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On multidimensional topological solitons in gauged sigma models

with spontaneously broken Z(2) symmetry
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ABSTRACT. New gauged sigma models with broken Z(2) symmetry in (D + 1)-dimensional space-time are
proposed, which admit search for topological solitons by using “hedgehog-like” ansatzes. Three-dimensional
particle-like solutions of these models can be considered as classical prototypes of massive quantum particles.

RÉSUMÉ. On propose des sigma modèles de jauge nouveaux à symétrie Z(2) brisée, en dimension d’espace temps
(D + 1) ; ces modèles admettent des solitons topologiques comme solutions, qui peuvent être considérés comme
des prototypes classiques de particules massives quantiques.

1. Sigma models take one of the central places in
the modern mathematical physics, which is due to
their universality: they appear in various branches
of fundamental science: particle and nuclear physics,
superfluid He3 phases, high-temperature supercon-
ductivity, microphysics of magnets and ferroelectrics.
Classical sigma models describe evolution in time of
N -component unit isovector field sa(x, t) in (D+ 1)-
dimensional space-time; field manifolds of these mod-
els are unit spheres SN−1. The most frequently inves-
tigated cases correspond to D = 2, 3 and N = 2, 3, 4.

Starting from the pioneer papers by Skyrme [1],
there exists an increasing interest in the investiga-
tion of localized particle-like solutions (solitons) to
those sigma models, which can be characterized by
existence of the topological indices Qt (“topologi-
cal charges”) [2-5]. In such sigma models the lo-
calized distributions of unit isovector sa(x) are di-
vided into classes with different Qt; solitons with the
nonzero topological charges are referred to as “topo-
logical solitons”. It should be noted that the exis-
tence of the solitons is not yet guaranteed within the
sigma models admitting presence of nontrivial topo-
logical charges, though for nonzero topcharges addi-
tional possibilities arise for solitons to exist. For the
wide class of nonlinear one-field models with positive
definite Hamiltonian density the particle-like local-
ized solutions with finite energy cannot be found for
D ≥ 2 due to the Derrick’s theorem [6], whose proof
is based on scaling transformations. The known ways
to overcome this serious obstacle are:

1) to add to a Hamiltonian density of a model
additional higher-order derivative stabilizing terms

(first it was proposed in [1]),

2) to consider time-dependent localized solutions
instead of static ones,

3) to study models comprising several basic fields.

Below we shall discuss the gauged sigma mod-
els which describe interaction of the anisotropic unit
isovector fields with the gauge fields (two-field mod-
els). Their non-gauged counterparts are the sigma
models whose Lagranians possess both some global
continuous symmetry and the spontaneously broken
discrete Z(2) symmetry. We have already started
investigation of D-dimensional (D ≥ 1) soliton solu-
tions within the two-field models with spontaneously
broken Z(2) symmetry in [7], where interaction of
the “easy-axis” anisotropic 3-component unit isovec-
tor field with the vector field was considered and 2D
topological solitons were found.

2. First let us consider the 3-component unit isovec-
tor field sa(x) with the easy-axis anisotropy defined
by the Lagrangian density

L = (∂µsa)2−V (s), sasa = 1, V (s) = 1−s23, (1)

µ = 0, 1, ..., D, a = 1, 2, 3.

(it was called the A3-field in [7]; “A3” stands for
“anisotropic 3-component”). It is important to note
that the Lagrangian (1) possesses U(1)×Z(2) inter-
nal symmetry; its vacuum manifold comprises two
points on the S2 sphere: s3 = 1 and s3 = −1 and
possesses discrete Z(2) symmetry [7]. At D = 1 the
model (1), which can be viewed as generalization of
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the sine-Gordon equation [8], possesses kink and an-
tikink solutions [8-10], which break the Z(2) sym-
metry of the vacuum manifold [7]. Futhermore, the
Z(2) symmetry is also broken [7] on 2D nonstation-
ary topological solitons [11] of the model (1).

