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ABSTRACT. This paper is the first one of a series of three papers. It aims to present a developed view on the
motivation and realization of the idea to extend Maxwell’s electrodynamics to Extended Electrodynamics in a
reasonable and appropriate way in order to achieve the possibility to describe electromagnetic (3+1)-soliton-like
objects in vacuum and in presence of continuous media (external fields) [15]-[20], exchanging energy-momentum
with the electromagnetic field.

1 Preliminary notes

Classical Electrodynamics [1] is probably the most
fascinating and complete part of the Classical Field
Theory. Intuition, free thought, perspicuity and re-
search skill of many years finally brought about the
synthesis of experiment and theory, of physics and
mathematics, which we have been calling for short
the Maxwell equations for the duration of a century
and a half. From the beginning of the second half of
the 19th century till its end these equations turned
from abstract theory into daily practice, as they are
today. Their profound study during the first half
of the 20th century brought forward a new theoret-
ical concept in physics known as relativism. Brave
and unprejudiced scientists enriched and widened
the synthesis achieved through the Maxwell equa-
tions, and created a new synthesis known briefly as
quantum electrodynamics. Every significant scien-
tific breakthrough is based on two things: respect for
the workers and their work and respect for the truth.
”May everyone be respected as a personality, and no-
body as an idol” one of the old workers used to say.
We may paraphrase that saying: ”may every scien-
tific truth be respected, but no one be turned into
dogma”.

In our attempt to extend CED we tried to follow
the values this creed teaches, as far as our humble
abilities allow us to. Together with the analysis of
the classical electrodynamics and the discrete con-
ception for the structure of the electromagnetic field,
the path followed brought us to the conclusion that
a soliton-like solution of appropriate non-linear equa-
tions characterized by an intrinsic periodical process
is the most adequate mathematical model of the basic
structural unit of the field - the photon. The fact that
neither the Maxwell equations nor the quantum elec-
trodynamics offer the appropriate tools to find such

solutions, unmistakably emphasizes the necessity to
look for new equations. We decided not to follow
the usual way for nonlinearization of CED [2], be-
cause, from our point of view, it does not comprise
sufficiently fruitful and new ideas. Other attempts in
this direction one may find in [3]-[12].

The leading physical ideas in our approach were
the dual (”electro-magnetic”) nature of the field on
the one hand and the local Energy-Momentum Con-
servation Laws on the other. The realization that ev-
ery such soliton-like solution determines in an invari-
ant way its own scale factor, as well as the suitable
interpretation of the famous formula of Planck for
the relation between the full energy E of the photon
and the frequency ν = 1/T of the beforementioned
periodical process, which we prefer to write down as
h = E.T , helped us to formulate the rules for sepa-
rating the realistic soliton-like models of the photon
from among the rest. The resulting soliton-like solu-
tions [19] possess all integral qualities of the photon,
as described by quantum electrodynamics, but also
a structure, organically tied to an intrinsic periodi-
cal process, which in its turn generates an intrinsic
mechanical angular momentum - spin (helicity). We
consider this soliton- like oscillating non-linear wave
much more clear and understandable than the am-
biguous ”particle-wave” duality.

The dual 2-component nature of the field prede-
termined to a great extent the generalization of the
equations in the case of an interaction with another
continuous physical object, briefly called medium
[20]. The proposed physical interpretation of the
classical Frobenius equations for complete integra-
bility [13],[14] of a system of non-linear partial dif-
ferential equations as a criterion for the absence of
dissipation, turned out to be relevant and was effec-
tively used. The fruitfulness of the new non-linear
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equations is clearly shown by the family of solutions,
giving (3+1)-dimensional interpretation of all (1+1)-
dimensional 1-soliton and multisoliton solutions [20].
We note that making use of differential geometry
proved extremely useful.

This paper follows the main track of our efforts to
build a clear and consecutive picture of motivations
and theoretical results. While most of the solutions
to the new nonlinear equations we have found have
been already published [15]-[20], a consecutive and
well motivated reasoning, leading to the new equa-
tions is still missing. So, the stress in this paper is
laid on the conceptual and generic framework. The
purpose is to bring the reader to the conviction that
the extension of CED, developed by us during the
last 10 years, is necessary and is physically and math-
ematically quite natural. We do not present solutions
to equations. We set the problem to build a descrip-
tion of electromagnetic soliton-like objects, then we
consider step by step physical arguments and try to
find the corresponding step by step mathematical ad-
equacies. Our belief is that if the steps are in the right
direction the positive results come inevitably. In its
turn every new positive result (solution or relation),
suggests new insights and invites to search for new
more definite quantities and relations. This, step by
step creative process, brought us to the today’s mo-
tivational look on what we call Extended Electrody-
namics. It is important from time to time to recon-
sider and re-estimate the importance and significance
of any reason and idea been used, because this gives
birth to new reasons and ideas and helps to sift out
the basic and meaningful from the occasional and
nonsignificant.

