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Why we observe an almost classical spacetime
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Abstract. We argue that, in order to obtain decoherence of spacetime,
we should consider quantum conformal metric fluctuations of space-
time. This seems to be the only required environment in the problem
of selfmeasurement of spacetime in quantum gravity formalism.

Résumé. Nous justifierons que, pour obtenir la décohérence de l’espace-
temps, il faut considerer des fluctuations quantiques conformes de la
métrique spatio-temporelle. Il nous semble que c’est le seul environ-
ment nécessaire en regardant le problème de l’auto-mesure de l’espace-
temps dans le formalisme quantique de la gravitation.

1 Introduction

It has been recently suggested (see e.g.,[1] and [2]) that it would be
possible to demonstrate, by means of a fully quantum treatment, that
spacetime becomes classical by a process similar to that of the emergence
of classical properties of a macroscopic system in standard decoherence
models. The latter arises from the quantum mechanical entanglement
of the states of the system with its environment: when introduced in
the time evolution given by the Schroedinger equation, the environment
measures certain properties of the system thereby destroying the off-
diagonal terms of the density matrix in space representation.(see [3]).

On the other hand, the spacetime structure is classically obtained
from the matter distribution in the universe through Einstein’s field
equations. Nevertheless, the field equations do not tell us, by them-
selves, which geometry is to be the geometry of spacetime, because they
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say nothing a priori about the matter distribution of the universe —
Indeed, they just state which geometries can be possibly associated with
a given matter distribution. We think this observation to be in order
since it is a general belief that the environment in the quantum mechani-
cal treatment of the problem of classicity of spacetime structure (i.e., the
existence of correlations of the quantum states, in the WKB sense, over
the classical allowed trajectories) should also involve some distribution
of matter [4][5]. On the other hand, when spacetime is non-classical, we
do not have necessarily to “believe” in Einstein’s field equations [6], nor
to think that the matter content of the universe “tells space to behave
classically” in Joos’ words [1].

In this paper a new line of thought will be followed. As long as the
very nature of spacetime should take into account, in quantum theory,
the properties of vacuum, 1 then there should exist, in this framework,
a natural extension of what is considered as the environment. We think
that the classicity of spacetime is a consequence of the existence of some
allowed degrees of freedom in the evolution of the manifold representing
the properties of gravitational empty solutions, which , without the need
of any particular matter distribution, would lead to classicity. As a
simple model we propose the existence of conformal metric fluctuations
in the classical domain. The classical allowed solutions have, of course,
no dynamics at all 2, yet the corresponding quantum dynamics will prove
to be non trivial, giving rise to the expected entanglement of the states
of such fluctuations with the non-quantized variable of the cosmological
model —the scale factor.

2 Classical dynamics of the conformal field

¿From the hypothesis of the previous section, we are now going to develop
the dynamics of a model of conformal fluctuations in spacetime. For
the sake of mathematical simplicity, we will establish the hamiltonian
formulation of gravity just in the isotropic cosmological model.

We are interested, for the time being, in the classical behaviour of
spacetime, then, in order to derive the dynamics, we will use the Hilbert
action corresponding to the following metric

ds2 = l2[N(t)2dt2 − a(t)2dσ2] (1)

1When dealing with the theory of gravity there exists no vacuum at all, only empty
space solutions.

2if it were not so, then, the initial value problem in general relativity would be
physically inconsistent
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where dσ2 = γijdx
idxj is the metric of the space-like slices of the mani-

fold and l2 = 2/3πm2
p

The Hilbert action (using natural units) is (see [7])

S =
1

16π

∫
R(g)1/2dx4 =

1

2

∫
(− a

N
ȧ2 +Na)dt (2)

where we have integrated the lagrangian density over the three spheres
of constant time. Hence, we obtain a lagrangian functional for the metric
variables

L =
1

2
(− a

N
ȧ2 +Na) (3)

Now consider the transformation

dt→ eφdt = dt̃ (4)

for some unspecified scalar function φ. We are interested in those scale
functions a(t) with the conformal transformation property given by

a(t)→ a(t)eφ = ã(t̃) (5)

This, of course, is equivalent to studying the dynamics of the conformal
functions φ

ds̃2 = e2φds2 (6)

Then the transformed metric reads

ds̃2 = l2[Ñ(t̃)2dt̃2 − ã2(t̃)dσ2] (7)

where Ñ(t̃) = N(t) and ã(t̃) = eφa(t).