The Lagrangian density (1) can be derived when
describing in continuous approximation easy-axis
Heisenberg antiferromagnets [10] and ferroelectrics
[12] with the easy-axis anisotropy; thus, the pat-
tern of the symmetry breaking under discussion is
realized in condensed matter physics. It seems in-
teresting to investigate possible implications of this
pattern (which differs from that used in the Stan-
dard Model) for high-energy physics, especially hav-
ing in mind intensive use of sigma models in modern
particle physics. Consideration of anisotropic unit
isovector fields, realizing such an “alternative” mech-
anism of symmetry breaking, as constituents of parti-
cle physics models, can be grounded in two (possibly
interrelated) ways. First, one can conjecture that
some of these scalar (with respect to Lorentz trans-
formations) fields belong to the set of basic quan-
tum fields. Second, these fields may arise as coher-

ent states [13] of more fundamental (e.g., fermionic)
fields. Moreover, these two viewpoints may prove
dual with respect to each other (cf. the equivalence
[14] of the quantum sine-Gordon model and the zero
charge sector of the massive Thirring model). Any-
how, it would be a highly attractive picture if simi-
lar patterns of spontaneous symmetry breaking take
place in condensed matter and high-energy physics.

Next consider minimal interaction of the A3-field
with the Maxwell fieldAµ(x), described by the gauge-
invariant Lagrangian (“the A3M model”):

L = D̄µs−Dµs+ + ∂µs3∂
µs3 − V (sa)− 1

4
F 2
µν , (2)

D̄µ = ∂µ + ieAµ, Dµ = ∂µ − ieAµ,

s+ = s1 + is2, s− = s1 − is2,

Fµν = ∂µAν − ∂νAµ, V (sa) = β(1− s23),

where β, e are coupling constants and µ, ν =
0, 1, ..., D. Lagrangian (2) can be rewritten in the
form

L = (∂µsa)2 − V (sa)− 1

4
F 2
µν + 2eAµ(s2∂

µs1 − s1∂µs2) + e2(s21 + s22)AµA
µ. (3)

We shall start the investigation of the topological
solitons of the A3M model (2) for D = 2 and look for
stationary solitons using the “hedgehog-like” ansatz
for the A3-field

s1 = cosmχ sin θ(R), s2 = sinmχ sin θ(R),

s3 = cos θ(R),
(4)

sinχ =
y

R
, cosχ =

x

R
, R2 = x2 + y2,

where m is an integer number, and the standard 2D
ansatz for the vector field Aµ, describing localized
distributions of a stationary magnetic field:

A0 = 0, A1 = Ax = −ma(R) y
R2 ,

A2 = Ay = ma(R) x
R2 .

(5)

Making rescaling

a = αe−1, R = re−1, (6)

we get for stationary Hamiltonian density H(r) =
e−2H(R):

H(r) =
(
dθ
dr

)2
+ sin2θ

[
p+ m2(α−1)2

r2

]
+ m2

2

(
1
r
dα
dr

)2
,

(7)

H =

∫ ∞
0

H(r)2πrdr, p =
β

e2
. (8)

Calculating δH/δθ and δH/δα, we obtain coupled
equations for θ(r) and α(r) :

d2θ

dr2
+

1

r

dθ

dr
− sin θ cos θ

[
m2(α− 1)2

r2
+ p

]
= 0, (9)

d2α

dr2
− 1

r

dα

dr
+ 2sin2θ(1− α) = 0. (10)

One can easily see that Eqs.(9),(10) are satisfied for
r → ∞, if dα

dr (∞) = 0 and θ(∞) = 0 and so it is
natural to look for solutions of Eqs. (9),(10) under
the following boundary conditions:

θ(0) = π, θ(∞) = 0, (11)

α(0) = 0,
dα

dr
(∞) = 0. (12)

