
Annales de la Fondation Louis de Broglie, Volume 22, no 4, 1997 373

On the position operator for massless particles
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ABSTRACT. It is commonly stated that the position operator for
massless particles has non-comutting components. To account for this,
we have shown that the commutation relations between coordinates
and momenta differ for massive and massless particles. Here we find a
position operator for massless particles which has commuting compo-
nents.

RESUMÉ. On exprime communément que l’opérateur de position des
particules sans masse a des composantes non commutatives. En fait,
nous avoons montré que les relations de commutation des coordonnées
et de l’impulsion des particules massives différent de celles des partic-
ules sans masse. Nous avons construit un opérateur de position pour les
particules sans masse dont les composantes sont commutatives. Ensuite
nous avons déduit certaines propriétés intéréssantes de cet opérateur.

1 Introduction and survey

The notion of position operator has its roots in the early days of the
birth of quantum mechanics. Although in the Copenhagen interpreta-
tion of quantum mechanics, the concept of position, and therefore path
of the particle, is meaningless, nevertheless there must exist an oper-
ator called position operator having the property that its expectation
value in the classical limit would behave classically. In other words, any
macroscopic object has position. In quantum mechanics, one deals with
elementary systems which means any system whose state has a definite
transformation under Poincare group (or under Gallileo group in the
non-relativistic case). An elementary particle, then, can be defined as



374 A. Shojai and M. Golshani

an elementary system which has no constituents. In this way, electron
is an elementary particle while Hydrogen atom is an elementary system
only. In dealing with elementary systems one works only with genera-
tors of Poincare group as physical observables rather than the position
of the system. Clearly it is natural to search for a position operator as an
observable whose eigenvalues are the possible positions of an elementary
particle or the center of mass position of an elementary system. Unfor-
tunately when one restricts himself to the positive energy manifold, the
operator i~∇p is no longer hermitian.

The problem of finding the position operator in the framework of
nonrelativistic quantum mechanics, where the symmetry of space-time
is the Gallileo group, is simple.[1,3] Serious work on relativistic case began
after the works of Pryce and Newton-Wigner.[2] They found a position
operator, which we call it Pryce-Newton-Wigner operator, having the
foregoing property. Until now, a lot of theoretical works has been done
on this operator.[3]

In spite of these investigations concerning the position operator, the
following problem observed by Pryce and Newton-Wigner, is still un-
solved. When one tries to write down the position operator for massless
particles with non-zero helicity (e.g. photons), one encounters inconsis-
tency. Technically speaking, one is not able to write a position operator
having commuting components for such particles. This is a serious prob-
lem, as photon would not be localizable. If you measure some component
of the photon’s position, its other components could not be determined
precisely, as Heisenberg’s uncertainty principle dictates. It can be shown
that the localizability problem is related to causality.[4]

Some people have tried to overcome the problem by rejecting or weak-
ening the Newton-Wigner postulates for the derivation of the position
operator.[5] They assume that the probability of finding the particle in
a volume V consisting of volumes V1 and V2 with empty intersection is
not equal to the sum of the probabilities of finding the particle in V1
and V2. This is not a physically reasonable assumption, and still has the
causality problem.

In spite of the lack of localizability for massless particles, it has been
shown[6] that by defining precisely the concept of localizability for mass-
less particles, there exist localized wavefunctions with any desired accu-
racy, in accordance with the experimental facts.

In this work, we shall show that if one proposes that for massless
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particles the canonical commutation relation is not the standard one,
it can be shown that one arrives at a position operator for massless
particles which has commuting components. In the appendix we present
a classical argument in favour of the new commutation relation.

Before doing so it is instructive to review breifly the procedure of
constructing position operator for relativistic massive particles. In quan-
tum mechanics, observables are identified by hermitian linear operators
with their eigenvalues as allowed results of any measurement of that ob-
servable. The essential problem is: what are the observables and their
corresponding operators. This can be answered in a formal way. Events
occure in space and time and thus it is natural to look for the symmetries
of the space-time, which is according to the special theory of relativity,
the Poincare group.

The Poincare group consists of space and time translations, rotations
and boosts generated by hermitian operators ~P , H, ~J and ~K respectively.
To these operations space inversion with unitary operator Π and time
reversal with antiunitary operator T must be added. All of our knowl-
edge about these operators are their commutation relations:

[Pi, Pj ] = 0 [Pi, H] = 0 [Ji, Jj ] = iεijkJk [Ki,Kj ] = −iεijkJk
[Ji, Pj ] = iεijkPk [Ji,Kj ] = iεijkKk [Ji, H] = 0 [Ki, Pj ] = iδijH
[Ki, H] = iPi Π2 = 1 T 2 = 1 [Π, T ] = 0

