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Dynamics and Interpretation in Quantum Theory

Y. A. Rylov
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Prospect Vernadskogo 101, Moscow 117526, Russia.

ABSTRACT. A dynamic system SKG, described by the Klein-Gordon
equation is shown to be a special case of a more general dynamic sys-
tem S which can be considered as a set of identical classical particles,
interacting via a self-consistent field κ. The κ-field is responsible for
quantum effects, it is able to generate pairs and to escape from matter.
It can be interpreted as a force field, describing dynamically a statis-
tical effect of the world lines reconnection. Quantum effects can be
considered as dynamical effects without a reference to QM principles.
RÉSUMÉ. Il est demontrè qu’un systeme dynamique SKG décrit par l’
equation de Klein-Gordon est un cas particulier du systeme dynamique
général S qui peut-étre considerè comme un ensemble de particules clas-
siques identiques, interagissant entre elles à l’aide d’un champ self-
consistant κ. Le champ κ est responsable des effets quantiques et est
capable de donner naissance aux paires de particules et peut se détacher
de la matiere. Ce champ peut être interpreté comme un champ de forces
décrivant dynamiquement un effet statistique de reconnection des lignes
d’univers. Les effets quantiques peuvent etre considerè comme effets
dynamiques sans recourir aux principes de la Mécanique Quantique.

1 Introduction

In the paper dynamic properties of a quantum system are investigated
with the QM principles being reserved. Adding the reserved QM princi-
ples, one obtains the conventional presentation of the quantum mechan-
ics.

Conventional scheme (C-scheme) of the quantum mechanics presen-
tation can be written as follows:
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Single system ⇒ Stat. propositions ⇒ Dynamics

where "Single system" means a real single physical system, and "statis-
tical propositions" means a set of rules for calculations of average values
of physical quantities. These rules describe the way of calculation of
the mean value of a physical quantity R in the pure state ψ and can be
written in the form [?]

〈R〉ψ = 〈ψ∗ | R̂ | ψ〉 (1.1)

Here R̂ means linear operator corresponding to the physical quantity R.
Dynamics describes time evolution of mean values of physical quantities
(in the Heisenberg picture), or the time evolution of the state vector ψ
of the physical system (in the Schrödinger picture). In both cases the
dynamics is described by fixing the evolution operator H called Hamil-
tonian. The arrows show the logical connection between the terms of
the scheme. In particular, the second arrow shows that the statistical
propositions are formulated before the dynamics, whereas the dynamics
and dynamic equations are formulated after and in terms of the statis-
tical propositions. In such a scheme practically all quantum properties
[?] are contained in the statistical propositions. In particular, the QM
principles can be derived from the statistical propositions [?].

Dynamical equations and statistical propositions generate some asso-
ciations with the classical mechanics or with some elements of the classi-
cal mechanics. These associations are commonly considered as quantum
mechanics interpretations. These associations are rather indefinite in
the sense that as a rule they are not formulated in a mathematical form.
It is a reason why some scientists believe that the quantum mechanics
can exist without any interpretations, and only mathematical statements
of the statistical propositions and the dynamic equations are of impor-
tance. Nevertheless, a lot of papers [?] - [?] is devoted to development
of different interpretations of the quantum mechanics. It is commonly
supposed that a valid interpretation is useful for a correct development
of the quantum theory.

Here another scheme of quantum mechanics presentation is used. It
will be refered to as a SET -scheme (SET is an abbreviation of "statis-
tical ensemble technique"). The SET -scheme can be presented in the
form:

Single system ⇒ Dynamics ⇒ Interpretation
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where "Single system" means a single stochastic physical system Sst,
"Dynamics" denote a dynamical system E , its attributes and its dy-
namic equations, describing the time evolution. This dynamic system E
associates with the single stochastic system Sst. "Interpretation" means
a correlation between the dynamic variables of the dynamic system E
and mean values related to the single stochastic system Sst. The in-
terpretation means the same statistical propositions and, maybe, some
other statements which admit to formulate properties of the stochastic
system Sst in terms of dynamic variables of the dynamic system E . The
arrows show also the logical connection between the terms of the scheme.
In particular, the second arrow shows that the dynamics is formulated
before and independently of the interpretation (statistical propositions).
It means also that the interpretation (statistical propositions) is formu-
lated after and in terms of the dynamics.

A usage of the SET -scheme can be explained in the following ex-
ample. Precise experiments with a single electron are irreproducible, in
general. It means by definition that a single electron is a stochastic sys-
tem Sst, and there are no dynamic equations for the time evolution of
the single electron. At the same time a series of many precise indepen-
dent experiments with the stochastic system Sst gives distributions of
physical quantities. These distributions are reproducible in other series
of like experiments with the stochastic system Sst. It means that the set
of many similar independent stochastic systems Sst can be considered
as a deterministic dynamic system E , associated with the stochastic sys-
tem Sst. It is a common practice to call such a dynamic system E as a
statistical ensemble of stochastic systems Sst. The time evolution of the
statistical ensemble is described by dynamic equations which are deter-
mined by properties of stochastic systems Sst constituting the statistical
ensemble E .

Interpretation (statistical propositions) determines mean values of
physical quantities of Sst in terms of dynamic variables of E . It is an in-
terpretation of the stochastic system in terms of a deterministic dynamic
system, i.e. it is an interpretation in a conventional sense of this word.
In particular, the interpretation (statistical propositions) determines the
time evolution of the mean values of Sst.

It should note a conceptual difference between the C-scheme and the
SET -scheme. In the C-scheme all quantum properties are contained in
the statistical propositions, whereas in the SET -scheme they are con-
tained in dynamics. Indeed, removing the statistical propositions from
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the C-scheme, one removes the quantum mechanics as a whole. At the
same time in the SET -scheme one can derive practically all quantum
effects (including the uncertainty principle, interference and diffraction)
only from dynamics, i.e. without a usage of the interpretation (statisti-
cal propositions). From the viewpoint of the C-scheme it seems rather
strange and unexpected. Nevertheless, it will be demonstrated below.

In the second section one considers dynamics of a set of identical
classical particles interacting via a self-consistent field κl. Properties of
this field are investigated in the third section. An interpretation of the
κ-field is given in the fourth section. The fifth section is devoted to an
interpretation of the quantum effects in dynamical terms.