2 Physical conception for the electromag-
netic field in Extended Electrodynamics
(EED)

As it is well known, the mathematical models of the
real vacuum electromagnetic fields in Classical Elec-
trodynamics (CED) are ”infinite”, or if they are fi-
nite, they are strongly time-unstable. These mod-
els are not consistent with a number of experimental
facts. A deeper analysis of CED, carried out at the
first third of this century, resulted in the new concep-
tion for a discrete character of the field. This physical
understanding of the field is the true foundation of
EED and it shows clearly the principle differences be-
tween CED and EED. For the sake of clarity we shall
formulate our point of view more explicitly.

The electromagnetic field in vacuum is of discrete
character and consists of single, not-interacting (or
very weakly interacting) finite objects, called photons.
All photons move uniformly as a whole by the same
velocity ’c’, carry finite energy ’E’, momentum ’p’
and intrinsic angular momentum. These features im-

ply structure and internal periodic process of period
’T ’, which may be different for the various photons.
The quantity ’E.T ’, called ”elementary action”, has
the same value for all photons and is numerically
equal to the Planck constant ’h’. The invariance of
’c’ and ’h’ means nondistinguishability of the pho-
tons, considered as invariant objects. The integral
value of the intrinsic angular momentum is equal to
’±h’. For the topology of the 3-dimensional region,
occupied by the photon at any moment, there are no
experimental data, so it is desirable that the model-
solutions allow arbitrary initial data.

We’d like to stress the following: EED consid-
ers photons as real finite objects, and not as conve-
nient theoretical concepts, and it aims to build ade-
quate mathematical models of these entities. So, the
first important problem is to point out the algebraic
character of the modelling mathematical object for a
single photon. Our belief is that the corresponding
generalization for a number of photons could then be
easily done.

3 Choice of the modelling mathematical ob-
ject

According to the non-relativistic formulation of CED
the electromagnetic field has two aspects: ”electric”
and ”magnetic”. These two aspects of the field are
described by two 1-forms on R3 and a parametric
dependence on time is admitted: the electric field E
and the magnetic field B. The following considera-
tions will suggest that these two fields can be con-
sidered as two vector components of a new object,
1-form Ω, taking values in a real 2-dimensional vec-
tor space, naturally identified with R2. In fact, set
the question : do there exist constants (a, b,m, n),
such that the linear combinations

E′ = aE + bB, B′ = mE + nB

give again a solution? The answer to this question
is positive iff m = −b, n = a. The new solution will
have energy density w′ and momentum S′ as follows:

w′ =
1

8π

(
(E′)2 + (B′)2

)
=

1

8π
(a2 + b2)

(
E2 +B2

)
,

S′ = (a2 + b2)
c

4π
E ×B.

Obviously, the new and the old solutions will have
the same energy and momentum if a2 + b2 = 1, i.e.
if this transformation is from SO(2).

This simple but important observation shows that
besides the usual linearity, Maxwell’s equations ad-
mit also ”cross”-linearity, i.e. linear combinations
of E and B of a definite kind define new solu-
tions. Therefore, the difference between the elec-
tric and magnetic fields becomes non-essential. The
important point is that with every solution (E,B)
of Maxwell’s equations a 2-dimensional real vector
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space, spanned by the couple (E,B), is associated,
and the linear transformations, which transform so-
lutions into solutions, are given by matrices of the
kind ∥∥∥∥ a b

−b a

∥∥∥∥ .
If these matrices are unimodular, i.e. if a2 + b2 = 1,
the energy and momentum do not change. It is well
known that matrices of this kind do not change the
canonical complex structure J in R2.(Recall that if
the canonical basis of R2 is denoted by (e1, e2) then
J is defined by J(e1) = e2, J(e2) = −e1.)

The above remarks suggest to consider E and B
as two vector-components of an R2-valued 1-form Ω:

Ω = E ⊗ e1 +B ⊗ e2.

So, the current j becomes 1-form J = j⊗e1 with val-
ues in R2, and the charge density becomes a function
Q = ρ⊗ e1 with values in R2. Maxwell’s equations

1

c

∂E

∂t
= rotB − 4π

c
j, divB = 0, (1)

1

c

∂B

∂t
= −rotE, divE = 4πρ. (2)

take the form

1

c

∂Ω

∂t
= −4π

c
J − ∗dJ(Ω), δΩ = 4πQ, (3)

where J(Ω) = E⊗J(e1)+B⊗J(e2) = E⊗e2−B⊗e1,
d is the exteriour derivative, and δp = (−1)p ∗−1 d∗p
is the coderivative. (On Minkowski space δ = ∗d∗).

