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Wave propagation in a generalized Minkowski space and superluminal signals
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ABSTRACT. Tunnelling of wavepackets at velocities higher than the light speed in vacuum finds a natural
explanation in the framework of a generalization of special relativity, in which nonlocal interactions are de-
scribed in an effective way by means of a deformation of the usual Minkowski metric. This picture can be
considered as an effective description of ”virtual” particles (propagating with imaginary ”classical” wavevector
in the usual spacetime) as objects which propagate in the deformed Minkowski space with a ”new”, but real,
wavevector. Our formalism is explicity applied to the superluminal propagation of electromagnetic evanescent
waves in waveguides. We propose also an experimental setup, based on light propagation in optical fibers,
which may provide a new optical test of e.m. superluminal tunneling.

1 - Introduction

The problem of the range of validity of the
usual special Relativity (SR), based on the pseudo
- Euclidean Minkowski space and its related Lorentz
group of transformations, is, as well known, a much
debated question since a long time.

Although generalizations of SR have been con-
sidered also at a large-scale level (in order e.g. to
account for the existence of the preferred reference
frame represented by the relic background radiation),
the most interesting issue seems to be the modifica-
tion of SR at high energies and/or at small distances,
in order to overcome the difficulties encountered in
recounciling SR and quantum mechanics(1).

In this connection, in the last years an exten-
sion of special Relativity has been developed(2,3), es-
sentially aimed to describe, in an effective way, in-
teractions structurally more general than the usual
(local and derivable from a potential) ones. Such a
formalism was named ”deformed Special Relativity”
(DSR), because basically based on a ”deformation”
of the usual Minkowski metric. Among the others,
the DSR predicts a deviation of the particle lifetime
from the usual Einsteinian behaviour(3,4), and per-
mits to accomodate in a natural way the existence of
superluminal causal speeds. Moreover, it is also able
to account for possible nonlocal effects in electromag-
netic interactions.

In this paper, we want to investigate the prob-
lem of wave propagation in the deformed Minkowski
spacetime of DSR. As we shall see, the tunnelling
of wavepackets at speeds higher than the light speed
in vacum finds, in this framework, a natural expla-
nation. This allows one, among the others, to give

an effective description of ”virtual” particles (propa-
gating with imaginary ”classical” wave vector in the
standard spacetime) as objects propagating in the
deformed Minkowski space with a ”new”, but real,
wavevector.

The paper is organized as follows.In section 2, we
provide the basic elements of DSR, as its axiomatic
foundations and the generalization of the Lorentz
transformations. The wave propagation in the de-
formed Minkowski space is discussed in sect. 3. Sect.
4 contains the physical analysis of the results ob-
tained.

2 - Special Relativity in a deformed Minkowski
space

Let us briefly review the main aspects of DSR.
Its very foundation starts from an axiomatic formu-
lation of the standard special relativity, whose basic
postulates can be stated as follows(5):

1 - Space-time properties: Space and time are homo-
geneous and space is isotropic.

2 - Principle of Relativity: All physical laws must
be covariant when passing from an inertial reference
frame K to another frame K ′, moving with constant
velocity relative to K.

Let us notice that in the second postulate it is
clearly understood that, for a correct formulation of
SR, it is necessary to specify the total class, CT , of the
physical phenomena to which the relativity principle
applies(∗).1 Depending on the explicit choice of CT ,
one gets a priori different realizations of the theory of

1 The importance of such a specification is easily seen if one thinks that, from an axiomatic view-
point, the only difference between galileian and einsteinian relativities just consists in the choice of
CT (i.e. the class of mechanical phenomena in the former case, and of mechanical and electromag-

netic phenomena in the latter).
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relativity (in its abstract sense), each one embedded
in the previous. Of course, the principle of relativity,
together with the specification of the total class of
phenomena considered, necessarily implies, for con-
sistency, the unicity of the transformation equations
connecting inertial reference frames.

It is possible to show that, from the above two
postulates, there follow - without any additional hy-
pothesis - all the usual ”principles” of SR, i.e. the
”principle of reciprocity”, the linearity of transfor-
mations between inertial frames, and the invariance
of light speed in vacuum(5).