Π~PΠ = −~P ΠHΠ = H Π ~JΠ = ~J Π ~KΠ = − ~K
T ~PT = −~P T HT = H T ~JT = − ~J T ~KT = ~K

(1)
with clear physical meanings. Note that T is antiunitary, i.e. acting on
any function leads to its complex conjugate:

T f = f∗ (2)

Irreducible representations of the Poincare group which are identified
as particles according to Wigner, can be constructed using the Casimir
operators:

C1 = H2 − P 2 (3)

C2 = (~P · ~J)2 − (H ~J + ~P × ~K)2 (4)

Now following Foldy let[7]

~J = ~Q× ~P + ~S (5)



376 A. Shojai and M. Golshani

~K =
1

2
(H ~Q+ ~QH) +H−1 ~P × ~S − t ~P (6)

where ~Q must be identified as the position operator of the particle, ~L =
~Q × ~P as the orbital angular momentum and ~S as the spin. Using the
canonical commutation relation:

[Qi, Pj ] = iδij (7)

and after some algebra, one can show:

C2 = −m2S2 (8)

[Si, Sj ] = iεijkSk (9)

the last relation enables one to interpret ~S as spin. From these relations
the position operator can be derived:

~Q = H−1( ~K+t ~P− i
2
H−1 ~P )−m−1H−1(H+m)−1 ~P×(H ~J+ ~P× ~K) (10)

This is the Pryce-Newton-Wigner position operator. Note that this is
meaningless in the limit m→ 0. Its time derivative is the velocity:

d~Q

dt
= i[H, ~Q] = H−1 ~P (11)

It is a vector:

[Ji, Qj ] = iεijkQk (12)

Π ~QΠ = − ~Q (13)

and under boosts:

[Ki, Qj ] = −iH−1PiQj (14)

and time reversal:

T ~QT = ~Q (15)

It can be shown that this position operator is unique up to canonical
transformations.[1]
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2 Position operator for massless particles

For massless particles the Pryce-Newton-Wigner position operator does
not work as it can be seen from the fact that in the m → 0 limit, it
does not have a good behaviour. In fact if one starts with massless rep-
resentations of Poincare group the position operator obtained has not
commuting components if one uses the canonical commutation relation
(7). Thus this leads to non-localizability (which is equal to the lack of
causality). It can be seen that this is because the correct commuta-
tion relation for position and momentum is not used. It can be argued
heuristically that the correct one is as follows

[Qi, Pj ] = iH−2PiPj (16)

instead of (7). In this section we shall show that using this relation one
will arrive at a position operator with commuting components.

For massless representations one has:

H2 = P 2 (17)

~P · ~J = HΣ (18)

H ~J + ~P × ~K = ~PΣ (19)

where Σ is the helicity operator having eigenvalues ±h (for photon h =
1). It can be shown that these equations leads to a non-commuting
position operator except in the case of zero helicity.[3]

As it is shown in the previous section for massless particles the
commutation relation (7) must be replaced by one given in equation
(16). Thus the problem is finding an operator satisfying relations (11)-

(16). This operator can be only of the forms ~f(~P ) · ~K, g(H)~P × ~J and

h(H)~P × (~P × ~K) because of the character of position operator under
space inversion and time reversal. The above equations may be used to
solve for f , g and h. The final result after symmetrization is as follows:

~Q =
1

2
(H−3 ~P (~P · ~K) + ( ~K · ~P )~PH−3) + tH−1 ~P (20)

This position operator has commuting components and all other com-
mutation relations are correct. Now, we should be careful about two
points: First; since we find the complete solution of commutation rela-
tions, our position operator is unique up to a canonical transformation
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(which leaves equation (16) unchanged, not equation (7)). Second; ac-
cording to equation (16) our position operator is not an ordinary vector
under translations. It is not a free vector, i.e. when one translate the
reference frame the position operator of massless particles does not move
rigidly. (This is apparent from the fact that ~L = 0)

This new position operator has at least two new intresting results
which we shall discuss below. First, since the standard position–
momentum commutation relation is changed for the massless particles,
the uncertainty relation for position and momentum may differ from the
well known one. It is a standard result of quantum mechanics that

(∆Qi)(∆Pj) ≥
1

2
| < [Qi, Pj ] > | =

h̄

2
| < H−2PiPj > | (21)

where we have recovered the h̄ factor.