2 Dynamics of a set of relativistic particles

Let us consider a dynamic system S, which is a set of identical classical
particles of the mass m, interacting via some self-consistent field κ. The
action has the form

AL[x, κ] = −
∫
mcK

√
gklẋkẋld

4ξ, ẋk ≡ dxk/dτ, τ = ξ0 (2.1)

K ≡
√

1 + λ2(∂lκl + κlκl), (2.2)

where c is the speed of the light, gkl =diag{c2,−1,−1,−1} is the metric
tensor and λ = h̄/mc is the Compton wave length. h̄ is the Planck
constant. x = {xl} and κ = {κl}, l = 0, 1, 2, 3 are dependent dynamic
variables. ξ = {ξ0, ξ} = {ξk}, k = 0, 1, 2, 3 are independent dynamic
variables. κ depends on ξ only via x:

κk = κk(x), k = 0, 1, 2, 3; xk = xk(ξ), ξ = {ξk}, k = 0, 1, 2, 3.
(2.3)

Here and further a summation is produced over repeated Latin indices
(0 − 3) and over the Greek ones (1 − 3). The dynamic system S is a
distributed system which can be considered as a fluid. ξ = {ξα}, α =
1, 2, 3 are Lagrangian coordinates labelling particles of the fluid, ξ0 =
τ is the time Lagrangian coordinate along the world line of the fluid
particle. Dynamic equatons for the field κk are determined as a result of a
variation of the action (2.1) with respect κk. δAL/δκk = 0, k = 0, 1, 2, 3.
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Let us derive dynamic equations for the system S.

δAL
δxl

= −dpl
dτ
−mc

√
ẋsẋs∂lK = 0, ∂l ≡

∂

∂xl
, l = 0, 1, 2, 3 (2.4)

pl = − mcK√
ẋsẋs

ẋl, l = 0, 1, 2, 3 (2.5)

At variation with respect to κl one should take into account that κl is a
function of x, and the action (2.1) has to be written as an integral over
x∫

(.)d4ξ =

∫
(.)Jd4x, J = det ‖ ξi,k ‖, ξi,k ≡ ∂kξi, i, k = 0, 1, 2, 3

(2.6)
where J is a Jacobian of the transformation from the Eulerian coordi-
nates x to the Lagrangian coordinates ξ. Then variation with respect to
κl gives

δAL
δκl

= −λ
2mc
√
ẋsẋsJ

K
κl + ∂l

λ2mc
√
ẋsẋsJ

2K
= 0, l = 0, 1, 2, 3 (2.7)

Let us introduce designations

jk = Jẋk ≡ ∂J

∂ξ0,k
≡ ∂(xk, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
, k = 0, 1, 2, 3 (2.8)

ρ =

√
ẋsẋsJ

mcK
=

√
jsjs

mcK
≡

√
jsjs

mc
√

1 + λ2(∂kκk + κkκk)
. (2.9)

Then the equation (2.7) takes the form

κk = ∂kρ/2ρ. (2.10)

It means that the field κl has always a potential κ = 1
2 log(ρ/a2), where

a =const. Thus,

ρ =

√
jsjs

mc
√

1 + λ2(∂kκk + κkκk)
= a2e2κ, κl ≡ ∂lκ (2.11)

Eq.(2.11) is a dynamic equation for the potential κ. It can be written
also in the form

λ2∂l∂
leκ = [

e−4κjsjs
a4m2c2

− 1]eκ. (2.12)
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In virtue of Eq.(2.8) after substitution of ∂J/∂ξ0,k by jk the identity

∂k
∂J

∂ξ0,k
≡ 0 (2.13)

turns to the continuity equation

∂kj
k = 0 (2.14)

for the current jk ≡ Jẋk. Let us multiply Eq.(2.4) by J , use the desig-
nation (2.8) and the relation

dpl
dτ

= ẋk∂kpl, (2.15)

which is valid provided pl is considered as a function of only x. After
simple transformations one obtains

jk(∂kpl − ∂lpk) = 0, l = 0, 1, 2, 3 (2.16)

pl = −a−2e−2κjl (2.17)

Only three of four equations (2.16) are independent, because a convo-
lution of Eq.(2.16) with jl leads to an identity. Thus, equations (2.12),
(2.14), (2.16), (2.17) form a system of the hydrodynamic type equations
for the current jl, l = 0, 1, 2, 3 of the fluid and for the potential κ of the
self-consistent κ-field.

Equations (2.14), (2.16), (2.17) can be integrated in a general form

pl = −a−2e−2κglk
∂J

∂ξ0,k
= b∂lϕ+ bgα(ξ)ξα,l, l = 0, 1, 2, 3 (2.18)

jl =
∂J

∂ξ0,l
, l = 0, 1, 2, 3 (2.19)

where ϕ is a new dynamic variable, ∂J/∂ξ0,k is the function of first
derivatives ξα,k ≡ ∂kξα, k = 0, 1, 2, 3, α = 1, 2, 3, which is defined by
the relation (2.8), gα(ξ), α = 1, 2, 3 are arbitrary functions of ξ, b is a
constant used to make the functions gα(ξ) dimensionless (ξ are supposed
to be dimensionless and [b]=[action]). The relations (2.18), (2.19) satisfy
equations (2.14), (2.16) for arbitrary functions gα(ξ). One can verify
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this, substituting Eqs. (2.18), (2.19) into Eqs. (2.14), (2.16) and using
identities (2.13) and

∂J

∂ξ0,l
ξα,l ≡ 0, α = 1, 2, 3 (2.20)

Equations (2.18), (2.12) are four first order dynamic equations for four
hydrodynamic potentials ϕ = ξ0, ξα, α = 1, 2, 3, and a second order
equation for the potential κ of the κ-field.

Description in terms of hydrodynamic equations (2.12), (2.14), (2.16),
(2.17) contains only information about the particle velocities in the sense
that, if κ(x), jk(x) is a solution of equations (2.12), (2.14), (2.16), then
the velocity is determined by the relation

dxα

dx0
=
jα

j0
, α = 1, 2, 3. (2.21)

For determination of the world line of a particle one has to integrate
Eq.(2.21)

The description (2.12), (2.18) in terms of potentials is more informa-
tive in the sense that it contains information about both position and
velocity of a particle. If ξ = ξ(x) is a solution of Eq.(2.18), the world
lines are determined by the finite relations

ξ(t,x) = ξ0 = const, (2.22)

which should not be integrated. On the other side the description in
terms of potentials is physically indefinite in the sense that there is not
one-to-one correspondence between the fluid flow and potentials ϕ, ξ.
The same flow can be described by different sets of potentials ϕ = ξ0,
ξ. This fact is displayed mathematically as an invariancy of the action
(2.1) and that of dynamic equations (2.18), (2.19) with respect to the
group of transformations of Lagrangian coordinates

ξα → ξ̃α = fα(ξ), det ‖ ∂fα/∂ξβ ‖= 1, α, β = 1, 2, 3 (2.23)

ξ0 → ξ̃0 = f0(ξ0, ξ), ∂f0/∂ξ0 > 0 (2.24)

where fα(ξ), f0(ξ) are arbitrary functions of their arguments restricted
only the second relations (2.23), (2.24). In virtue of Eq.(2.8) the equation
(2.18) is invariant with respect to transformations (2.23), (2.24). Under
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these transformations the functions gα(ξ) transform as vectors in the
space of Lagrangian coordinates ξ.

gα(ξ)→ g̃α(ξ̃) =
∂ξβ

∂ξ̃α
gβ(ξ), α = 1, 2, 3 (2.25)

The world lines of the fluid are labelled by the Lagrangian coordinates
ξ. The labelling is arbitrary and does not influence on the dynamics of
the system. The transformation (2.23) describes relabelling of the world
lines.