Notice that Eqs.(4),(11) define the class of map-
pingsR2

comp → S2, such thatQt = m, whereQt is the
topological index (“winding number”) of localized
distributions sa(x), a = 1, 2, 3, described by the map-
pings of this class. The results of numerical investi-
gation of the boundary value problem (9)-(12) will be
published elsewhere; here we note only that the 2D
topological solitons of the model (2), which satisfy
Eqs. (9)-(12), do exist if 0 < p < pcrit ≈ 0.4. We
hope that topological solitons will be found within
the 3D model (2) as well, which would be of more
interest for the particle physics. We would like to
note here that one of the 2D gauged sigma models
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discussed in [15] is similar to the model (2); the im-
portant distinction between these models is that the
model (2) is characterized by the spontaneously bro-
ken Z(2) symmetry of its Lagrangian for arbitrary
D.

3. In the 2D case one can also consider minimal in-
teraction of the A3-field with the Chern-Simons (CS)
gauge field (“the A3CS model”).The Lagrangian of
the A3CS model is obtained when one replaces the
Maxwell term LM = − 1

4F
2
µν in (2),(3) by the Chern-

Simons term, LCS = εµνλA
µ∂νAλ, µ, ν, λ = 0, 1, 2.

Further investigation of 2D topological solitons in
the A3CS model is analogous to that for the A3M
model and is also carried out using the ansatz given
by Eqs.(4),(5) and variables α and r introduced by
Eq.(6). As a result we obtain coupled equations for
θ(r) and α(r):

d2θ

dr2
+

1

r

dθ

dr
− sin θ cos θ

[
m2(α− 1)2

r2
+ p

]
= 0, (13)

d2α

dr2
− 1

r

dα

dr
+ sin2θ(1− α) = 0. (14)

Making scaling transformation r
′

= r/
√

2, we ob-
tain coupled equations (9),(10) with p replaced by 2p,
thus the solitons of the A3CS model can be easily ob-
tained from solitons of the A3M model by means of
the above transformation.

Note that the same 2D stationary solitons can be
found in the nonrelativistic analogs of the A3M and
the A3CS models, in which the A3-field is replaced
by the 3-component unit field of the easy-axis Heisen-
berg ferromagnet, described by the Landau-Lifshitz
equation (see, e.g., [10]).

4. Further we shall consider another gauged
sigma model, which describe minimal interaction of
the easy-axis 4-component unit isovector field qα(xµ)
(“the A4-field”) with the gauge SU(2) Yang-Mills

field Aaµ(xν), where α, µ, ν = 0, 1, 2, 3, a = 1, 2, 3.
The Lagrangian density of this (“the A4YM”) model
is:

L = DµqaDµqa+∂µq
0∂µq0−V (q0)− 1

4
(F aµν)2, (15)

Dµqa = ∂µq
a + gεabcAbµq

c, a, b, c = 1, 2, 3,

F aµν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν ,

V (q0) = β[1− (q0)2],

where β, g are coupling constants.

One can look for stationary topological solitons
of the A4YM model using the following ansatzes for
the A4- and the SU(2) Yang-Mills fields:

q0 = cos θ(R), qa = sin θ(R)
xa

R
, R2 = x2+y2+z2,

(16)
Aa0 = 0, Aai = c(R)εiakxk. (17)

Stationary solitons describe localized particle-
like Hamiltonian density distributions Hst of time-
independent fields qα(x) and Aai (x),

Hst = (Dkqa)2 + (∂kq
0)2 +

1

4
(F aik)

2
+ β[1− (q0)2].

(18)
It is straightforward to show that the Hamiltonian
density distributions of localized field bunches given
by Eqs. (16),(17) are spherically symmetric:

Hst(R) =
(
dθ
dR

)2
+ 2sin2θ

R2 + 4gcsin2θ + 2g2c2R2sin2θ

+6c2 +
(
dc
dR

)2
R2 + 1

2g
2c4R4

+4Rc dcdR + 2gR2c3 + βsin2θ.