Concerning this last point, it can be shown in
general that postulates 1 and 2 above imply the ex-
istence of an invariant, real quantity, having the di-
mensions of the square of a speed(5), whose value
must be experimentally determined in the framework
of the total class Cτ of the physical phenomena(∗∗).2

Such an invariant speed depends on the interactions
involved in the physical procees considered. There-
fore, there is, a priori, an invariant speed for every
interaction, namely, a maximal causal speed for ev-
ery interaction. In the following, we shall denote by
u this invariant, maximal causal speed, without any
reference to the interaction concerned.

All the formal machinery of SR in the Ein-
steinian sense (including Lorentz transformations
and their implications, and the metric structure of
space-time) is simply a consequence of the above two
postulates and of the choice, for the total class of
phenomena CT , of the class of mechanical and elec-
tromagnetic phenomena.

The basic assumption of DSR is that, in order
to include the class of nuclear and subnuclear phe-
nomena in the total class of phenomena for which
special relativity holds true, it is necessary to con-
sider a generalization of the usual Minkovski metric
gµν = diag(1,−1,−1,−1) (analogously to the gener-
alization from the euclidean to the Minkowski metric
in going from mechanics to electrodynamics). The
generalization of gµν assumed in DSR(2) is the fol-
lowing ”deformation” of the Minkowski metric

g → η;

η = diag(b20,−b21,−b22,−b23), (1)

where the parameters bµ(µ = 0, 1, 2, 3) are, in gen-
eral, real and positive functions of the observables
characterizing the system (in particular, of its to-
tal energy).We shall denote by M̃ the deformed
Minkowski space endowed with the metric structure
(1).

Metric (1) is assumed to provide a local repre-
sentation, in average, of the effects of the interac-
tions involved in the physical system considered(2,3).

In general, such interactions can be structurally very
general, including e.g. nonlocal (and/or nonpoten-
tial) terms (weak and strong forces, as is well known,
do not admit a potential).

Due to their physical meaning, the parameters
bµ play a dynamical rôle, and represent, for nonlo-
cal (nonpotential) interactions, what the Hamilto-
nian represents for a local (potential) interaction. In
particular, the b′µs as well are not an input of the
theory, but must be built up from the experimental
knowledge of the physical data of the system (con-
cerned in analogy with the specification of the Hamil-
tonian of a potential system). Moreover, it is clear
that there exist infinitely many deformations {M̃} of
the Minkovski space M, corresponding to the differ-
ent possible choices of the parameters bµ.

The generalized interval in M̃, corresponding to
the metric tensor (1), is therefore given by

x̃2 = x ∗ x = xµ η
µν(E) xν

= b20(E)c2t2 − b21(E)x2 − b22(E)y2 − b23(E)z2.
(2)

where E is the energy of the process considered.

Let us notice that actually the deformed Minkow-
ski space M̃ has zero curvature, as it is easily seen
remembering that, in a Riemann space, the scalar
curvature is constructed from the derivatives, with
respect to space-time coordinates, of the metric ten-
sor. In others words, the space M̃ is intrinsically flat
- at least in a mathematical sense. Namely, it would
be possible, in principle, to find a change of coordi-
nates, or a rescaling of the lengths, so as to recover
the usual Minkowski space. However, such a possi-
bility is only a mathematical, and not a physical one.
This is related to the fact that the energy of the pro-
cess is fixed, and cannot be changed at will. For that
value of the energy, the metric coefficients do possess
values different from unity, so that the corresponding
space M̃ , for the given energy value, is actually dif-
ferent from the Minkowski one. The usual spacetime
M is recovered for a special value E0 of the energy
(characteristic of any interaction), such that indeed
η(E0) = g = (1,−1,−1,−1) (see the phenomenolog-
ical analysis of ref.[3]).