The description in terms of the wave function is a kind of description
in terms of hydrodynamic potentials [?]. To obtain this description let
us convolute equations (2.18) with ∂lgα(ξ). In virtue of identities (2.20)
one obtains three first order equations for potentials ξ

[b∂lϕ+ bgβ(ξ)∂lξβ ]∂lg
α(ξ) = 0, α = 1, 2, 3 (2.26)

Let us substitute ∂J/∂ξ0,k from Eq.(2.18) into Eq.(2.13). One obtains
the second order equation for ϕ in the form

∂k[e2κ(bϕk + bgα(ξ)∂kξα)] = 0, ϕk ≡ ∂kϕ (2.27)

Finally the substitution ∂J/∂ξ0,k into Eq.(2.12) leads to generalized
Hamilton-Jacobi equatioin

m2c2[1 + λ2(κkκk + ∂kκ
k)] = [b∂lϕ+ bgβ(ξ)∂lξβ ][b∂lϕ+ bgβ(ξ)∂lξβ ]

(2.28)
which should be considered as a dynamic equation for κ. The system
of equations (2.26) -(2.28) is of seventh order with respect to temporal
derivatives.

The equations (2.26), (2.27), (2.28) can be obtained as a result of
varation of the action

AE [ϕ, ξ, κ] =
a2

2

∫
e2κ{[b∂kϕ+ bgα(ξ)∂kξα][b∂kϕ+ bgβ(ξ)∂kξβ ]−

−m2c2[1− λ2(∂kκ)(∂kκ)]}d4x (2.29)

respectively with respect to ξ, ϕ and κ.
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Let ψ = {√ρeiϕvα(ξ)}, α = 1, 2, . . . n, ρ = a2e2κ be n-component
complex function having the property

∑n
α=1 v

∗
αvα = 1, and vα be func-

tions of only ξ. (∗) means a complex conjugation. Then

ρ = ψ∗ψ, jk ≡
ib

2
(ψ∗∂kψ − ∂kψ∗ψ) = −bρ[∂kϕ+ fβ(ξ)∂kξβ ], (2.30)

k = 0, 1, 2, 3

where

fβ(ξ) = − i
2

n∑
α=1

(v∗α
∂vα
∂ξβ
− ∂v∗α
∂ξβ

vα), β = 1, 2, 3 (2.31)

(2.31) and (2.18) coincide, provided fα = gα, α = 1, 2, 3. It means that
five real variables ρ, ϕ, ξ can be substituted by one three-component
complex function ψ, described by six real variables. To make such a
change of variables it is sufficient to find some solution of the system of
equations

− i
2

3∑
α=1

(v∗α
∂vα
∂ξβ
− ∂v

∗
α

∂ξβ
vα) = gβ(ξ), β = 1, 2, 3,

3∑
α=1

v∗αvα = 1, (2.32)

The form of the solution depends essentially on the form of functions
gα(ξ). Then

ψ = {aeκ+iϕvα(ξ)}, α = 1, 2, 3 (2.33)

ánd the action (2.29) takes the form

AE [ψ,ψ∗] =

∫ { 1

ψ∗ψ
{−b

2

4
(ψ∗ψk − ψ∗

kψ)(ψ∗ψk − ψ∗kψ)−

−m2c2[(ψ∗ψ)
2 − λ2

4
∂k(ψ∗ψ)∂k(ψ∗ψ)]}

}
d4x, ψk ≡ ∂kψ (2.34)

In reality there is no necessity to solve the system (2.32). It is sufficient
to be sure that the system has a solution for any functions gα(ξ). In the
general case the dynamic equation for the ψ-function is nonlinear.

Note that the constant b appeared in Eq. (2.18) as an integration
constant which has nothing to do with quantum effects, whereas λ ap-
peared in the action (2.1) as a constant introducing the κ-field responsi-
ble for quantum effects. Identifying b with h̄ = mcλ, one can obtain the
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following form of the action (2.34)

AE [ψ,ψ∗] =
1

2

∫
[h̄2∂kψ

∗∂kψ − (m2c2 +
h̄2

2

n∑
α,β=1

Qαβ,kQ
∗
αβ

k)ψ∗ψ]d4x,

(2.35)
where

Qαβ,k ≡
1

ψ∗ψ

∣∣∣∣ ψα ψβ
∂kψα ∂kψβ

∣∣∣∣ , Qαβ
k = gklQαβ,l (2.36)

For some functions gα(ξ) the ψ-function can have less number of
essential components. For instance, if gα(ξ) ≡ 0, the ψ-function has
one essential component ψ = aeκ+iϕ, and the action (2.35) turns to the
action

AKG[ψ,ψ∗] =
1

2

∫
[h̄2∂kψ

∗∂kψ −m2c2ψ∗ψ]d4x (2.37),

for the Klein-Gordon equation

h̄2∂k∂
kψ +m2c2ψ = 0 (2.38)

The following expressions for the current jk and the energy-momentum
tensor T lk correspond to the action (2.37)

jk =
ih̄

2
(ψ∗ψk − ψ∗kψ), k = 0, 1, 2, 3, ψk ≡ ∂kψ (2.39)

T lk =
h̄2

2
(ψ∗lψk + ψ∗

kψ
l − δlkψ∗sψs) +

1

2
δlkm

2c2ψ∗ψ, (2.40)

k, l = 0, 1, 2, 3

The ψ-function can be considered as a wave function, because it
satisfies the linear Klein-Gordon equation that is compatible with the
quantum axiomatics. The one component ψ-function describes a poten-
tial flow of the fluid, as it folows from Eq.(2.18).

The current jk = ẋkJ and the energy-momentum tensor T lk are at-
tributes of the dynamic system S (not attributes of statistical proposi-
tions (1.1)). The canonical energy-momentum tensor has the form

T lk = −pkjl −
1

2
h̄2a2e2κ∂kκ

l =
mcKjljk√

jsjs
− 1

2
h̄2a2e2κ∂kκ

l. (2.41)
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In the potential case jk and T lk can be expressed via the wave function
ψ and coincide respectively with expressions (2.39) and (2.40). Thus, a
potential flow in the system S is described completely in terms of the
dynamic system SKG.

3 Properties of the κ-field

Let us list the properties of the κ-field introduced by the relations (2.1),
(2.2).
(1) The κ-field is responsible for quantum effects.
(2) The κ-field can escape from the matter and exist separately in the
"empty" space-time.
(3) The κ-field enables to generate pairs.