In order to calculate the right hand side of this relation we introduce
the momentum eigenstates as

Pi|~k >= ki|~k > (22)

and write the general state of the system as follows

|α >=

∫
d3kS(~k)|~k > (23)

It can be easily seen that

< H−2PiPj >=

∫
d3k|S(~k)|2 kikj

k2
(24)

In the case in which S is only a function of the lenght of ~k, using the
orthonormality condition of the state vector we have

< H−2PiPj >=
1

3
δij (25)

so

(∆Qi)(∆Pj) ≥
1

6
h̄δij (26)

In the general case where S depends on the direction of ~k (i.e. when there

is a preffered direction ~k0) like S(~k) ∼ exp(−α(~k−~k0)2) the uncertainty
relation for position and momentum reads as

(∆Qi)(∆Pj) ≥ h̄(Aδij +Bk0ik0j) (27)
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where

A =
1

6
+ terms involving k0

B = 0 + terms involving k0

Thus our new position operator suggests a new uncertainty relation for
position and momentum. The experimental consequences of this new
relation can be in principle, verified for massless particles with a wave-
function which peaks at a very high momentum, for example. In such
a case the role of the second term at the right hand side of the relation
(27) is important.

The second important result of our new position operator for massless
particles is about its eigenfunctions. To simplify the calculations, we
work in the momentum representation where

~K =
1

2
i(
∂

∂ ~P
H +H

∂

∂ ~P
)−H−1~S × ~P (28)

and consider a zero helicity massless particle. The Shcrodinger picture
eigenvalue problem for the position operator is then

iP−2 ~P ~P ·
∂Φ~q(~P )

∂ ~P
+ iP−2 ~PΦ~q(~P ) = ~qΦ~q(~P ) (29)

where Φ~q(~P ) is the position eigenfunction in the momentum representa-
tion with the eigenvalue ~q. The form of this equation suggests that the
wavefunction is nonzero only when ~P and ~q are parrallel. So we set

Φ~q(~P ) = Φ
(0)
~q (P )δ

(
~P · ~q
Pq
− 1

)
(30)

Inserting this relation in (29) one arrives at

dΦ
(0)
~q (P )

dP
=

(
−iq − 1

P

)
Φ

(0)
~q (P ) (31)

which can be easily solved. The wavefunction is thus

Φ~q(~P ) =
N

P
e−iPqδ

(
~P · ~q
Pq
− 1

)
(32)
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The ~x-representation position eigenfunctions can be obtained via Fourier
transformation

Ψ~q(~x) =

∫
d3P

P
Φ~q(~P )e−i

~P ·~x =
N

2
δ

(
~x · ~q
q
− q
)

(33)

That is our position operator for massless particles has the peculiar prop-
erty that is delta function in the direction of its eigenvalue and is constant
in the direction prependicular to the eigenvalue.

3 Conclusion

It is shown that on the basis of classical arguments one is forced to pro-
pose a new commutation relation between position and momentum for
massless particles. Using the new commutation relation (16) one ar-
rives at a position operator for massless particles which has commuting
components. The effect of the new commutation relation on the position-
momentum uncertainty relation is investigated. Also the localized states,
i.e. the eigenfunctions of this new position operator are derived.

4 Appendix

In this appendix we presenta classical reasoning in favour of the relation
(16). Consider a classical system with coordinate ~Q, energy H and mo-

mentum ~P . According to the well known results of classical mechanics,
translation of the reference frame by ~ε affects the coordinates as

Q′i = Qi + εj{Pj , Qi}

where {, } represents Poisson brackets. If the standard Poisson bracket
between coordinates and momenta is satisfied

{Qi, Pj} = δij

we have
~Q′ = ~Q+ ~ε

which reads as: translation of reference frame is equal to translation of
the particle. Why these two operations are equal? This is because for
a massive particle one can always transform to the rest frame of the
particle, in which the particle is attached to the space-time.
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Now the difficulty for massless particles is apparent. Any massless
particle must move with unit velocity (for such particles H2 = P 2 and
thus u2 = H−2P 2 = 1) and it is a well-known result of Poincare trans-
formations that there is no rest frame for such particles – they move with
unit velocity in any reference frame. Thus one cannot use the standard
Poisson brackets for coordinates and momenta. Let us see what is the
correct one for massless particles.

Let the velocity of the particle be ~u with u2 = 1 and suppose we want
to calculate P1, Q2. So we choose ~ε = εê1 and transform to a frame in
which u′1 = 0. For simplicity we assume that the translation of reference
frame is dynamic, i.e.:

ε = u1t
′

During time t′, the particle moves in ê2 direction by u′2t
′ which when

transformed to the initial frame is equal to u2tγ
−2(u1). From this

amount u2t must be subtracted because we assume that the translation
to be dynamic. The net change in Q2 is:

u2t(1− u21)− u2t = −u21u2t = −u1u2ε

so we conclude that ε{P1, Q2} = −εu1u2 or in general:

{Pj , Qi} = H−2PiPj

The quantum mechanical analogous of this relation can be achieved via
Dirac’s canonical quantization rule {, } → −i[, ] as

[Qi, Pj ] = iH−2PiPj

This equation is the analogous to equation (7) and must be used for
massless particles. It is worthwhile to note that it is covariant (i.e. is
compatible with equations (1)) and thus it is independent of the way it
is constructed.
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(Manuscrit reçu le 16 octobre 1996)