Note that according to the sense of the concept
of current in CED and because of the lack of mag-
netic charges, it is necessary to exist a basis in R2,
in which J and Q have components only along e1.
Nevertheless, this point of view shows that even at
this non-relativistic level the separation of the EM -
field to ”electric” and ”magnetic” is not adequate to
the real situation. The mathematical object Ω unifies
and, at the same time, distinguishes the two sides of
the field: there is a basis in R2, in which the electric
and magnetic components are delimited, but in an ar-
bitrary basis the two components mix (superimpose),
so the difference between them is lost.

In the relativistic formulation of CED the differ-
ence between the electric and magnetic components
of the field is already quite conditional, and from the
invariant-theoretical point of view there is no any dif-
ference. However, the 2-component character of the
field is kept in a new sense and manifests itself at a
different level. In order to come to this we make the
following considerations.

As we saw above, some linear combinations of the
electric and magnetic fields generate a new solution

to Maxwell’s equations. In particular, the transfor-
mation, defined by the matrix∥∥∥∥ 0 1

−1 0

∥∥∥∥ ,
defining a complex structure in R2, transforms a so-
lution of the kind (E, 0) into a new solution of the
kind (0, E) and a solution of the kind (0, B) into a
solution of the kind (−B, 0), i.e. the electric com-
ponent into magnetic and vice versa. This observa-
tion draws our attention to looking for a complex
structure J, J2 = −id in the bundle of 2-forms on
the Minkowski space M , such that if the 2-form F
presents the first component of the field, then J(F )
to present the second component of the same field.
Such complex structure really exists, in fact, it co-
incides with the restriction of the Hodge ∗-operator,
defined by the pseudometric η through the equation

α ∧ ∗β = −η(α, β)
√
|det(ηµν)|dx ∧ dy ∧ dz ∧ dξ,

to the space of 2-forms: ∗∗2 = −idΛ2(M). So,
the non-relativistic vector components (E,B) are re-
placed by the relativistic vector components (F, ∗F ).
The following considerations support also such a
choice.

The relativistic Maxwell’s equations in vacuum
dF = 0, d ∗ F = 0 are, obviously, invariant with
respect to the interchange F → ∗F . Moreover, if F
is a solution, then an arbitrary linear combination
aF + b ∗ F is again a solution. More generally, if
(F, ∗F ) defines a solution, then the transformation
(F, ∗F ) → (aF + b ∗ F,mF + n ∗ F ) defines a new
solution for an arbitrary matrix∥∥∥∥ a m

b n

∥∥∥∥ .
Now, using the old notation Ω for the new object
Ω = F ⊗ e1 + ∗F ⊗ e2, Maxwell’s equations are writ-
ten down as dΩ = 0, or equivalently δΩ = 0 (we re-
call that the coderivative operator is just the (minus)
divergence: (δF )µ = −∇νF νµ ). Clearly, an arbitrary
linear transformation of the basis (e1, e2) keeps Ω as
a solution.

Recall now the energy-momentum tensor in CED,
defined by

Qνµ = 1
4π

[
1
4FαβF

αβδνµ − FµσF νσ
]

= 1
8π

[
−FµσF νσ − (∗F )µσ(∗F )νσ

]
.

(4)

It is quite clearly seen, that F and ∗F participate in
the same way in Qνµ, and the full energy-momentum
densities of the field are obtained through summing
up the energy-momentum densities, carried by F
and ∗F . Since the two expressions FµσF

νσ and
(∗F )µσ(∗F )νσ are not always equal, the distribution
of energy-momentum between F and ∗F may change
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in time, i.e. energy-momentum may be transferred
from F to ∗F , and vice versa. So we may interpret
this phenomenon as a special kind of interaction be-
tween F and ∗F , responsible for some internal redis-
tribution of the field energy. Now, in vacuum it seems
naturally to expect, that the energy-momentum, car-
ried from F to ∗F in a given 4-volume, is the same
as that, carried from ∗F to F in the same volume.
However, in presence of an active external field, ex-
changing energy-momentum with Ω, it is hardly rea-
sonable to trust the same expectation just because
of the specific structure the external field (medium)
may have. So, the external field (further any such
external field will be called also medium for short)
may exchange energy-momentum preferably with F
or ∗F , as well as it may support the internal redistri-
bution of the field energy-momentum between F and
∗F , favoring F or ∗F . From the explicit form of the
energy-momentum tensor it is seen that the field may
participate in this exchange by means of any of the
two terms FµσF

νσ and (∗F )µσ(∗F )νσ. Moreover, for
the divergence of the energy-momentum tensor we
easily obtain

∇νQνµ =
1

4π

[
Fµν(δF )ν + (∗F )µν(δ ∗ F )ν

]
. (5)

It is clearly seen that the quantities of energy-
momentum, which any of the two components F and
∗F may exchange in a unit 4-volume are invariantly
separated and given respectively by

Fµν(δF )ν , (∗F )µν(δ ∗ F )ν .