The first property is rather evident from Eqs.(2.1), (2.2). Setting
κl ≡ 0, l = 0, 1, 2, 3, the action (2.1) turns to the action for the classical
statistical ensemble of independent classical particles.

The second property follows from the dynamic equation (2.12). Set-
ting jl ≡ 0, l = 0, 1, 2, 3, Eqs. (2.14), (2.16) are satisfied identically.
Eq.(2.12) turns to the Klein-Gordon equation for eκ

λ2∂l∂
leκ + eκ = 0. (3.1)

In the case jl = 0, l = 0, 1, 2, 3 the wave function (2.33) turns to ψ = aeκ.
In other words, real wave function ψ, satisfying the Klein-Gordon equa-
tion, describes free κ-field without a matter. According to Eq. (2.40) the
energy-momentum tensor of the free κ-field is determined by the relation

T lk =
1

2
m2c2a2e2κ[δlk + λ2(2κlκk − δlkκsκs)], k, l = 0, 1, 2, 3 (3.2)

T 0
0 =

1

2
m2c2a2e2κ[1 + λ2

3∑
l=0

| κl |2] ≥ 0 (3.3)

If jl changes rather slightly over the distance of the Compton length
λ, the dynamic equation (2.12) for the κ-field is a differential equation
with a small parameter at the highest derivative. In this case rhs of Eq.
(2.12) is to vanish, and its solution has the form

κ ' 1

2
log

√
jsjs

a2mc
, K ' 1, λ | ∂ljs |� js (3.4)
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In this case the κ-field is coupled with the matter (like the Coulomb elec-
tric field) and has no proper degrees of freedom. In the non-relativistic
case the energy difference mKc2 −mc2 = − 1

2λ
2mc2(j0)

−1/2∇2
√
j0 as-

sociates with the Bohm potential VB = [h̄∇ log(ψ∗ψ)]2/8m [?].
Before a consideration of the pair production problem let us discuss

some conceptual points, connected with a description of particles and
antiparticles in classical terms. First, about terminology. The terms
"world line of a particle" and "world line of an antiparticle" are essen-
tially non-relativistic. They suppose that a world line is an attribute
(history) of a pointlike physical object (particle or antiparticle). This
physical object is a point in the 3-dimensional space, and its trajectory
in the space-time is its world line. From the non-relativistic viewpoint
a particle and an antiparticle are different physical objects. From rel-
ativistical viewpoint a world line (WL) is a real physical object. This
object is a one-dimensional line in the 4-dimensional space-time. WL has
two distinct orienatations which can be considered as one of two possible
directions of motion along WL [?, ?]. Further the term "WL" will be
used instead of the term "world line" in those cases, when the world line
is considered as a physical object (not as a history of a particle). Parti-
cles and antiparticles are derivative pointlike physical objects which arise
as intersections of WL with the hyperplane t=const at some coordinate
system. One WL can describe a few particles and antiparticles, placed
in different regions.

A particle and an antiparticle are distinguished by the orientation of
WL at its intersection with the hyperplane t=const. From relativisti-
cal viewpoint a particle and an antiparticle are two different states (or
attributes) of a WL, whereas from the non-relativistic viewpoint they
are two different physical objects. The term "SWL" (abbreviation of
"section of world line") will be used as a common concept with respect
to concepts "particle’ and "antiparticle". SWL means any point of in-
tersection between the WL and a hyperplane t=const independently of
an orientation of the WL at this point.

Describing a particle and an antiparticle, one has to distinguish be-
tween the energy-momentum vector Pl = {P0,P} and the canonical mo-
mentum vector pl = {p0,p}, especially between the energy E = P0 and
the time component p0 of the canonical momentum. These quantities
are defined in different way. The energy-momentum vector is defined by
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the relation
Pl =

∫
V

T 0
l dx, l = 0, 1, 2, 3, E = P0 (3.5)

where T lk is the energy-momentum tensor and V is a 3-volume around
SWL. The canonical momentum pl is defined as a quantity, canonically
conjugate to the position xl, l = 0, 1, 2, 3 of SWL. In classical physics
it means that pl = ∂L/dẋl, ẋl ≡ dxl/dτ , l = 0, 1, 2, 3, where L is a
Lagrangian, and τ is a parameter along WL. In the quantum physics
the operator p̂l of the canonical momentum is defined by the relation

[û, p̂l]− = ih̄
∂û

∂xl
(3.6)

where [. . .]− denotes a commutator and û means an operator of any
dynamic variable in the Heisenberg representation.

The fact that the energy E of a free particle coincide with the time
component −p0 of the canonical momentum taken with the opposite
sign E = −p0 does not mean that the same relation is valid for a free
antiparticle. Indeed, setting for simplicity κl ≡ 0, l = 0, 1, 2, 3 in the
relations (2.41), (2.5), one obtains

T 0
0 =

mcKj0j0√
jsjs

≥ 0, p0 = −mcKj0√
jsjs

= −mcKẋ0√
ẋsẋs

(3.7)

sgn(K
√
jsjs) =sgn(K/

√
jsjs) = 1 always. Then it follows from Eqs.

(3.5), (3.7) that the energy is positive always, whereas the sign of p0
depends on the sign of j0 (or ẋ0), and is different for a particle and for
an antiparticle. If p0 can be considered as a constant, then it follows
from Eqs. (3.5), (3.7)

E = P0 = −p0N, N =

∫
j0dx, (3.8)

where N is the number of SWLs. N is positive for particles and
negative for antiparticles For one WL the relation (3.8) reduces to
E = −p0sgn(j0) =| p0 |.

A like relation

Q = e sgn(j0) = e sgn(ẋ0), sgn(J) = 1 (3.9)

is valid for the connection between the electric charge Q of SWL, defined
as a source of the electromagnetic field and the constant e, describing
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interaction of a charged WL with the electromagnetic field [?]. The
electric charge Q is defined by the relation (3.9) which describes the
well known fact that a particle and an antiparticle have opposite electric
charges.

Identification of Pl with pl is possible [?, ?], provided particles and
antiparticles are considered as different objects, (but not attributes of a
wholeWL). In the up-to-date quantum field theory such an identification
is produced almost always (see, however, [?]) As a result one deals with
indefinite number of SWL (instead of a few WLs), and many additional
problems arise. In particular, conventionally one claims [?, ?] that some
solutions of the Klein-Gordon equation has a negative energy and are not
physical. Here one has a confusion of the energy E with the canonical
momentum p0. The energy of any solution is non-negative, as it follows
from Eqs.(3.5), (3.7), or (2.40), whereas the p0 can have both signs, but
it does not mean that the solution with −p0 < 0 is not physical. It
means only an appearance of antiparticles.

