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Partial decoupling of electrodynamics
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ABSTRACT. We discuss a reformulation of the electrodynamics of a Dirac spinor field, ψ, coupled to the
electromagnetic field, Aµ, in a formalism in which covariant Green functions are used to express Aµ in terms
of ψ in the Lorentz gauge. This leads to a non-local fermion self-coupling interaction. The quantized version
of this reduced theory is discussed.

RÉSUMÉ. On étudie une reformulation de l’électrodynamique d’un champ spinoriel de Dirac, ψ, couplé à un
champ électromagnétique, Aµ, dans un formalisme dans lequel les fonctions de Green covariantes sont utilisées
pour exprimer Aµ en fonction de ψ dans la jauge de Lorentz. Cela conduit à une interaction d’auto-couplage
d’un fermion non local. On discute la version quantifiée de cette théorie réduite.

1. Introduction.

It is now almost a cliché to say that quantum
electrodynamics (QED) is the most accurate theory
known, since it predicts such things as the magnetic
moment of the electron to an accuracy of better than
one part in a million. QED is the quantized (or ’sec-
ond quantized’) theory of the Dirac spinor field, rep-
resenting spin one-half fermions, interacting with a
massless real vector field, the electromagnetic field
(EM). It is based on the Lagrangian of classical elec-
trodynamics (CED), namely

LED = ψ(x) (i γµDµ −m)ψ(x)− 1

4
Fαβ(x)Fαβ(x),

(1)
where, as usual, ψ is a Dirac spinor and Fαβ =
∂αAβ − ∂βAα, with Aα being the EM field. We use
the standard notational conventions in eq. (1), with
Dµ = ∂µ + iqAµ, and h̄ = c = 1. CED and so QED
are among the simplest examples of gauge theories
that can be written down.

The classical, or Euler-Lagrange, equations of
motion for this theory, obtained from the stationary
action principle

δ S(Aµ, ψ) = δ

∫
LED d4x = 0, (2)

are the well-known coupled Dirac-Maxwell equations

(iγµ∂µ −m)ψ(x) = q γµAµ(x)ψ(x), (3)

and

∂µF
µ ν(x) = q ψ(x)γνψ(x). (4)

These “classical” equations of motion for ED are fre-
quently written down (e.g. ref. [1]) but their solution
is not often discussed, since most works go on to dis-
cuss the quantized version of this theory. Yet, as
Jackiw has pointed out [2], classical field theories are
both relevant to quantum field theory and interest-
ing in themselves. In this paper we discuss a partially
decoupled formulation of this theory in the Lorentz
gauge, and consider the consequences of this decou-
pling for the (second) quantized version.

2. Partial reduction of electrodynamics.

We begin by recalling some well-known, but per-
tinent for our discussion, characteristics of ED. The
gauge invariance of ED allows one to choose a gauge
in which the equations of motion can be written in a
more convenient form. Thus, in the Lorentz gauge,
∂µA

µ = 0, equation (4) is modified to the form

∂µ∂µA
ν = q ψ(x)γνψ(x). (5)

These Lorentz gauge equations (3) and (5) for ED
are derivable from the action principle (2) but with
a modified Lagrangian density, namely

LLGED = ψ(iγµDµ −m)ψ − 1

2
∂µAν∂

µAν . (6)
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Henceforth we shall employ the Lorentz gauge only
and shall, therefore, suppress the superscript LG of
eq. (6) in all that follows.

As is well known from electromagnetic theory
(e.g. ref. [3]) the Maxwell equation (5) can be solved
formally to yield the result

Aν(x) = Aν0(x) + q

∫
d4x′D(x− x′) ψ(x′)γνψ(x′),

(7)
where Aν0(x) is a solution of the homogeneous (or
“free field”) equation (5) with q = 0, i.e. such that
∂µ∂

µAν0(x) = 0, while D(x − x′) is an appropriate
Green function, defined as a solution of

∂µ∂
µD(x− x′) = δ4(x− x′). (8)

Note that this formal solution holds for classical
fields, and also for quantized fields, where the field
amplitudes are operators. We recall that equation (8)
does not define the Green function uniquely, since any
solution of the homogeneous equation can be added
to it without invalidating eq. (8). Boundary con-
ditions and physical considerations are used to pin
down D(x − x′). For example, in conventional QFT
the Feynman prescription is used (e.g. refs. [1] and
[3]), and D(x−x′) is then called the Feynman propa-
gator. Recall that Green functions corresponding to
advanced and retarded fields are

