
Annales de la Fondation Louis de Broglie, Volume 23, no 1, 1998 15

Probing the Electric Dipole Moment of the Gauge Bosons
Using Discrete Time Spin Polarization Precession
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ABSTRACT. By considering the composite structure of a gauge boson we demonstrate the if the gauge boson
is allowed to precess in a static electric and magnetic field the precession frequency can be used to place limits
on both the electric dipole moment of the gauge bosons and the discrete time interval in discrete time quantum
mechanics.

RÉSUMÉ. En considérant la structure composite d’un boson de jauge, nous démontrons que si le boson de
jauge peut effectuer un mouvement de précession dans un champ électromagnétique statique, la fréquence de
précession peut être utilisée pour assigner des limites à la fois au moment dipolaire électrique des boson de
jauge et à l’intervalle de temps discret de la mécanique quantique à temps discret.

1. Introduction

It is generally agreed amongst most students of
elementary particle theory that the standard model
(SU(3)C×SU(2)L×U(1)y) of strong, weak and elec-
tromagnetic interactions will be modified at high en-
ergy because of its asymmetric electroweak struc-
ture and the need for so many input parameters
(about 20) necessary to specify the quark and lepton
masses, the mixing angles, the coupling constants,
and the magnitude of strong CP violation along
with the details of symmetry breaking in the Higgs
sector1,2,3. Left right symmetric models have been
proposed to better understand the left-handedness
of quarks and leptons in terms of a hierarchy of
symmetry breaking,4 Grand-unification models have
been proposed in order to encompass quarks and lep-
tons into the same multiplet and necessitate just one
coupling constant at high energy as well as giving
a dynamical mechanism for proton decay5. Tech-
nicolor finds its origin in trying to understand the
composite structure of the Higgs sector in terms of
the binding of techniquarks6 and supersymmetry has
been proposed as a mechanism to solve the hier-
archy problem in not allowing the particles of the
electroweak sector to gain arbitrarily large radia-
tive corrections to their masses7. Superstring the-
ory offers us a wonderful avenue of unification since
it reduces to the Standard Model at lower energies
and its embryonic stage requires only two parame-
ters (the sting tension and Reggi slope) to define it8.
The other attempt at a deeper level of understand-
ing of elementary particles is found in the notion of
compositeness9. This idea is partly inspired by the
observation that all previous systems have admitted
to a composite structure (atoms, nuclei, hadrons) and

it only seems natural that quarks and leptons in turn
should reveal a composite structure. Numerous com-
posite models have been proposed in the past with
varying degrees of complexity with the three fermion
model of Harari10 and the fermion-boson model of
Fritzsch-Mandelbaum11 being representative of how
the quarks and leptons can be built from sub-quarks
with hypercolor providing the binding mechanism in
much the same way that color binds the quarks to-
gether in hadrons. To probe this composite struc-
ture, the conventional path is to study the effect that
compositeness has on form factors, anomalous mo-
ments and rare decays12,13,14. In previous works we
have advocated a different probe to compositeness15,
namely if time attains a grainy or discrete like struc-
ture at some small scale, the quantum dynamics of
the elementary preons would be effected by such dis-
creteness and would give rise to observational conse-
quences in phenomena such as spin-polarization pre-
cession and electron-spin resonance. In this regard we
have applied discrete time Q.M. to study the struc-
ture of leptons using spin polarization precession16,
and the structure of gauge bosons using gauge boson
spin precession17,18. We have also applied discrete
time Q.M. in searching for hidden internal quantum
numbers of elementary particles using spin-flip fre-
quencies of particles in an external magnetic field
(ref. 15). In another investigation we have shown
that these ideas lead to an upper limit for the mass
of elementary particles19. In ref (18) we briefly dis-
cussed the characteristics of spin polarization preces-
sion when composite particles precess both in a mag-
netic field and an electric field. The purpose of this
note is to further elaborate on these discussions by
demonstrating that if a particle (lepton, gauge bo-
son) has a small electric dipole moment in addition
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to a magnetic dipole moment it will have an altered
precession frequency and there will be an angle of
tilt between the axis specified by the magnetic field
and the spin precession axis. If a beam of particles
is initially polarized by a strong magnetic field and
it is allowed to enter a region of crossed electric and
magnetic fields we demonstrate the precise measure-
ment of the precession frequency will provide us with
information regarding the composite structure of the
particle, its electric dipole moment and the associated
discrete time effects on the precession frequency.

