξr

Particles number 1 α
Gradient of particle distribution (z/D) θ1

Kinetic energy (= U)
∑

( p
2

2m ) −β
Gradient of energy distribution (z/D)

∑
( p

2

2m ) −γ1

Collective transverse momentum pz σz

Table II. List of the main constraints for thermal conduction (distance

between the walls: 2D)