But, in CED the exchange through ∗F is forbidden,
the expression

(∗F )µν(δ ∗ F )ν is always, in all media, assumed
to be equal to zero. This comes from the uncondi-
tional assumption, that the Faraday’s induction law
is universally true. Of course, we do not reject the
existence of media, not allowing energy-momentum
exchange through ∗F , but we do not share the opin-
ion that all media behave in this same way. On the
other hand, in case of vacuum, we can not delimit F
from ∗F , these are two solutions of the same equa-
tion and it is all the same which one will be denoted

by F (or ∗F ), i.e. CED does not give an intrinsic cri-
terion for a respective choice. Only in regions with
non-zero free charges and currents, when dF = 0
and δF = 4πj 6= 0, the choice can be made, but this
presupposes (postulates) that the field is able to in-
teract, i.e. to exchange energy-momentum, only with
charged particles, i.e. through F . This postulate we
can not assume ad hoc.

Having in view these considerations we assume
the following postulate in EED in order to specify
the algebraic character of the modelling mathemati-
cal object:

In EED the electromagnetic field is described by a
2-form Ω, defined on the Minkowski space-time and
valued in a real 2-dimensional vector space W and
such, that there is a basis (e1, e2) of W in which Ω
takes the form

Ω = F ⊗ e1 + ∗F ⊗ e2. (6)

Since W is isomorphic to R2, further we shall
write only R2 and all relations obtained can be car-
ried over to W by means of the corresponding iso-
morphism. In particular, every W will be considered
as being provided with a complex structure J , so, the
group of automorphisms of (W, J) is defined. We are
going now to consider the transformation properties
of the set of 2-forms of the kind (6) with respect to
linear transformations in R2.

First we note, that the equation aF+b∗F = 0 re-
quires a = b = 0. In fact, if a 6= 0 then F = − b

a ∗ F .
From aF + b ∗ F = 0 we get a ∗ F − bF = 0 and
substituting F , we obtain (a2 + b2) ∗ F = 0, which
is possible only if a = b = 0 since ∗F 6= 0. In other
words, F and ∗F are linearly independent.

Let now (k1, k2) be some arbitrary basis ofR2 and
consider the 2-form Ψ = G⊗k1 +∗G⊗k2. We ask: is
there another basis (k′1, k

′
2) of R2, such that the same

form Ψ to be given by Ψ = G′ ⊗ k′1 + ∗G′ ⊗ k′2? The
answer to this question is positive. In fact, let’s ex-
press (k′1, k

′
2) through (k1, k2) and take in view what

we want:

G′ ⊗ k′1 + ∗G′ ⊗ k′2 = G′ ⊗ (ak1 + bk2) + ∗G′ ⊗ (mk1 + nk2)

= (aG′ +m ∗G′)⊗ k1 + (bG′ + n ∗G′)⊗ k2

= (aG′ +m ∗G′)⊗ k1 + ∗(aG′ +m ∗G′)⊗ k2

= (aG′ +m ∗G′)⊗ k1 + (a ∗G′ −mG′)⊗ k2 = G⊗ k1 + ∗G⊗ k2.
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Consequently, we must have bG′ + n ∗ G′ =
a ∗G′ −mG′, or

(b+m)G′ + (n− a) ∗G′ = 0,

which requires m = −b, n = a, i.e. the transforma-
tion matrix S is

S =

∥∥∥∥ a −b
b a

∥∥∥∥ .
As we mentioned above these matrices keep the
canonical complex structure J in R2 unchanged:
S.J.S−1 = J .

Besides, if Ω1 and Ω2 are of the kind (6), and the
associated to Ω2 basis is transformed into the asso-
ciated to Ω1 basis by a transformation of the above
kind, then it is easily shown that the linear com-
bination λΩ1 + µΩ2 is of the same kind (6). This
shows that every class of equivalent with respect to
the above transformations bases in R2 defines a sub-
space in Λ2(M,R2), so the set of forms of the kind
(6) is divided by the above given transformations to
non-intersecting subspaces of Λ2(M,R2).