But taking into account also the general covariance of the theory
and comparing (1) and (7), we obtain an identical expression for the
transformed lagrangian in terms of its new metric quantities

L̃ =
1

2
(− ã

Ñ
(
d

dt̃
ã)2 + Ñ ã) (8)

Now, using the ”old coordinates” we get, in terms of φ

L̃ =
1

2
(−e

φa(t)

N(t)
e−2φ[

d

dt
(eφa(t))]2 + a(t)N(t)eφ) (9)
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We could consider N(t), a(t) and ȧ(t) as known functions of time;
therefore, as we are just interested in the classical dynamics which cor-
responds to the φ field, we can define, without any loss of generality,
a particular set of functions. Let us consider a time reparametrization
such that N(t) = 1. Upon doing this we finally get

L̃a(φ, φ̇) =
1

2
a{1− (φ̇a+ ȧ)2}eφ (10)

We must now develop the theoretical consequences involved in the
transformation properties of this lagrangian. Thus, as we have defined
φ to be a generic scalar function of time, we can explicitly state its
transformation rule under a time reparametrization, i.e.,

a→ ã = a+ α(a) (11)

φ(a)→ φ̃ = φ+ δφ

δφ = φ̇α(a) (12)

where we have taken into account that φ̃ = φ(ã).

In addition, the lagrangian transforms as a density, i.e.,

L̃a(φ̃,
˙̃
φ) = La(φ, φ̇) + δL (13)

where,

δL =
d

da
(Laα(a)) (14)

On the other hand, using the transformation of φ (see (12))

δL =
∂La
∂φ

(φ̇α(a)) +
∂La

∂φ̇

d

da
(φ̇α(a)) + α(a)

∂La
∂a

= (15)

= (
∂La
∂a

+
∂La
∂φ

φ̇+
∂La

∂φ̇
φ̈)α(a) +

∂La

∂φ̇
φ̇α̇(a) =

=
dLa
da

α(a) +
∂La

∂φ̇
φ̇α̇(a) =

=
d(α(a)La)

da
+ (

∂La

∂φ̇
φ̇− La)α̇(a) =

d(α(a)La)

dt

implying the typical hamiltonian constraint

Ha ≡
∂La

∂φ̇
φ̇− La = 0 (16)
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It is now straightforward to obtain this hamiltonian function by
means of the Legendre transformation (in terms of its coordinates and
canonical momenta)

Ha(φ, pφ) = pφφ̇− La(φ, φ̇→ pφ) (17)

where

pφ =
∂La

∂φ̇
= −a2eφ(ȧ+ φ̇a) (18)

which can also be inverted (φ̇→ pφ)

φ̇ = − ȧ
a
− 1

a3
pφe
−φ (19)

Finally

Ha(φ, pφ) = −{1

2
aeφ +

pφȧ

a
+
p2φe
−φ

2a3
} (20)

Notice that we can cast this expression in a simpler, suggestive way

Ha(φ, pφ) = −[pφ − p0(φ, a2)]2
e−φ

2a3
+ (ȧ2 − 1)

eφa

2
(21)

where
p0(φ, a2) = −ȧa2eφ (22)

Taking into account the negativeness of the energy for the gravitational
field, we have to consider those cosmological models satisfying ȧ2 ≤
1. Therefore, upon assuming this, the global negative sign of (21) is a
typical footprint of the fact that φ is indeed a gravitational field.