(19)

Equating variational derivatives δH/δθ and
δH/δc to zero (H = 4π

∫∞
0
HstR2dR) one finds cou-

pled equations for functions c(R) and θ(R):

1

R2

d

dR

(
R2 dθ

dR

)
− sin θ cos θ

(
2

R2
+ 4gc+ 2g2R2c2 + β

)
= 0, (20)

1

R2

d

dR

(
R4 dc

dR

)
− 2g sin2 θ − 2g2R2c sin2 θ − g2c3R4 − 3gR2c2 = 0. (21)

We shall study localized field distributions de-
scribed by the functions θ(R) and c(R) which are
solutions to Eqs. (20),(21) and satisfy the following
boundary conditions:

θ(0) = π, θ(∞) = 0, (22)

c(0) = 0, c(∞) = 0. (23)

It is useful to introduce dimensionless variables,

r = gR, b(r) = g−1cr2. (24)

Then the Hamiltonian density takes the form

H(r) = g−2H(R) =
(
dθ
dr

)2
+ 2 sin2 θ 1

r2 + 4 sin2 θ b
r2 + 2 sin2 θ b

2

r2 + 6b2

r4 +
(
d(br−2)
dr

)2
r2

+ b4

2r4 + 4 br
d(br−2)
dr + 2b3

r4 + P sin2 θ

=
(
dθ
dr

)2
+ 2 sin2 θ 1

r2 (1 + b)2 + b2

2r4 (b+ 2)2 +
[
r d(br

−2)
dr + 2b

r2

]2
+ P sin2 θ,

(25)
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P =
β

g2
. (26)

Note that H =
∫∞
0
H(R)4πR2dR = g−1Hd, where

Hd =
∫∞
0
H(r)4πr2dr.

Calculating δHd/δθ and δHd/δb, we arrive at cou-
pled equations for θ(r) and b(r) :

d2θ

dr2
+

2

r

dθ

dr
− sin θ cos θ

[
2(b+ 1)2

r2
+ P

]
= 0, (27)

d2b

dr2
− 2b

r2
− 2sin2θ(1 + b)− b2

r2
(b+ 3) = 0. (28)

We shall look for localized solutions to Eqs. (27),(28),
setting the following boundary conditions:

θ(0) = π, θ(∞) = 0, (29)

b(0) = 0, b(∞) = B, B = 0,−1,−2. (30)

Eqs (16), (29) define localized distributions
qα(xk), α = 0, 1, 2, 3, k = 1, 2, 3, of the A4-field pos-
sessing unit topological charge, Qt = 1. Here Qt
is the “winding number”, or the “mapping degree”,
of continuous maps R3

comp → S3, corresponding to

localized field distributions qα(xk); note that R3 is
compactified since the unique value of qα at |x| =∞
is set by the boundary condition θ(∞) = 0. Inves-
tigation of the boundary value problems (27)-(30) is
in progress.

5. In this paper we propose gauged sigma models
with broken Z(2) symmetry in (D + 1)-dimensional
space-time, which admit existence of cylindrically or
spherically symmetric particle-like solutions. These
localized solutions are topological solitons, since they
describe bunches of anisotropic N -component (N =
3, 4) unit isovector fields possessing integer topo-
logical charges. They can be considered as soli-
ton analogs of the Abrikosov-Nielsen-Olesen vortices
(strings)[16] (for D = 2, N = 3) and of the ’t Hooft-
Polyakov monopoles [17] (for D = 3, N = 4) . Three-
dimensional topological soliton solutions within the
A3M and the A4YM models proposed above can be
considered as classical prototypes of massive quan-
tum particles (quarks, leptons, baryons, W - and Z-
bosons); one can consider integrals of energy, isotopic
charge and internal angular momentum of 3D solitons
in these models as classical analogs of masses, charges
and spins of corresponding quantum particles.
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