Dret(x− x′) =
1

2π
θ(t− t′)δ((x− x′)2)

=
1

4π|x− x′|
δ(t− t′ − |x− x′|),

(9)

and

Dadv(x− x′) =
1

2π
θ(t′ − t)δ((x− x′)2)

=
1

4π|x− x′|
δ(t− t′ + |x− x′|),

(10)

where θ(u) = 1 if u > 0 and θ(u) = 0 if u < 0, as
usual. A symmetric Green function, usually called
the principal-value Green function, is

D(x− x′) = D(x′ − x) =
1

2
(Dret +Dadv)

=
1

4π
δ((x− x′)2).

(11)

The Feynman propagator is also symmetric. Its ex-
plicit representation in coordinate space is

DF (x− x′) =
1

4π
δ((x− x′)2)− i

4π2(x− x′)2
, (12)

which is just the principal value form with an extra
term that is a solution of the homogeneous equation

( (5) with q = 0). (Differences among the Green
functions are solutions of the homogeneous equation.)

Substitution of the formal solution (7) into (3)
yields the equation

(iγµ∂µ −m)ψ(x) = qγµA
µ
0 (x)ψ(x)

+ q2
∫
d4x′D(x− x′)ψ(x′)γµψ(x′)γµψ(x),

(13)
where Aµ0 (x) is a (known) solution of the free (q = 0)
equation (5). Equation (13) is a covariant Dirac equa-
tion with a nonlinear and nonlocal ‘self-coupling’ in-
teraction. As such, it is not easy to solve and, to
our knowledge, no exact (analytic or numeric) solu-
tions of equation (13) have been reported in the lit-
erature, though approximate, particularly iterative,
solutions have been discussed by various authors, par-
ticularly Barut and co-workers (see ref. [4] and cita-
tions therein).

It is straightforward to write down a Lagrangian
for the decoupled equation (13), such that this equa-
tion is obtained from the action principle (2). Thus,
for symmetric Green functions, G(x−x′) = G(x′−x),
the Lagrangian corresponding to eq. (13) is

L = ψ(x)(iγµ∂µ −m− qγµAµ0 (x))ψ(x)

− 1

2
q2
∫
d4x′D(x− x′)ψ(x′)γµψ(x′)ψ(x)γµψ(x).

(14)
This has the structure of a Lagrangian density for a
Dirac field in the presence of a given free EM field
Aµ0 (x), and with an interaction term that is reminis-
cent of the static Coulomb interaction in the Coulomb
gauge (e.g. ref. [1], p. 88), except that it is not static.
Indeed, it is covariant and includes relativistic (“re-
tardation”) effects.

Stationary solutions of equation (13), with

ψ(x) = φ(r)e−iEt,

require that φ(r) satisfy the time-independent equa-
tion(

− i→α ·∇+mγ0 + qγ0γµA
µ
0 (r)

+
q2

4π

∫
d3r′

φ(r′)γµφ(r′)γ0γµ

|r′ − r|

)
φ(r)

= Eφ(r),
(15)

which exhibits a nonlocal static self-coupling term.
Note that this static self-coupling interaction is not
purely Coulombic, since

φ(r′)γµφ(r′)γ0γµ

|r′ − r|
=
φ†(r′)φ(r′)− φ†(r′) →α φ(r′)· →α

|r′ − r|
.

(16)
The second term on the right of eq. (16) is a rela-
tivistic “correction” to the Coulomb term.
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3. Quantization.

The Lagrangian of eq. (14) can serve as the ba-
sis for a quantized field theory, using any formula-
tion (canonical, light-front, path integral, etc.). Such
(second) quantization is needed for many-body gen-
eralizations and for the incorporation of particles-
antiparticle phenomena. We note that the reformu-
lated QED based on the Lagrangian (14) (with its
nonlocal self-coupling) is renormalizable, which is not
generally the case with locally self-coupled fermion
fields in 3 + 1 dimensions, such as that considered by
Heisenberg [5].