For the sake of mathematical simplicity let us consider the particular
ansatz ȧ(t)2 = 1, and a(t)2 = t2; hence, we will identify cosmological
time and scale factor hereafter. Now, the constraint Ha = 0 implies

[pφ − p0(φ, a2)]2e−φ = 0 (23)

and, using again (18) (pφ → φ̇) we obtain the classical solutions of the
conformal field

pφ = p0(φ, a) (24)

or,

a2eφ(1 + φ̇a) = a2eφ
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that is φ̇ = 0. But this is the condition required in the classical theory
since, in that case, dt̃ = eφdt = d(eφt). This is now integrated to get
t̃ = eφt, which is also the prescription for having ã(t̃) = eφa(t) if and only
if a(t) = t; indeed this has been our choice of the scale factor function.

3 Wheeler-DeWitt formalism in minisuperspace

In spite of the trivial classical dynamics associated to the conformal
function φ, equation (21) could be treated quantum mechanically as a
hamiltonian system. Thus, the quantum dynamics of this system could,
in principle, be expressed by means of the hamiltonian constraint (16)
together with the standard rule for the canonical momentum in the op-
erator formalism, (i.e., pφ → p̂φ = i ∂∂φ )

Ha(φ, i
∂

∂φ
)Ψ̃(a2;φ) = 0 (25)

The above equation is just the Wheeler-DeWitt equation

{{e−pφ[i
∂

∂φ
+ ȧa2eφ]2e(p−1)}φ + (ȧ2 − 1)eφa4}Ψ̃(a2;φ) = 0 (26)

p denotes the factor ordering ambiguity of the theory.

Notice that the effect of the background metric is just a shift in the
momentum of the conformal field. On the other hand, any selection for
the factor ordering leads to a complex time-dependent wave equation for
pure gravity whose solutions (for ȧ2 = 1) are given by

Ψ̃(a2;φ) = Ψ(a)Bp(φ)eia
2eφ−1 (27)

Here, a is considered a c-number, Bp(φ) is a polynomial and Ψ(a) is again
a constant with respect to the φ-field; the latter should be identified
with the wave amplitude of the scale factor in its configuration space
(i.e., when it were not considered as a classical variable). These wave
functions have not a natural normalization. On the other hand, if we take
Bp = 1, then, we could obtain a set of normalized wave functions in the
sense of the Dirac delta function. To see this, we can study the classical
equation corresponding to the momentum constraint when ȧ2 = 1 (see
(24)). Upon making the standard replacement pφ → p̂φ = i ∂∂φ we have

[ie−βφ
∂

∂φ
e(β−1)φ + a2]χa2(φ) = 0 (28)
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χa2(φ) being the solutions of the momentum constraint and β repre-
senting again the uncertainty in the factor ordering. Thus, β = 1 is the
natural choice since, in this case, we can write the momentum constraint
in terms of the relevant gravitational quantity, i.e., the conformal field
γ ≡ eφ; this assumption being done, (29) takes the simpler form

i
∂

∂γ
χa2(γ) = −a2χa2(γ) (29)

where we have put e−φ ∂
∂φ = ∂

∂γ . But, as far as we are interested, in
this particular case, in the continuum spectrum of γ, we can try and
normalize the wave functions using the standard quantum mechanical
prescription ∫

χa2(γ)χ∗ã2(γ)dγ = δ(a2 − ã2) (30)

or

χa2(γ) = (
1

2π
)1/2eia

2γ (31)

Then, by using this eigenfunction basis we can also construct the opera-
tor whose eigenvalues coincide with the square of the scale factor values
corresponding to the background.

â2γ ≡ −p̂γ = −[i
∂

∂γ
] (32)

Hence, the eigenstate equation for this operator reads

â2γχa2(γ) = a2χa2(γ) (33)

We could then try and obtain the quantum evolution of the states of the
conformal fluctuations in terms of the cosmological time.