The problem of pair production is connected with a possibilty of
changing sign of p0, or ẋ0. To change sgn(ẋ0), the vector ẋl is to be
spacelike ẋkẋk < 0. It is a necessary condition of changing sign of ẋ0.
The first term of the action (2.1) remains real, provided ẋkẋk < 0 and

K2 = 1 + λ2(κkκ
k + ∂kκ

k) < 0 (3.10)

To satisfy the last condition, the κ-field is to be large enough and to
change rather rapidly.

To distinguish between particles and antiparticles, let us introduce
the distribution function over position x, canonical momentum p and
ε=sgn(j0) = −sgn(p0) :

F (x,p, ε) =

√
jsjs

mcK

3∏
α=1

δ(pα +
mcKjα√
jsjs

)δε,sgn(j0) (3.11)

where K is defined by the relation (2.2). One distinguishes between the
canonical momentum (c-momentum) p = {p1, p2, p3} and the momen-
tum P = {Pα}, α = 1, 2, 3 which are coupled between themselves by the
relation

P = εp, ε = −sgn(p0) = ±1 (3.12)

P is the spatial component of the energy-momentum vector (3.5),
whereas p is defined by Eq.(2.5).
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The distribution function permits to calculate the mean value 〈R〉 of
any function R(x,P, ε) by means of the relation

〈R(x,P, ε)〉 = A−1
∑
ε=±1

∫ ∫
R(x, εp, ε)F (x,p, ε)dxdp (3.13)

A =
∑
ε=±1

∫ ∫
F (x,p, ε)dxdp =

∫
(mcK)−1

√
jsjsdx =

∫
ρdx (3.14)

Relations (3.13), (3.14) are some new statistical propositions alternative
to Eq.(1.1), which will be referred to as a dynamical interpretation, or
as WL-interpretation (interpretation in terms of WL). They realize in a
mathematical form the "classical associations" arising at the description
of the dynamic system S by means of the action (2.1). Until formulation
of the WL-interpretation in the form (3.13) all "classical considerations"
were only a description of the dynamic system SKG in terms of other
dynamic variables and nothing more.

A possiblity of an alternative interpretation arises only after math-
ematical formulation of alternative statistical propositions. The WL-
interpretation is more general, than the conventional interpretation (1.1),
because it is applicable in the case, when ψ satisfies nonlinear dynamic
equation and the linear superposition principle does not take place. The
distribution function (3.11) describe a classical particle of alternating
mass

µ = mK = m
√

1 + λ2(κkκk + ∂kκk) (3.15)

with the mass depending on the κ-field magnitude. µ is imaginary for
spacelike momenta.

ε=sgn(j0) is not a relativistic invariant for the spacelike vector jk.
It means that the spacelike WL describes a particle (ε = 1) in one
coordinate system and an antiparticle (ε = −1) in other one. Spacelike
WL are possible only inside a region with a large κ-field which associates
with an existence of pairs. Apparently, spacelikeWL should be regarded
as the mean WL, describing simultaneously one SWL and a few pairs.

Let us stress that we do not insist on the WL-interpretation. It
is important only that the most of quantum effects can be explained
independently of which of the two interpretations [(1.1), or (3.11), (3.13)]
is used. At the same time most of relations (1.1), or (3.11), (3.13) cannot
be proved experimentally [?]. They can be tested in the case, when
R = R(x), but in this case the statistical propositions (1.1) and (3.11),
(3.13) coincide.
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4 Interpretation of the κ-field on the dynamic-sta-
tistical base

Let us discuss interpretation of the κ-field. For simplicity only the case
of two-dimensional space-time is considered. Generalization for the case
of four dimensions can be obtained easily. Let us consider a statistical
ensemble E of free classical (deterministic) WLs in the two-dimensional
space-time. AllWLs have the same massm and the constant e. The state
of the statistical ensemble E is described by the distribution function F
as a function of coordinates x = {x0, x1} and momentum p = {p0, p1}.
As far as variables p0 and p1 are not independent because of the re-
lation plp

l = m2, (c = 1), it is convenient to use variables p1 and
ε = −sgn(p0), ε = ±1 as independent arguments of the distribution
function F = F (x, p1, ε). The discrete variable ε is different for particles
and antiparticles (ε = 1 for particles and ε = −1 for antiparticles).

The distribution function F satisfies the free Liouville equation

∂l[p
lF (x, p1, ε)] = 0, (4.1)

p1 = −p1, p0 = −εE(p1), E(p) ≡|
√
m2 + p21 |

The mean current in the statistical ensemble E is defined by the relation

jl(x) =
∑
ε=±1

∫
plF (x, p1, ε)dp1, l = 0, 1, (4.2)

Let us consider a very important case of the state of E

F (x, p1, ε) = f(x, ε)δ(p1 − k) (4.3)

where k is a constant, or a slowly varying function of x. If WLs of the
state (4.3) of E do not intersect (have no common points) inside some
region R of the space-time, then by definition the E is a simple ensemble
(more exactly an ensemble simple inside R).

A simple ensemble has the remarkable property that its state
F (x, p1, ε) is determined by its current jl(x).

F (x, p1, ε) = m−1
√
jsjsδ[p1 +mj1(jsjs)

−1/2]δε,sgn(j0), (4.4)

Besides it is possible to write the action and dynamic equations for the
current of the simple ensemble state

A[j, ϕ] =

∫
{−m

√
jsjs − h̄jl∂lϕ}d2x (4.5)
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After elimination of ϕ the dynamic equations for the action (4.5) reduce
to the form

∂lj
l = 0, ∂lT

lk = 0, k = 0, 1 (4.6)

T kl =
mjkjl√
jsjs

, k, l = 0, 1 (4.7)

In such a form the dynamic equations (4.6) describe the conservation
law of SWLs and the energy-momentum. One can verify that in virtue
of the dynamic equations (4.6) the distribution function (4.4) satisfies
the Liouville equation (4.1).

Let us consider two different simple states F1 and F2 of the statistical
ensemble E , which will be referred to as simple statistical ensembles E1
and E2 of free WLs.

E1 : F1(x, p1, ε) = f1(x1 − x0p1/p0)δ(p1 − k)δεε1 , p0 = −εE(p1)
(4.8)

E2 : F2(x, p1, ε) = f2(x1 − x0p1/p0)δ(p1 + k)δεε2 , p0 = −εE(p1)
(4.9)

where k =const, E(p) ≡| (m2 + p2)1/2 |, ε1 and ε2 are fixed numbers
equal to ±1 and

fs(x) =

{
A, | x |< Ls
0, | x |> Ls

s = 1, 2, (4.10)

A,L1, L2 = const, A > 0.