Since the class of transformations S seems too
wide, we shall separate a subclass of bases and cor-
responding subclass of transformations to make use
of. In order to do this we recall first the product of

2 vector valued differential forms. If Φ and Ψ are
respectively p and q forms on the same manifold N ,
taking values in the vector spaces W1 and W2 with
corresponding bases (e1, ..., em) and (k1, ..., kn), and
ϕ : W1 ×W2 →W3 is a bilinear map into the vector
space W3, then a (p + q)-form ϕ (Φ,Ψ) on N with
values in W3 is defined by

ϕ (Φ,Ψ) =
∑
i,j

Φi ∧Ψj ⊗ ϕ(ei, kj).

In particular, if W1 = W2 and W3 = R, and the
bilinear map is scalar (inner) product g, we get

ϕ (Φ,Ψ) =
∑
i,j

Φi ∧Ψjgij .

Let now X and Y be 2 arbitrary vector fields on
the Minkowski space M , Ω be of the kind (1.37), Qµν
be the energy tensor in CED and g be the canonical
inner product in R2. Then the class of bases we shall
use will be separated by the following equation

QµνX
µY ν =

1

2
∗ g
(
i(X)Ω, ∗i(Y )Ω

)
. (7)

We develop the right hand side of this equation and
obtain

1
2 ∗ g

(
i(X)Ω, ∗i(Y )Ω

)
= 1

2 ∗ g
(
i(X)F ⊗ e1 + i(X) ∗ F ⊗ e2, ∗i(Y )F ⊗ e1 + ∗i(Y ) ∗ F ⊗ e2

)
= 1

2 ∗
[(
i(X)F ∧ ∗i(Y )F

)
g(e1, e1) +

(
i(X)F ∧ ∗i(Y ) ∗ F

)
g(e1, e2)

+
(
i(X) ∗ F ∧ ∗i(Y )F

)
g(e2, e1) +

(
i(X) ∗ F ∧ ∗i(Y ) ∗ F

)
g(e2, e2)

]
= − 1

2X
µY ν

[
FµσF

σ
ν g(e1, e1) + (∗F )µσ(∗F )σνg(e2, e2)

+
(
Fµσ(∗F )σν + (∗F )µσF

σ
ν

)
g(e1, e2)

]
= − 1

2X
µY ν

[
FµσF

σ
ν + (∗F )µσ(∗F )σν

]
.

In order for this relation to hold it is necessary to
have

g(e1, e1) = 1, g(e2, e2) = 1, g(e1, e2) = 0,

i.e., we are going to use orthonormal in (R2, g) bases.
So, in this approach, the group SO(2), (or U(1)) ap-
pears in a pure algebraic way, in fact, it separates a
linear space among the forms of the kind (6). Note
that an EM -field Ω is fully determined now by point-
ing out F and an orthonormal basis of R2. Note
also, that in the gauge interpretation of CED the
group U(1) is associated with the equation dF = 0,
i.e. with the traditional and not shared by us view-
point, that the EM -field can not exchange energy-

momentum with other physical objects through ∗F .

4 Differential equations for the field

We proceed to the main purpose, namely, to write
down differential equations for our object Ω, which
was chosen to model the EM -field. We shall work in
the orthonormal basis (e1, e2), where the field has the
form (6). The two vectors of this basis define two mu-
tually orthogonal subspaces {e1} and {e2}, such that
the space R2 is a direct sum of these two subspaces:
R2 = {e1} ⊕ {e2}. So, we have the two projection
operators π1 : R2 → {e1}, π2 : R2 → {e2}. These
two projection operators extend to projections in the
R2-valued differential forms on M :

π1Ω = π1(Ω1 ⊗ k1 + Ω2 ⊗ k2) = Ω1 ⊗ π1k1 + Ω2 ⊗ π1k2

= Ω1 ⊗ π1(ae1 + be2) + Ω2 ⊗ π1(me1 + ne2) = (aΩ1 +mΩ2)⊗ e1.
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Similarly,

π2Ω = (bΩ1 + nΩ2)⊗ e2.

In particular, if Ω is of the form (6), then

π1(F ⊗ e1 + ∗F ⊗ e2) = F ⊗ e1,

π2(F ⊗ e1 + ∗F ⊗ e2) = ∗F ⊗ e2.

Let now our EM -field Ω propagate in a region,
where some other continuous physical object (exter-
nal field, medium) also propagates and exchanges
energy-momentum with Ω. We are going to define
explicitly the local law this exchange obeys.

First we note that the external field is described
by some mathematical object(s). From this mathe-
matical object, following definite rules, reflecting the
specific situation under consideration, a new mathe-
matical object Ai is constructed and this new math-
ematical object participates directly in the exchange
defining expression. The EM -field participates in
this exchange defining expression directly through Ω,
and since Ω takes values in R2, then Ai must also
take values in R2.