On the other hand, a general solution of (26) is given by (upon defin-
ing γ ≡ ȧ

|ȧ|e
φ)

Ψ̃±(a; γ) = Ψ̃L(a; γ)± Ψ̃R(a; γ)

where the left (ΨL(a; γ)) and right (ΨR(a; γ)) solutions of the Wheeler-
DeWitt equation are given by

Ψ̃L(a; γ) =

{
= Ψ(a)ei|ȧ|a

2γe+a
2(1−ȧ2)1/2(γ+1) if γ < −1

= Ψ(a)ei|ȧ|a
2γe−a

2(1−ȧ2)1/2(γ+1)if γ > −1
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Ψ̃R(a; γ) =

{
= Ψ(a)ei|ȧ|a

2γe−a
2(1−ȧ2)1/2(γ−1) if γ > 1

= Ψ(a)ei|ȧ|a
2γe+a

2(1−ȧ2)1/2(γ−1)if γ < 1

The wave functions are peaked about the classical allowed solutions,
i.e. γ2 = 1; moreover, we can not single out any particular solution, thus
leading to interference between the expanding (γ = +1) and collapsing
(γ = −1) classical solutions (but for the case ȧ2 = 1, i.e., a matter
free cosmolgical model where efective decoherence could be obtained
considering the conformal field as the environment).

4 Time evolution equation

Indeed, the problem of time in quantum gravity is that of giving sense
to the Wheeler-DeWitt formalism. This is so since, in the context of
quantum cosmology, waves have a trivial evolution. It comes from the
fact that in quantum gravity the physical interest is represented by the
scale factor itself (strictly speaking three geometries and their configu-
ration space, i.e., superspace) which could be quantized in DeWitt sense
of quantum gravity (see, for instance [7] -[9]), i.e., the squared of the
wave function would lead to a probability for the quantized metric of
spacetime. Then, in dealing with this problem, there is no evolution
whatsoever; in fact, we are generally working in minisuperspace, that is
the quantization is often done just for the parametric time corresponding
to the scale factor. Hence, time lies out of the quantum formalism as a
result of the hamiltonian constraint, i.e., of the general covariance of the
theory.

Our problem is different. In spite of the fact that we have been
dealing with the parametric time, a(t), we did not consider the possible
quantum states for a(t) itself, i.e., we are not interested in defining a
probability for wave functions Ψ(a). Yet, we are concerned in the prob-
lem of the quantization of the conformal field (something analogous to
the breathing modes of the cosmological model). This led us to study-
ing wave functions defined, in principle, on the continuum spectrum;
such states were denoted in the previous section by χa2(γ). Moreover,
{χa2(γ)} could be used as a orthonormal basis in order to develop the
cosmological time evolution of generic operators, for instance, that cor-
responding to the momentum (pγ) or the one of the scale factor squared
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(â2γ , see (32) and (33)).To see this, we observe the cosmological time-
reversal invariance of our solutions in (31). This comes from the charac-
ter of a time-evolution wave equation which possesses χa2(γ):

−i ∂
∂a

Ψ(a, γ) = 2aγΨ(a, γ) (34)

Here we have defined Ψ(a, γ) ≡ χa2(γ).

Now applying the time reversal operator gives,

T̂{Ψ(a, γ)} = Ψ(−a, γ) (35)

while for the complex conjugate operator we obtain

Ĉ{Ψ(a, γ)} = Ψ∗(a, γ) (36)

Nevertheless, according to (34)

T̂{Ψ(a, γ)} 6= Ĉ{Ψ(a, γ)} (37)

Then (34), though similar to the Schroedinger equation, is not to be
regarded so in a very strict sense.

Now the physical meaningful cosmological solutions should not de-
pend on the environment. Moreover, we have to take into account that
we still do not know the properly normalized solutions of the whole
Wheeler-DeWitt operator which, in general, should depend on the cos-
mological model (i.e., it would develop other solutions when the particu-
lar ansatz ȧ2 = 1 were not made). In addition, χa2(γ) is just one solution
corresponding to the eigenstates of the momentum operator belonging to
the kernel of the hamiltonian constraint; this lack of information should
be considered in our model upon computing the reduced density matrix
for the quantum states of the envinonment; the latter is being done upon
tracing out our solutions over the internal degrees of freedom for γ.