If in Eqs. (4.8), (4.9) p0 < 0, then ε = 1, and WLs of the ensemble de-
scribe particles. If p0 > 0, then ε = −1, and WLs describe antiparticles.
The ensembles E1 and E2 are described respectively by the currents j0(1)
and j0(2)

E1 : j0(1) = k0f1(x1 + x0k/k0), j1(1) = −kf1(x1 + x0k/k0), (4.11)

E2 : j0(2) = k0f2(x1 − x0k/k0), j1(2) = kf2(x1 − x0k/k0), (4.12)

k0 = −εE(k)

As far as the distribution functions F1 and F2 satisfy the linear equation
(4.1) and describe two different states of the same dynamic system E , the
distribution function F = F1+F2 describes also a state of E . This state F
can be considered as a result of composition of two statistical ensembles
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Figure 1: World lines of classical particles: a) for single particles, b) for
mean world lines.

E1 and E2. Thus, the statistical ensemble E = E1+E2 is simple everywhere
in the space-time except for the region Rc. The region Rc is located
inside the parallelogram formed by the straight lines x1 + kx0/k0 =
±L1, x1−kx0/k0 = ±L2. Inside Rc any point belongs to two different
WLs of the statistical ensemble E . These intercepts of WLs are shown in
Fig.1a, 2a. as dashed lines. In Fig.1 ε > 0 in both ensembles E1 and E2,
and SWLs are particles. Thus, the statistical ensemble E is not simple,
in general.

The total current jl of E is determined by Eq.(4.2). One obtains the
relation

jl = jl(1) + jl(2) (4.13)

as a corollary of Eqs. (4.8), (4.9) and constructs the mean WLs as
lines tangent to the total current jl. Then the ensemble E becomes a
simple ensemble Em of mean WLs, shown in Fig.1b. But now Em is not
a statistical ensemble of mean WLs, because by definition a statistical
ensemble is a set of independent and, hence, non-interacting elements
(WLs).

Outside the region Rc the mean WLs coincide with WLs of the en-
sembles E1 or E2, but inside Rc the mean WLs distinguish from WLs of
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Figure 2: World lines of classical particles and antiparticles: a) for single
particles and antiparticles, b) for mean world lines.

both ensembles E1, E2. Looking at Fig.1b, one can see that after the unifi-
cation (4.13) a reconnection ofWLs take place. From the non-relativistic
viewpoint this reconnection can be interpreted as an exchange effect be-
tween the particles of the ensembles E1 and E2. This reconnection (or
the exchange effect) is interpreted as some statistical effect. There is
no dynamic interaction between WLs here, nevertheless the mean WLs
of the ensemble Em look, as if they interact very strongly inside the re-
gion Rc. In other words, considering non-simple statistical ensemble E
of deterministic WLs as a simple ensemble Em of mean WLs, one intro-
duces some effective dynamic interaction between the mean WLs. This
dynamic interaction imitates the statistical effect of reconnection ofWLs
(from relativistic viewpoint), or the effect of the particle exchange (from
the non-relativistic standpoint).

Now let us look at Fig.2b. In this case ε is different for E1 and E2.
Here one sees the effect of the WLs reconnection, but this effect can be
hardly interpreted from the non-relativistic viewpoint as an exchange
effect, because from this point of view particles and antiparticles are
not identical physical objects. Besides, the picture of mean world lines
in Fig.2b should be interpreted as follows. Particles and antiparticles
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annihilated in the regionRc, are converted into some field, and thereafter
this field produces particle-antiparticle pairs. Such a situation, when
particles disappear and arise, can be hardly explained from the non-
relativistic standpoint.

The dynamic interaction is self-consistent in the sense that it depends
on the state of the whole ensemble E . For instance, the fact that the
mean WLs are straight lines inside Rc (Fig.1b,2b) is a corollary of the
fact that fs(x) = A=const inside Rc. If one violates the form of the
functions fs, the shape of the mean WLs in Rc changes.

From the relativistical viewpoint both pictures in Fig.1,2 describe
some statistical effect, when non-simple statistical ensemble E of free
WLs is described in terms of a simple ensemble Em of mean interacting
WLs. This statistical effect is described as a reconnection of WLs and
can be imitated by means of dynamic interaction between mean WLs.

Thus, there are two different ways of statistical description of deter-
ministic WLs: (1) description F in terms of the distribution function,
(2) description j in terms of currents. The description F is the most
detailed one. It is produced in the 3-dimensional phase space and uses
dynamic equations of the type (4.1). The description j is less detailed
one. It is produced in the 2-dimensional space-time and uses dynamic
equations of the type (4.6).

If there is a non-simple ensemble, then it is possible to describe each
beam of WLs in the space-time by means of dynamic equations of the
type (4.6), (4.7). The mean WLs are described by the mean current jl
of the type (4.13). But the dynamic equations cannot be written only
in terms of jl. They contain also variables like jl(1) − j

l
(2) which imitate

some self-consistent field describing the interaction between mean WLs.
In the case of the ensemble of determinisitc WLs one knows definitely
that real WLs do not coincide with the mean WLs. It is valid also in the
case of the ensemble of stochastic WLs.

At the F -description in the phase space the WLs of the ensembles
E1 and E2 do not interact. At the j-description in the space-time they
do. Of course, in reality the WLs do not interact (at any rate they do
not interact dynamically), but describing stochastic WLs in quantum
systems, one is forced to use only j-description in the space-time (but
not the F -description in the phase space). Mathematically an interplay
between descriptions of stochastic SWLs and deterministic WLs can be
established only for j-description of mean WLs. Although intuitively
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Figure 3: Reconnection of world lines, described by the κ-field.

WLs of ensembles E1 and E2 seem to be independent, nevertheless the
imitation by means of mean interacting WLs seems to be more effective
mathematically in the case of stochastic WLs.

A possibility of imitating statistical effects by means of dynamic inter-
action is very important for a practical use. For instance,WLs describing
microparticles (electron, proton,. . .etc) are stochastic, and statistical en-
sembles of such stochastic WLs cannot be simple, because they cross
between themselves many times. But it is possible to imitate such non-
simple statistical ensembles of WLs by simple ensembles of mean WLs
which do not cross by definition. But in this case the mean WLs of
the ensemble interact between themselves via some self-consistent field.
Thus, considering an ensemble E (not a statistical ensemble) of WLs, in-
teracting via some self-consistent field, it is possible to take into account
statistical effects connected with the stochasticity and substitute them
by dynamic interaction with some self-consistent field.