The Hamiltonian density corresponding to the
Lagrangian density (14) takes the form

H = H0
ψ +H(1)

I +H(2)
I

= ψ†(x)(−i →α ·∇+mβ)ψ(x) + qψ(x)γµA
µ
0 (x)ψ(x)

+
1

2
q2
∫
d4x′D(x− x′)ψ(x′)γµψ(x′)ψ(x)γµψ(x),

(17)
where D(x − x′) = D(x′ − x). (We suppress the
Hamiltonian of the free EM field.)

In conventional canonical S-matrix perturbation
theory, the time-evolution operator,

U =
∑
n

(−1)n

n!

∫
d4x1...d

4xn T (HI(x1)...HI(xn)),

(18)
involves two interaction terms,

H(1)
I = qψ(x)γµA

µ
0 (x)ψ(x), (19)

and

H(2)
I =

1

2
q2
∫
d4x′D(x−x′)ψ(x′)γµψ(x′)ψ(x)γµψ(x).

(20)
The second term contains the covariant photon prop-
agator and contributes to processes represented by
Feynman diagrams without any external photon lines.
The first term (eq. (19)), which is linear in the pho-
ton field Aµ0 (x), contributes to processes not repre-
sented by (20), specifically diagrams with external
photon lines.

Since the Lorentz gauge is assumed in the present
formulation, care must be taken to ensure that the
gauge condition, ∂µA

µ = 0, is accounted for. This
can be done through the Gupta-Bleuler prescription
in which the condition 〈χ|∂µAµ|χ〉 = 0 is imposed on
the states |χ〉 under consideration (see, for example,
ref. [6], sect. 3.2).

As is well known, QED has infrared divergences
which appear in intermediate steps of calculations
of observables, due to the fact that the photons are

massless. One standard way to regulate such diver-
gences is to add to the Lagrangian (1) or (6) a mass
term of the form

1

2
µ2Aν(x)Aν(x), (21)

where the mass parameter µ is ultimately set to zero.
The inclusion of (21) modifies equation (5) and (8) in
that the operator ∂ν∂ν is replaced by ∂ν∂ν+µ2. This
leads to a corresponding modification of the Green
functions from “massless” to “massive” form. Ex-
plicitly, in the integral representation, this is

D(µ)(x− x′) =

∫
d4k

(2π)4
e−ik·(x−x

′) 1

µ2 − k · k
, (22)

where the “massless” case corresponds to µ = 0. Ev-
idently, this regularization scheme, if used, leads to
no difficulties in the reduced theory, since one needs
only to replace D by D(µ) in expressions like (14) and
(17).

Apart from perturbation theory, the Hamilto-
nian (17) is also amenable to variational solution for
two-body (or more) bound states, as has been demon-
strated on the case of the static Coulomb interaction
[7-11]. However, the reduction of the eigenvalue equa-
tions in this case leads to modified potentials (kernels,
in momentum space), because of the relativistic na-
ture of the interaction.

4. Concluding remarks.

We have examined partially reduced electrody-
namic field theory in the Lorentz gauge, in which the
electromagnetic field amplitudes, Aµ, are expressed
in terms of the fermion amplitudes, ψ, using covari-
ant Green functions. The resulting equation for the
fermion field, ψ, is a Dirac equation with nonlin-
ear and nonlocal self-coupling. The formalism is co-
variant and the interaction includes relativistic (“re-
tardation”) effects. The Lagrangian corresponding
to this nonlinear fermion equation leads to a refor-
mulated QED with interactions that are analogous
in structure to conventional QED in the Coulomb
gauge, except that in this case they involve mani-
festly covariant expressions.

Acknowledgement.

The financial support of the Natural Sciences
and Engineering Research Council of Canada for this
work is gratefully acknowledged.

References

[1] J. D. Bjorken and S. D. Drell, Relativistic Quantum
Fields (McGraw Hill, New York, 1965).

[2] R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).
[3] A. O. Barut, Electrodynamics and Classical The-

ory of Fields and Particles (Dover, New York, 1980)
IV.4.



Partial decoupling of electrodynamics 73

[4] W. T. Grandy, Jr., Relativistic Quantum Mechanics
of Leptons and Fields (Kluwer, Dordrecht, 1991).

[5] W. Heisenberg, Introduction to the Unified Field
Theory of Elementary Particles (John Wiley, New
York, 1966).

[6] C. Itzykson and J.-C. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).

[7] R. Koniuk and J.W. Darewych, Phys. Lett. B176,
195 (1986).

[8] W. Dykshoorn, R. Koniuk and R. Muñoz-Tapia,
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