We make now two preliminary remarks. First, all
operators, acting on the usual differential forms, are
naturally extended to act on vector valued differen-
tial forms according to the rule D → D × id. In

particular,

∗Ω = ∗(
∑
i Ωi ⊗ ei) =

∑
i(∗Ωi)⊗ ei,

dΩ = d(
∑
i Ωi ⊗ ei) =

∑
i(dΩi)⊗ ei,

δΩ = δ(
∑
i Ωi ⊗ ei) =

∑
i(δΩ

i)⊗ ei.

Second, in view of the importance of the expression
(5) for the divergence of the CED energy-momentum
tensor, we give its explicit deduction. Recall the fol-
lowing algebraic relations on the Minkowski space:

δp = (−1)p ∗−1 d∗ = ∗d∗,

δ∗p = ∗dp for p = 2k + 1,

δ∗p = − ∗ dp for p = 2k.

(8)

If α is a 1-form and F is a 2-form, the following re-
lations hold:

∗(α ∧ ∗F ) = −αµFµνdxν

= ∗ [(∗F ) ∧ ∗(∗α)] = 1
2 (∗F )µν(∗α)µνσdx

σ.

(9)
In particular,

∗(F ∧ ∗dF ) = 1
2F

µν(dF )µνσdx
σ

= ∗[δ ∗ F ∧ ∗(∗F )] = (∗F )µν(δ ∗ F )νdxµ.

Having in view these relations, we obtain consecu-
tively:

∇νQνµ = ∇ν
[

1
4FαβF

αβδνµ − FµσF νσ
]

= 1
2F

αβ∇νFαβδνµ − (∇νFµσ)F νσ − Fµσ∇νF νσ

= 1
2F

αβ
[
(dF )αβµ −∇αFβµ −∇βFµα

]
− (∇νFµσ)F νσ − Fµσ∇νF νσ

= 1
2F

αβ(dF )αβµ − Fµσ∇νF νσ = −(∗F )µν∇σ(∗F )σν − Fµν∇σFσν

= (∗F )µν(δ ∗ F )ν + Fµν(δF )ν .

Let now our field Ω interact with some other field.
This interaction, i.e. energy-momentum exchange,
is performed along 3 ”channels”. The first 2 chan-
nels are defined by the 2 (equal in rights) compo-
nents F and ∗F of Ω. This exchange is real in the
sense, that some part of the EM -energy-momentum
may be transformed into some other kind of energy-
momentum and absorbed by the external field or dis-
sipated. Since the two components F and ∗F are
equal in rights it is naturally to expect that the cor-
responding 2 terms, defining the exchange in a unit
4-volume, will depend on F and ∗F similarly. The
above expression for ∇νQνµ gives the two 1-forms

Fµν(δF )νdxµ, (∗F )µν(δ ∗ F )νdxµ

as natural candidates for this purpose. As for the

third channel, it takes into account a possible influ-
ence of the external field on the intra-field exchange
between F and ∗F , which occurs without absorption
of energy-momentum by the external field. The nat-
ural candidate, describing this exchange is, obviously,
the expression

Fµν(δ ∗ F )νdxµ + (∗F )µν(δF )νdxµ.

It is important to note, that these three channels are
independent in the sense, that any of them may be
active without the other two being active. A natural
model for such a situation is a 3-dimensional vec-
tor space K, where the three dimensions correspond
to the three exchange channels. The non-linear ex-
change law requires some K-valued non-linear map.
Since our fields take values in R2 this 3-dimensional
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space must be constructed from R2 in a natural way.
Having in view the bilinear character of ∇νQνµ it
seems naturally to look for some bilinear construc-
tion with the properties desired. These remarks sug-
gest to choose for K the symmetrized tensor product
Sym(R2 ⊗ R2) ≡ R2 ∨ R2, dim(R2 ∨ R2) = 3. So,

from the point of view of the EM -field, the energy-
momentum exchange term should be written in the
following way:

∗ ∨ (δΩ, ∗Ω). (10)

In fact, in the corresponding basis (e1, e2) we obtain

∗ ∨ (δΩ, ∗Ω) = ∗ ∨ (δF ⊗ e1 + δ ∗ F ⊗ e2, ∗F ⊗ e1 + ∗ ∗ F ⊗ e2)

= ∗(δF ∧ ∗F )⊗ e1 ∨ e1 + ∗(δ ∗ F ∧ ∗ ∗ F )⊗ e2 ∨ e2 + ∗(−δF ∧ F + δ ∗ F ∧ ∗F )⊗ e1 ∨ e2

= Fµν(δF )νdxµ ⊗ e1 ∨ e1 + (∗Fµν)(δ ∗ F )νdxµ ⊗ e2 ∨ e2

+ [Fµν(δ ∗ F )νdxµ + (∗Fµν)δF νdxµ]⊗ e1 ∨ e2.