One can imagine such a field as a field describing closed WLs, or
closed current loops associated with particle-antiparticle pairs. A join
of such closed WLs to a WL describing a particle (or an antiparticle)
changes effectively a shape of the WL (see Fig.3).
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Let us return to consideration of SKG and consider the special case
of a stationary state in the two-dimensional space-time, when the state
of SKG does not depend on the temporal coordinate. It is described by
the wave function ψs(t, x,W )

ψ = ψs(t, x,W ) = (C1e
ik1x+iϕ1 + C2e

−ik1x+iϕ2)e−ik0t (4.14)

ψ∗ = ψ∗
s (t, x,W ) = (C1e

−ik1x−iϕ1 + C2e
ik1x−iϕ2)eik0t, k20 − k21 = m2

(4.15)
where W = {k0, k1, C1, C2, ϕ1, ϕ2} are real parameters. Then one ob-
tains for the current and energy-momentum tensor

j0 = k0[C2
1 + C2

2 + 2C1C2 cos ν], j1 = −k1(C2
1 − C2

2 ), (4.16)

T 00 = k20(C2
1 + C2

2 )− 2m2C1C2 cos ν, T 01 = −k0k1(C2
1 − C2

2 ),

T 11 = k21(C2
1 + C2

2 ), ν = 2k1x+ ϕ1 − ϕ2 (4.17)

Let us consider a state of SKG in the form of two wave packets of size
L � m−1 which pass one through another in vicinity of the coordinate
origin. The state can be described by the wave function

ψ(t, x, q1) =

∫
ψs(t, x,W )Ψ0(q1 − k1)dk1 (4.18)

where ψs is determined by Eq.(4.14) with

W = {
√
m2 + k21, k1, 1, 1 + α, 0, 0} (4.19)

Ψ0(k1) = A(L2/2π)1/2 exp(−L2k21/2), ε = (Lm)−1 � 1, α,A = const
(4.20)

Let us consider the region

Rs : | t |< Lε−1/2 = m−1ε−3/2, | x |< Lε−1/2 = m−1ε−3/2 (4.21)

Calculation of the integral (4.18) inside this region leads to the following
result

ψ(t, x, q1) = ψs(t, x,W (q1, T,X)) + o(ε2) (4.22)

Now parameters W = {k0, k1, C1, C2, 0, 0} of the function (4.14) are
some functions of q1, T = εt,X = εx. The parameter ε = (Lm)−1 � 1
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is small, and parameters W are slowly varying functions of x and t. q1
is a parameter which is used instead of the parameter k1. Inside Rs the
following approximate relations take place

C1 = A exp [−m2(X + vT )2/2 +O(ε1/2)], (4.23)

C2 = A(1 + α) exp[−m2(X − vT )2/2 +O(ε1/2)], (4.24)

v = q1(m2 + q21)−1/2, Γ = (m2 + q21)1/2m−1 (4.25)

k0 =
√
m2 + k21 = mΓ +O(ε2), k1 = q1 +O(ε2) (4.26)

The region Rc :| t |< L, | x |< L can be considered approximately as
a region, where the wave packets overlap.

The state ψ of the system SKG can be described by means of world
lines tangent to the vector jl for the state ψ. The schematic picture
of world lines associated with the vector jl for the wave function (4.22)
with small enough α > 0 is shown in Fig.4a. In reality the world lines
oscillate rather strongly in the region, where C1 ' C2. This oscillations
are not shown in Fig.4a.

It is possible to construct schematic picture of world lines in the case,
when the stationary wave function ψs is substituted in Eq.(4.18) by the
wave function ψu of an uniform state which is defined by the relation

ψ = ψu(t, x,W ) = (C1e
ik0t+iϕ1 + C2e

−ik0t+iϕ2)eik1x (4.27)

where W are the same parameters, as in Eq.(4.14). In this case instead
of Eqs.(4.16)-(4.20) one obtains

j0 = −k0(C2
1 − C2

2 ), j1 = −k1[C2
1 + C2

2 + 2C1C2 cos ν], (4.28)

T 00 = k20(C2
1 + C2

2 ), T 01 = k0k1(C2
1 − C2

2 ),

T 11 = k21(C2
1 + C2

2 )− 2m2C1C2 cos ν, ν = 2k0t+ ϕ1 − ϕ2 (4.29)

Corresponding picture of world lines associated with the current jl
for the wave function (4.27) with parameters (4.23)–(4.26) is shown in
Fig. 4b.

According to the definition of the world lines in Fig. 4 are lines
tangent to corresponding currents. They can be interpreted as mean
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Figure 4: Mean world lines of quantum particles and antiparticles: a)
the case of only particles, b) the case of particles and antiparticles.
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WLs describing mean motion of SWLs. In both cases (4.15) and (4.27)
the κ-field can be expressed by the formula (2.10)

κk =
1

2
∂k log ρ, ρ = C2

1 + C2
2 + 2C1C2 cos ν (4.30)

The main contribution is given by the rapidly oscillating last term. κ-
field is very small outside the region Rc, where one of Ck, k = 1, 2
is very small (of the order ε). Inside the region Rc it is convenient to
estimate the κ-field, calculating the mass ratio Kdefined by Eqs.(2.2),
(4.30)

K2 − 1 = m−2ρ−1/2∂l∂
lρ1/2 (4.31)

Estimation of K2 inside Rc gives for the stationary state ψs and the
uniform state ψu respectively

K2
s ' 1 + 2(k1/m)2 > 1, K2

u ' 1− 2(k0/m)2 < 0 (4.32)

Let us compare classicalWLs in Fig. 1b, 2b with the quantumWLs in
Fig. 4a, 4b. In Fig. 1b, 2b one can see interacting mean WLs. The rea-
son of the interaction is a reconnection effect which cannot be described
dynamically. The reason of interaction of quantum WL in Fig. 4 is the
κ-field. One concludes that the κ-field describes the reconnection, or at
any rate imitates it. The independence of deterministic WLs in the en-
sembles E1 and E2 associates with the independence of the wave packets,
passing one through another "without interaction". The last expression
"without interaction" means that outside the overlapping region each of
the wave packets evolves in such a way, as though another wave packet
were absent (or a sum of solutions is a solution of the dynamic equation,
written in terms of the wave function).

All this can be interpreted in the sense that the κ-field describes the
reconnection (exchange) effect, or at least imitates it dynamically.

5 Quantum properties as dynamic effects

Let us try to explain quantum effects from point of view of the SET -
scheme, i.e. without a reference to the QM principles. Of course, it
is impossible to explain all quantum effects in one paper, and only the
main quantum effects (uncertainty principle, interference, diffraction,
appearance of discrete quantum numbers) will be considered.

