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Is superluminal motion in relativistic Bohm’s theory observable?
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1 Introduction

In extending Bohm’s causal version of quantum
mechanics to the relativistic domain, one faces with
a serious difficulty. For bosonic wave functions, both
space-like four-momenta as well as time-like ones
are possible. This shows that if one accepts the
causal, particle interpretation of bosonic wave func-
tions, then, one must deal with particles moving
sometimes faster than light. This objection has lead
many authors to argue that a particle interpretation
of bosonic fields is not possible. They are fields rather
than particles – in contrast to the fermionic case in
which a causal, particle interpretation is acheivable.

This does not seems to us a reasonable argument.
First, because it can be shown that even for bosonic
fields it is possible to construct a time-like current
four-vector.[1] Second, we show in this letter that at
macroscopic separations (i.e. separations larger than
the de-Broglie wavelength of the particle) the veloc-
ity of the particle is less than that of the light – at
least under some conditions. Bohm has already men-
tioned this posibility[2]:
.... it is necessary to assume a basically non-Lorentz
invariant theory for the individual particles. Never-
theless this theory becomes Lorentz invariant where
nonlocal connections can be neglected. From this
we conclude that the manifest level of ordinary large
scale experience will be covariant in its behaviour. ....
the statistical laws of the quantum theory are covari-
ant. We emphasize again that there is Lorentz in-
variance in all of the domains of particle theory that
have thus far been investigated experimentally, but
these do not necessarily invalidate our assumptions
concerning the underlying level in which the order of
succession is unique.
In this paper we shall demonstrate this fact for
bosons.

2 Superluminal motion in the bosonic fields

First, we briefly review what happens in making
a causal, particle interpretation of the Klein-Gordon
equation. It can be easily shown that the Klein-

Gordon equation

( +m2)Φ = 0 (1)

is mathematically equivalent to the continuity equa-
tion

∂µ(R2∂µS) = 0 (2)

and the Hamilton-Jacobi equation

∂µS∂
µS = M2 (3)

where

M2 = m2 +
R

R
(4)

R =
√

ΦΦ∗ (5)

S = − i
2
ln

(
Φ

Φ∗

)
(6)

The four-momentum of the particle may be identi-
fied as −∂µS and the mass of the prticle as M . Since
M2 is not positive definite, one may encounter with
space-like four-momenta. To show such a possibil-
ity, we consider the following solution of the 1 + 1
dimensional Klein-Gordon equation[3]

Φ = N [exp(−imt) +A exp(−iωt+ ikx)] (7)

where
ω2 − k2 = m2 (8)

and A is a real constant, and N is the normaliza-
tion factor. The energy and momentum of a particle
guided by this wave function is

E = −∂S
∂t

=
1

R2

{
m+A2ω

+A(m+ ω) cos[(m− ω)t− kx]

}
(9)

P =
∂S

∂x
=

1

R2
Ak {A+ cos[(m− ω)t− kx]} (10)

The four-momentum is in many cases space-like, e.g.
for A = 2/ω, ω > 2 and cos[(m − ω)t − kx] = −1.
The velocity of the particle is

dx

dt
=
E

P
= Ak

A+ cos[(m− ω)t− kx]

m+A2ω +A(m+ ω) cos[(m− ω)t− kx]
(11)
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Defining
η = (m− ω)t− kx (12)

one has

dη

dt
=
m2 −A2 − (2ω2 −m2 −mω)−mω

m+A2ω +A(m+ ω) cos η
(13)

equation (11) clearly shows that the velocity may oc-
casionally be larger than unity. This fact, is shown in
figure for a typical trajectory dictated by (11). But
we claim that on the average the velocity is less than
one as can be seen in the figure and also by averaging
the relation (12)

<
dη

dt
>= 0 (14)

So

<
dx

dt
>= |m− ω

k
| =

√
ω −m
ω +m

< 1 (15)

Therefore on the average we can not see any faster
than light motion for this particular solution. In the
next section we shall prove this fact under some gen-
eral conditions.

3 The average velocity of a particle in the
causal, particle interpretation of the Klein-
Gordon equation

Now, we consider the general solution of the
Klein-Gordon equation

Φ =

∫
d3kf(~k) exp(−iωt+ i~k · ~x) (16)

where
ω2 − |~k|2 = m2 (17)

We show, by two methods, that the observed velocity
is less than unity under suitable conditions.

(a)–From the relation (5) and (6) we have for the
solution (15)

∂µS = 1
2R2

∫
d3kd3k′f(~k)f∗(~k′)×

exp[−i(ω − ω′)t+ i(~k − ~k′) · ~x]{kµ + k′µ}
(18)

R2 =

∫
d3kd3k′f(~k)f∗(~k′) exp[−i(ω−ω′)t+i(~k−~k′)·~x]

(19)

Now suppose that the k-space wave function f(~k)

is localized in the region |~k| ≤ κ, and assume that
we are at a distance x, larger than 1/κ. The inte-

grals in (17) and (18) then exist only when ~k ∼ ~k′.
Otherwise, the integrand oscilates rapidly and on the
average leads to zero. Thus we have

∂µS →
1

R2

∫
d3k|f(~k)|2kµ (20)

R2 →
∫
d3k|f(~k)|2 (21)

The velocity is then

dxi
dt

= − ∂S/∂xi
∂S/∂t

=

∫
d3k|f(~k)|2ki∫
d3k|f(~k)|2ω

(22)

Noting that the integrand in the denominator is al-
ways less than the absolute value of the integrand in
the numerator, i.e.

|f(~k)|2ω > |f(~k)|2|ki| (23)

we conclude that

|dxi
dt
| < 1 (24)

(b)–Consider the case of 1+1 dimensional solu-
tion. The energy and momentum densities is defined
for an ensamble of particles as

E = −R2 ∂S
∂t = 1

2

∫
dkdk′f(k)f∗(k′)

exp[−i(ω − ω′)t+ i(k − k′)x]{ω + ω′}
(25)

P = R2 ∂S
∂x = 1

2

∫
dkdk′f(k)f∗(k′)

exp[−i(ω − ω′)t+ i(k − k′)x]{k + k′}
(26)

The averages of E and P over a long time interval
(−T/2, T/2) are

< E >→ 2π

T

∫
dk|f(k)|2ω

2

k
(27)

< P >→ 2π

T

∫
dk|f(k)|2ω (28)

If we define the average velocity as the ratio of < P >
and < E > then, we have

< P >
< E >

=

∫
dk|f(k)|2ω∫
dk|f(k)|2 ω2

k

< 1 (29)

The conclusion is that at least under the above
conditions (i.e., localization of f(~k) and separations

larger than the inverse of bandwidth of f(~k), or for
long time intervals), the observed velocity of the par-
ticle is less than that of light.
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