This expression determines how much of the EM -
field energy-momentum may be carried irreversibly
over to the external field (the first and the second
terms) and how much may be redistributed between
F and ∗F by virtue of the external field influence in
a unit 4-volume.

Now, this same quantity of energy-momentum has
to be expressed by new terms, in which the external
field ”agents” should participate. Let’s denote by Φ
the first agent, interacting with π1Ω, and by Ψ the
second agent, interacting with π2Ω. Since the cor-
responding two exchanges are independent, we may
write the full exchange term in the following way:

∨(Φ, ∗π1Ω) + ∨(Ψ, ∗π2Ω). (11)

Clearly, Φ and Ψ are 1-forms on M with values in

R3. According to the local energy-momentum con-
servation law these two quantities have to be equal,
so we obtain

∨(δΩ, ∗Ω) = ∨(Φ, ∗π1Ω) + ∨(Ψ, ∗π2Ω). (12)

This is the basic relation in EED. It contains the
basic differential equations for the EM -field compo-
nents and may require additional equations, speci-
fying more precisely the properties of Ω and those
of the external field, i.e. the algebraic and differen-
tial properties of Ω, Φ and Ψ. The physical sense of
this equation is quite clear: local balance of energy-
momentum.

The coordinate free written relationship (12) is
equivalent to the following relations:

δF ∧ ∗F = α1 ∧ ∗F, δ ∗ F ∧ ∗ ∗ F = α4 ∧ ∗ ∗ F, (13)

δF ∧ ∗ ∗ F + δ ∗ F ∧ ∗F = α3 ∧ ∗ ∗ F + α2 ∧ ∗F,

or, in components

Fµν(δF )ν = Fµν(α1)ν , (∗F )µν(δ ∗ F )ν = (∗F )µν(α4)ν , (14)

Fµν(δ ∗ F )ν + (∗F )µν(δF )ν = (∗F )µν(α3)ν + Fµν(α2)ν .

Moving everything on to the left side, we get

(δF − α1) ∧ ∗F = 0, (δ ∗ F − α4) ∧ ∗ ∗ F = 0,

(δF − α3) ∧ ∗ ∗ F + (δ ∗ F − α2) ∧ ∗F = 0,

or in components
Fµν(δF − α1)ν = 0, (∗F )µν(δ ∗ F − α4)ν = 0,

Fµν(δ ∗ F − α2)ν + (∗F )µν(δF − α3)ν = 0.

Summing up the two equations

Fµν(δF )ν = Fµν(α1)ν , (∗F )µν(δ ∗ F )ν = (∗F )µν(α4)ν

we obtain
Fµν(δF )ν + (∗F )µν(δ ∗ F )ν = ∇νQνµ = Fµν(α1)ν + (∗F )µν(α4)ν .
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This relation shows that the sum

Fµν(α1)ν + (∗F )µν(α4)ν

is a divergence of a 2-tensor, which we denote by
−P νµ . In this way we obtain the local conservation
law

∇ν(Qνµ + P νµ ) = 0. (15)

Thus, we get the possibility to introduce the full
energy-momentum tensor

T νµ = Qνµ + P νµ ,

where P νµ is interpreted as interaction energy-
momentum tensor. Clearly, P νµ can not be deter-
mined uniquely in this way.

So, according to (14), for the 22 functions
Fµν , (α

i)µ we have, in general, 12 equations, and
these 12 equations are differential with respect to
Fµν and algebraic with respect to (αi)µ. Our pur-
pose now is to try to write down differential equa-
tions for the components of the 4 currents. The lead-
ing idea in pursuing this goal will be to establish a
correspondence between the physical concept of non-
dissipation and the mathematical concept of integra-
bility of Pfaff systems. The suggestion to look for
such a correspondence comes from the following con-
siderations.