2. Spin Precession of Gauge Bosons in Crossed
Electric and Magnetic Fields as a Probe to
Compositeness and Discrete Time Quantum
Mechanic

We begin our analysis by considering a 2 preon

(spin 1/2) composite gauge boson of charge -e.20 For

the Hamiltonian we have a two preon system with in-

ternal spin-spin coupling interacting with an external

electric and magnetic field

H = M0c
2 +

P 2
1

2m1
+

P 2
2

2m2
+

e1

m1
SZ1

B +
e2

m2
SZ2

B + P (Sx1
+ Sx2

)E + g~S1.~S2 (2.1)

Here
B = z component magnetic field,
E = x component electric field,
M0C

2 = rest mass parameter,
m1,m2 = heavy preon masses,
−e1,−e2 = preon electric charges,
−P = electric dipole moment of composite w− in
units of h̄,
gS1 S1 = spin-spin coupling of preons,
in the spirit of (Ref. 17) we look for eigenstates of
the Hamiltonian in Eq. (2.1), one result of Ref. (17)
was that for two negatively charged preons we must
have e1

m1
=

e2

m2
=

e

m

in order that the composite gauge boson precesses in
a s component magnetic field. For the total wave
function we have the product function of the eigen-
states

Ψ =
[
a1, αα+ a2ββ + a3

( αβ+βα√
2

)]
U(x1, x2)T (t)

Here

a1(αα) + a2ββ + a3

( αβ+βα√
2

)
= spin function,

(2.2)
U(x1, x2) = spatial function,

T (t) = temporal part of wave function.

According to Ref. (15, 16, 17) we write the dis-
crete time difference Schrodinger Equation as

HΨ = ih̄

[
Ψ ( t+ τ

2 )−Ψ ( t+ τ
2 )

τ

]
(2.3)

(τ = discrete time interval),

which was first investigated by Caldirola21 and
whose mathematical structure was later studied by
Santilli22 et. al. Combining Eq. (2.1), Eq (2.2) and
Eq. (2.3) wa have for the eigenstages

[ e
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U(x1, x2) = E1U(x1x2) (2.5)

(E1 + E2)T (t) = ih̄

[
T ( t+ τ

2 )− T ( t+ τ
2 )

τ

]
(2.6)

If we consider the preons to be bound within a one dimensional potential well of length L, we find the following
solution to Eq. (2.5) with

E1 = M0C
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
(2.7)

U(x1x2) =
1√
2

( 2
L sin n1πx1

L sin n2πx2

L − 2
L sin n1πx2

2 sin n2πx1

L ) (2.8)

(n1, n2 = integers, here and in Eq. (2.7) we assume identical fermionic preons with m1 = m2, e1 = e2 = e), we
have also anti-symmetrized Eq. (2.8). the normalized eigenfunctions of Eq.(2.4) are (Ref. 17).

E2+ =
gh̄2

4
+

√
(PEh̄)2 + ( eh̄Bm )

2



Probing the Electric Dipole Moment of the Gauge Bosons. . . 17
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here  K = eh̄B
m

S =
√

(PEh̄)2 +K2


For each combination of spatial state and spin state
with E = E1 + E2 we have the temporal solution of
Eq. (2.2)

T (t) = e−
2
τ sin−1(

(E1+E2)τ

2h̄ )it (2.12)

We now consider that each of three spin states in Eq.
(2.9), Eq. (2.10) and Eq. (2.11) has the same spatial
function as expressed in Eq. (2.8) with the energy
specified by the two integers n1, n2. We now consider
a linear combination of Eq. (2.9), Eq. (2.10) and Eq.
(2.11) with their associated temporal factors as given
by Eq. (2.12) multiplied by the spatial state in Eq.
(2.8). To calculate the spin polarization precession
frequency we note that since the magnetic field is
in the z direction and the electric field is in the x
direction the spin will precess about a line in the
xz plane, actually any initial polarization that has a
component of Ψ20 with one of the other components
of Ψ will give a time warying spin polarization along
with y axis. We will consider the general case when
all three eigencomponents Ψ2(0,±) are present.

We now define the following constants
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PEh̄√

2
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1√
1 +A2

( 1
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) , E =
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1 + 2A2

K2
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m
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Here
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We also note that the eigenvectors of Eq. (2.9), Eq.
(2.10) and Eq. (2.11) are in the Sz basis+1

−1
0



To evaluate the Sy spin polarization we now take the

following linear combination of Eq. (2.9), Eq. (2.10)

and Eq. (2.11).