ρ̃(a2, ã2) =

∫ ∞
−∞

χa2,ȧ(γ)χ∗ã2,ȧ(γ)DȧγΨ(a)Ψ∗(ã) (38)

Here,Dȧγ denotes a measure corresponding to the environment when
a general solution is considered.
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5 Quantum Correlations

We have obtained a time evolution equation for the states of the quantum
conformal metric fluctuation corresponding to an isotropic background
gravitational field in terms of the cosmological time a. Then, in order
to obtain a generalization of the Schroedinger formalism, we could try
developing the initial value problem for this equation.

Yet, as long as we do not know the internal freedom for γ, we should
model this ambiguity upon asuming the initial state being correlated
with the classical solution (i.e., γ = 1). Hence,let us consider an initial
wave packet given, in terms of the γ-field, by

Ψ(0, γ) = σ−1/2π−1/4e
(γ−1)2

σ2 (39)

where σ is a constant which characterizes the minimal uncertainty of
the conformal field γ. Then, at a different time, say a, by Fourier-
transforming we get from (34)

Ψ(a, pγ) =
1

(2π)1/2

∫ +∞

−∞
ei(pγγ+a

2(γ−1)+a2) ·Ψ(0, γ)dγ (40)

or

Ψ(a, pγ) = (
σ

π1/2
)1/2ei(a

2+pγ)e−
σ2

2 (pγ+a
2)2 (41)

Now, following the usual prescription for the probability amplitude,
we get

ρσ(a, pγ) = |Ψ(a, pγ)|2 =
σ

π1/2
e−σ

2(pγ+a
2)2 (42)

On the other hand, we can also obtain a probability measure not only
for the momentum pγ but also for any function F (pγ); for instance, we
may obtain the probability measure for the operator corresponding to
the scale factor squared (see (32)),

ρσ(a, ã2) = |∂pγ
∂a2
|ρσ(a, pγ → ã2) (43)

where we have made use of the jacobian of the transformation. That is

ρσ(a, ã2) =
σ

π1/2
e−σ

2(a2−ã2)2 (44)

Here, we have denoted by ã2 the eigenvalues of â2.
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On the other hand, if we take the limit σ →∞ in (45),

ρ(a, ã2) = lim
σ→∞

ρσ(a, ã2) = lim
σ→∞

σ

π1/2
e−σ

2(a2−ã2)2 = δ(a2 − ã2)(45)

=
1

2ã
{δ(a+ ã) + δ(a− ã)}

6 Discussion

Let us now try and put the above result into context. We have seen
that the almost classical character of spacetime could be a consequence
of the initial conditions of conformal metric fluctuations. This restricts
the set of quantum states to the expanding (forward time solution) and
collapsing ones (backward time solution), therefore, there would exist
possible tunneling between both physical allowed states, i.e., interfer-
ence. Moreover, the Weyl tensor is the only geometrical invariant under
the conformal field; it implies that since upon considering conformal
type fluctuations, we have obtained two possible quantum states, then
the way spacetime would become classical (i.e., the selection of one of
these two branches of the solution) should only be a consequence of the
initial conditions in this quantity. On the other hand, this tensor is pre-
cisely that part of the Riemannian curvature which is source free, a fact
that strengthens our previous believe that classical properties of space-
time should not be a consequence of any particular model corresponding
to a matter field environment (It is also somehow in accordance with
Penrose proposal [10].)

We have seen that spacetime may become classical when the density
matrix (see (45)) is peaked about the classical allowed configurations.
Moreover, the feature of exponential behaviour depends on the initial
conditions for the environment (in order to see this, recall that the co-
herence width of the geometrical scale parameter satisfies δa2 ∼ σ−1).
The latter agrees with Hartle’s conjecture[11][12] (see also [13]); from this
point of view the initial conditions control the extent to which macro-
scopic states decohere.

A remarkable fact is that the scale factor becomes sharply peaked
about the classical solution when the limit σ → ∞ is considered, that
is, when the initial quantum fluctuations of spacetime are very large;
it seems to be a typical behaviour of a phase transition process (i.e.
large scale fluctuations in a system also develop far from the equilibrium
correlations). The question of the arrow of time in the recollapsing
quantum universe has been recently examined by Kiefer and Zeh [14].
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