Recall from the theory of the ordinary differen-
tial equations (or vector fields), that every solution
of a system of ordinary differential equations (ODE)
defines a local (with respect to the parameter on
the trajectory) group of transformations, frequently
called local flow. This means, in particular, that
the motion along the trajectory is admissible in the
two directions: we have a reversible phenomenon,
which has the physical interpretation of lack of losses
(energy-momentum losses are meant). Assuming this
system of ODE describes fully the process of motion
of a small piece of matter (particle), we assume at the
same time, that all energy-momentum exchanges be-
tween the particle and the outer field are taken into
account, i.e. we have assumed that there is no dissi-
pation. In other words, the physical assumption for
the lack of dissipation is mathematically expressed by
the existence of solution - local flow, having definite
group properties. The existence of such a local flow
is guaranteed by the corresponding theorem for ex-
istence and uniqueness of a solution at given initial
conditions. This correspondence between the math-
ematical fact integrability and the physical fact lack
of dissipation in the simple case ”motion of a parti-
cle” , we want to generalize in an appropriate way,
having in view possible applications in more com-
plicated physical systems, in particular, the physical
situation we are going to describe: interaction of the

field Ω with some outer field, represented in the ex-
change process by the four 1-forms αi. This will allow
to write down equations for αi in a direct way. Of
course, in the real world there is always dissipation,
and following this idea we are going to take into ac-
count its neglecting as conditions (i.e. equations) on
the currents. As is well known, mathematicians have
made serious steps towards studding and formulation
of criteria for integrability of partial differential equa-
tions, so it looks unreasonable not to use the available
and represented in an appropriate form mathemati-
cal results.

Remark. It is interesting, and may be suggestive,
to note the following . In physics we have two uni-
versal things: dissipation and gravitation. We are
going now to establish a correspondence between the
physical notion of dissipation and the mathematical
concept of non-integrability. As we know, the mathe-
matical non-integrability is measured by the concept
of curvature. General theory of Relativity describes
gravitation by means of Riemannian curvature. The
circle will close if we connect the universal property of
any real physical process with dissipation of energy-
momentum with the only known so far universal in-
teraction in nature: the gravitation.

First we note that our base manifold, where all
fields and operations are defined, is the simple 4-
dimensional Minkowski space. According to our
equations (12) the medium reacts to the field Ω by
means of the two R2-valued 1-forms Φ = α1 ⊗ e1 +
α2 ⊗ e2 and Ψ = α3 ⊗ e1 + α4 ⊗ e2. So, we obtain
four R-valued 1-forms α1, α2, α3, α4. Because of the
4-dimensions of Minkowski space it is easily seen that
only 1-dimensional and 2-dimensional Pfaff systems
may be of interest from the Frobenius integrability
point of view. All Pfaff systems of higher dimension
are trivially integrable.

The integrability equations for 1-dimensional
Pfaff systems are

dαi ∧ αi = 0, i = 1, 2, 3, 4. (16)

Every one of the 4 equations (16) is equivalent to 4
scalar nonlinear equations for the components of the
corresponding 1-form. We note, that the solutions
of (16), as well as the solutions of the general inte-
grability equations for a general p-dimensional Pfaff
system, determine a subspace, not just a collection
of 1-forms. So, having 1 completely integrable Pfaff
system (αi), i = 1, ..., p, we can obtain many ”new”
completely integrable Pfaff systems βi = f ji αj , where

f ji is a p× p non-degenerate matrix.

In the case of 2-dimensional Pfaff systems
(αi, αj), defined by four 1-forms, their maximal num-
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ber is 4.3/2 = 6. The Frobenius equations read

dαi ∧ αi ∧ αj = 0, i 6= j. (17)

We have here, in general, 12 nonlinear equations for
all the 16 components of αi, i = 1, 2, 3, 4. Clearly,
these equations (17) are substantial only if the corre-
sponding αi, the exteriour differential dαi of which
participates in (17), does not satisfy (16) or is not
zero.

Our assumption now reads:

Every 2-dimensional Pfaff system, defined by
the four 1-forms αi is completely integrable.

As we mentioned above, physically this assump-
tion means that we neglect the dissipation of energy-
momentum. In case of non-neglectable dissipation
the zero on the right hand side of (17) has to be re-
placed by a term, modeling the dissipation process.
Note also, that 1-dimensional nonintegrable Pfaff sys-
tems are admissible, which physically means, that if
there is some 1-dimensional nonintegrable Pfaff sys-
tem among the αi, e.g. α1, then the correspond-
ing dissipation of energy-momentum does not flow
out of the physical system and it is utilized by the
exchange processes, described by the remaining cur-
rents α2, α3, α4.

Finally we note, that (14) and (17) give, in gen-
eral, 24 equations for the 22 functions Fµν , (α)iµ,
which seem to be enough to obtain the dynamics
of the system at given initial condition. As for the
Maxwell’s theory, it corresponds to π2δΩ = 0 and
π1δΩ = 4π(Jfree+Jbound)⊗e1, i.e. α2 = α4 = 0 and
α1 = α3 = 4π(Jfree + Jbound).

In conclusion we note, that our concept of the
EM -field requires a simultaneous consideration of a
number of soliton-like solutions and, in particular, a
possible interaction (interference) among them. This
problem goes beyond the scope of this paper; it will
be considered elsewhere later.
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