Ψ = (a1Ψ2+e
−ie1t + a2Ψ2−e

−ie2t + a3Ψ20e
−ie3t)

× u(x1, x2)
(2.15)

where U(x1, x2) is given by Eq. (2.8). When we

write out the components of Eq. (2.15) in the

αα, ββ, αβ+βα√
2

basis using Eq. (2.9), Eq. (2.10) and

Eq. (2.11) we have

Ψ =U(x1, x2)

[
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( −A
(K−S)D

)
e−ie1t

a2A

D(K + S)
e−ie2t − a3A

KE
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]
αα

+ U(x1, x2) [(−−−−)]ββ + U(x1, x2) [(−−−−)]
αβ + βα√

2

(2.16)

We now evaluate the y spin polarization

< Sy1
+ Sy2

>=

∫ L

0

∫ L

0

Ψ+(Sy1
+ Sy2

)Ψdx1dx2 ,

(2.17)
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since the spatial part of Eq. (2.16) us normalized and
Syα = ih̄

2 β, Syβ = − ih̄2 α, we find the following result
of evaluating Eq. (2.17) after a long calculation

< Sy1
+ Sy2

>=
ih̄√

2
Ba1

∗a3

[
ei(e1−e3)t − e−(e1−e3)t

]

+
ih̄√

2
Ba2

∗a3

[
ei(e2−e3)t − e−(e2−e3)t

]
(2.18)

Here we have imposed the condition

a1
∗a3 = a1a3

∗, a2
∗a3 = a2a3

∗ (2.19)

Eq.(2.18) then gives

< Sy1 + Sy2 >= −
√

2Bh̄a3a1
∗ sin(e1 − e3)t

−
√

2Bh̄a2
∗a3 sin(e2 − e3)t (2.20)

here

B =
2AK

DE(K2 − S2)
− 2A

KED

We see from Eq. (2.20) that a3 a1
∗ and a3a2

∗ de-
termine the amplitude of the two sinusodial compo-
nents of (Sy). In Ref. (17) we have derived a formula
for gauge boson spin precession in a magnetic field,
but Eq. (2.20) applies also to the situation when the
electric-dipole interaction is present. We also note
that a1, a2, a3 in Eq. (2.15) must fulfill the normal-
ization condition. The two precessions frequencies in
Eq. (2.20) are

ω1 =
2

τ

[
sin−1 (E1 + E2+)τ

2h̄
− sin−1 (E1 + E20
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ω2 =
2
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2h̄
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2h̄

]
(2.22)

In Eq. (2.22) we have reversed the sign in the sin−1

function since e3 > e2, also this will only change the
sign of the amplitude but not effect the frequency. If
we expand the function in Eq. (2.21) and Eq. (2.22)

using sin−1(x) ' x+ x3

3! and Eq. (2.7), Eq. (2.9), Eq.
(2.10) and Eq. (2.11) we find

ω
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(2.23)

where the +refers to ω1 and - to ω2. If the two ampli-
tudes in Eq. (2.20) are adjusted to be equal we find
for the beat frequency for the two closely calculated
frequencies in Eq. (2.23).

fB =
(ω1 − ω2)

2π

=
τ2

2π
( 1

24h̄3 )

 6E1 ( (PEh̄)2 + ( eh̄Bm )
2 )

+6
(
gh̄2

4

)
( (PEh̄)2 + ( eh̄Bm )

2 )


(2.24)

Eq. (2.24) provides us with both a sensitive probe to
the electric dipole moment and internal energies E1

and gh̄
4 as well as a probe to the discrete time interval

τ .

3. Conclusion

The above analysis has demonstrated that a spin
1 gauge bonson (q = −e) in both an magnetic and

electric field will precess about an axis that lies in
the plane determined by B and E. Any Doppler like
effects in the spin precession frequency will be a clear
signal of discrete time effects since when τ = 0 both
frequencies in Eq. (2.23) are identical. If order of
magnetude estimates can be made on E1 (internal
spatial energy) and g (internal spin-spin coupling)
then estimates of τ can be made from a measure-
ment of Eq. (2.24). The central result of this inves-
tigation is that ”any Doppler-like peaks in the spin
precession frequency” will be a distinct signature of
discrete time quantum effects. The above ideas might
also be applied to hadrons where estimates of the in-
ternal structure (E1 and g) would be more reliable,
and then estimates of τ could be better trusted. it is
also fascinating that if discrete time effects were dis-
covered they could be used as a very delicate probe
to electric dipole moments of particles (e−, N−) that
presently test our theory of strong CP violation23.
We also note that the result of this note is indepen-
dent of the simple one dimensional model of internal
structure and that any model of a spin one gauge bo-
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son with internal structure will predict the Doppler
frequency for the < Sy > espressed in Eq. (2.24).
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