Uncertainty principle. Let a beam of electrons with the momen-
tum p = {0, 0, p3} drop on a diaphragm placed in the plane of the
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coordinate axis x1, x2. Let the diaphragm have a narrow slit of the
width ∆x � h̄/p3 along the axis x2, and the width of the beam in
the direction x1 L1 � ∆x. Then only small part of electrons passes
through the diaphragm. This passage of electrons through the slit can
be considered as a measurement of the beam electron position in the
direction x1. The energy of the κ-field is very small before a passage
through the slit, but it increases inside the slit and becomes of the or-
der Uκ = (2m)−1(h̄∂1ρ/ρ)2ρ ' (2m)−1(h̄/2∆x)2ρ. After the passage of
the beam through the slit the potential energy Uκ of the κ-field turns
to the kinetic energy of electrons which passed through the slit. As it
follows from dynamic equations only the momentum component p1 is
changed, and this energy is added only to the component p21/2m of the
kinetic energy. The mean value of this energy component corresponds to
〈p21〉 ' (h̄/2∆x)2. It can be interpreted as a result of the measurement
of the electron position in the x1 direction. Conventionally this result
is considered as a corollary of the uncertainty principle, but here it is
simply a result of dynamic equations. One may put the question. From
where do the passing electrons take the additional energy? The formal
answer looks as follows. The result follows from the dynamic equations
for the quantum fluid. The observed effect reminds of cumulative effect
in the usual hydrodynamics. Another answer is as follows. Electrons
of the beam move stochastically, and the slit selects only those of them
which have the large enough energy. In other words, the electrons of the
passed beam take additional energy from the electrons absorbed by the
diaphragm. The more narrow slit, the more larger part of electrons is
absorbed, and the more larger additional energy is added to the passed
electrons.

Diffraction. Let there be a screen in the back of the diaphragm. The
electron are distributed over the screen in the form of narrow parallel
straightlinear zones, but not uniformly. This effect is known as a diffrac-
tion effect. It can be calculated on the base of dynamic equations and
expression for the current jk. As far as jk is an attribute of dynam-
ics, it means that the diffraction can be calculated only on the base of
dynamics, i.e. without a usage of statistical propositions. Usually, the
diffraction is calculated in terms of the wave function ψ, because dynamic
equation in terms of ψ are most simple for solution (linear differential
equation with constant coefficients). This is convenient, but it is not
conceptual. The dynamic equations can be solved in any variables. The
result is to be the same.
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Interference. The interference effects are calculated on the base dy-
namic equations and expressions for the current jk in the same way, as
diffraction effects. They are also explained on the base of only dynamics.

Discrete quantum numbers. Conventionally the discrete quantum
numbers are considered as eigenvalues of linear operators associated with
physical quantities. It seems that it is impossible to explain their appear-
ance without a reference to the statistical propositions (or QM princi-
ples) which describe correspondence between the physical quantities and
corresponding linear operators.

However, let us note that the Hamiltonian Ĥ, describing the evolu-
tion of the dynamic system, can be obtained directly from dynamic equa-
tions written in terms of the wave function ψ. Thus, the linear operator
Ĥ can be derived from dynamics only. Eigenstates of the Hamiltonian
are stationary states, that also follows from the dynamics (without a
reference to the statistical propositions). Although QM dynamic equa-
tions admit existence of atoms at non-stationary states, nevertheless
all atoms and molecules exist practically all the time at the stationary
states, because only stationary states are stable. Indeed, being at the
non-stationary state, an atom, or a molecule emits the electromagnetic
radiation until it becomes at a stationary state [?]. As far as for the
non-relativistic case the Hamiltonian coincides with the energy, one can
measure eigenvalues of the Hamiltonian by spectrometric methods, mea-
suring frequency ω (and the energy h̄ω) of the emitted electromagnetic
radiation. In other words, measuring eigenvalues of the Hamiltonian, one
uses only dynamic equations and the energy conservation law, which is
also a dynamic relation.

Only position can be measured instantly. Other physical quantities
such as the momentum and functions of the momentum need a rather
long time for exact measurement. A physical quantity can be measured,
provided its operator commutes with the Hamiltonian and its eigenvalues
enable to label stationary states [?]. Thus, if some operator Ŝ commute
with the Hamiltonian Ĥ, the eigenvalues of Ŝ label the stationary states
and can be measured by an identification of the stationary state, that can
be made on the base of the dynamics only. If Ŝ does not commute with
Ĥ, the eigenvalues of Ŝ cannot be measured, and Ŝ cannot be considered
as an observable quantity.

Let us analyze the Stern-Gerlach experiment [?]. Passing across a
strongly non-uniform magnetic field, a beam of atoms is splitted into
two discrete beams. A reason of such a splitting is explained in the
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following way. Energy of nth stationary atom state depends on an ex-
ternal magnetic field by means of an additional term ∆En = ∆En(H).
The magnetic moment µn of the nth stationary state is defined by the
relation

µn =
∂∆En(H)

∂H
(5.1)

If µn does not depend on H, the force, acting on the atom has the form

Fn = −∇∆En(H) = µnα∇Hα (5.2)

Let a beam of atoms is found at such a state, where there are two
stationary states, having different projections µH of the magnetic mo-
ment onto the magnetic field. In the non-uniform magnetic field the
force (5.2) is different for different atoms, and the beam is splitted into
discrete beams, provided stationary states are discrete. Using the rela-
tion (5.2), one can calculate projections µH = µnH/H of the magnetic
moment on the base of the measured split of the beam.

Thus, in the Stern-Gerlach experiment only the projection µH of the
magnetic moment of the atom stationary state is measured directly (Note
that µH can be determined also from spectrometric experiments of the
atom in the magnetic field). The statement that in the Stern-Gerlach
experiment one measures the spin projection σH onto the magnetic field
uses the additional operator relation

µ = − eh̄

2mc
σ (5.3)

based on an usage of quantum principles.
One can consider this relation as a definition of the spin, or as a

corollary of the statistical propositions. In any case the Stern-Gerlach
experiment tests only discreteness of stationary states, but not the dis-
creteness of such quantities as the magnetic moment, or spin. In other
words, the Stern-Gerlach experiment tests only dynamics, but not the
statistical propositions (QM principles).

6 Concluding Remarks

Formal results, concerning the properties and interpretation of the κ-
field, are presented in the text of the paper and in the abstract. One
should like to mention here about some informal results of the above
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consideration. First, the SET approach demonstrates that the quan-
tum mechanics can be constructed as a dynamic construction, where the
statistical propositions (and QM principles) play a secondary role.

Second, the SET approach appears to be more physical and reason-
able, than the conventional one which describes all quantum effects in
terms of wave functions. The conventional approach cannot exist with-
out a reference to a wave function, although from the physical point of
view the wave function is something indefinite. In the SET approach
the wave function is not a vehicle of quantum properties. It is simply a
way of description of a continuous medium. The wave function (2.33) is
constructed of potentials κ, ξ. The Lagrangian coordinates ξ are deter-
mined to within a rather general transformation (2.23) that determines
an indefiniteness of the wave function.

Third, the SET approach is a more general approach which permits
to develop the quantum theory in an alternative direction. Especially it
concerns the pair production problem. The statement of this problem in
the up-to-date QFT seems rather artifical as compared with the state-
ment of this problem in the SET approach, where the pair production
is an intrinsic property of the κ-field, and one needs only to investigate
and to develop properly this property.
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