Actually, the deformed Minkowski space M̃ can
be regarded as a subspace of a five-dimensional, gen-
uine Riemannian manifold, with energy as fifth di-
mension (see refs. [6]). The deformation (1) of the
spacetime metric requires a modification of the pos-
tulates 1-2 of SR. So, the new basic postulates of DSR
read as follows (2,3):

1) deformed ”inertial” frame is a reference frame
in which space-time is homogeneous, but space is not
necessarily isotropic;

2 The invariant speed is obviously ∞ for Galilei’s relativity, and c for Einstein’s relativity.
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2) ”generalized principle of relativity”, or princi-
ple of metric invariance” all physical measurements
within every deformed ”inertial” frame must be car-
ried out via the same metric

The first kinematical consequence of the gener-
alized interval (2) just concerns the maximal causal
speed in M̃ . Let us consider the infinitesimal interval

ds̃2 = b20c
2dt2 − b2k(dxk)2 (3)

(k = 1, 2, 3). Assuming, for simplicity, an isotropic
tridimensional space (i.e. bk = b∀k), we get, for null
separation ds̃2 = 0:

b2(dx2 + dy2 + dz2) = b20c
2dt2 (4)

or ( 1

dt2

)
(dx2 + dy2 + dz2) =

(b0
b

)2

c2 (5)

From. eq. (5) it easily follows that

u =
(b0
b

)
c (6)

i.e. a maximal causal speed u (whose value is param-
etrized by c) which depends on the physical system
(and its interactions). Moreover, it is

u
≥
<
c according to

b0
b

≥
<

1. (7)

In other words, there may be maximal causal
speeds superluminal, depending on the interaction
considered. The maximal causal speed u can be in-
terpreted, from a physical standpoint, as the speed of
the quanta of the interaction which requires a repre-
sentation in terms of a generalized Minkowski space.
Therefore, such quanta must be zero-mass particles,
in analogy with photons in the usual SR (at least
inside the deformed spacetime region).

In order to check that u is actually an invariant
speed, we need the explicit expression of the gener-
alized Lorentz transformations, i.e. the transforma-
tions leaving the interval (2) invariant.

The new boosts (for motion, say, along the x-
axis) can be expressed as(2)

x′ = γ̃(x− βx0);

y′ = y; z′ = z; (8)

x′0 = γ̃(x0 −
β̃2

β
x),

where β = v/c (v being the relative speed of the
reference frames) is the usual speed parameter, and
(∗) 3

β̃ = β
b1
b0

; (9)

γ̃ = (1− β̃2)−1/2. (10)

Let us notice, that assuming an isotropic three-
space, and recalling expression (6) for the maximal
causal speed in the deformed Minkowski space, the
generalized speed parameter β̃ can be written in the
more perspicuous form(2)

β̃ =
v

u
. (11)

As already stressed above, it can be u > c and there-
fore speeds v such that c < v < u are allowed. In
other words, we can have tachionic motion (at least
within suitable space-time regions), without any need
of formal extensions of special relativity (like that
considered in [5]). Indeed, on account of (11), the
function γ̃(v) can never assume imaginary values, and
therefore, in this framework, the possibility of super-
luminal velocities is achieved without any recourse to
neither imaginary quantities nor singularities in the
transformation laws. In other words, when u > c,
the interaction quanta (which, as already noted, are
massless particles travelling at speed u) can transfer
to particles with rest mass m0 6= 0 an impulse such to
give them a speed higher than c, without at the same
time giving them an imaginary mass m0γ̃. Let us also
notice that such a superluminal propagation occurs
only locally (in the space-time region corresponding
to the physical system or process considered), and
therefore no problem of global causality violation is
expected to arise.

From eqs. (8) there easily follow the transforma-
tion laws for velocity:

v′x =
vx − v
1− vvx

u2

; v′y =
vy

γ̃(1− vvx
u2 )

; v′z =
vz

γ̃(1− vvx
u2 )
(12)

and, therefore, the generalized velocity composition
law, that reads (for an isotropic 3-space):

V =
v1 + v2
1 + v1v2

u2

(13)

The invariant character of the maximal speed u then
easily follows by putting one of the speeds (say, v1)
equal to u:

V =
u+ v2
1 + uv2

u2

=
u+ v2
1 + v2

u

= u (14)

If we now give up the condition of spatial
isotropy, the composition law for motion, say, along
the xk-axis, becomes

V =
v1 + v2
1 + v1v2

u2
k

; uk =
cb0
bk

(15)

3 Let us notice that the transformations (8) do formally coincide with the “isotopic Lorents trans-
formations” introduced by Santilli in [7]. However, in the context of DSR their physical meaning is
rather different; in particular, no reference at all is made, in such a framework, to the existence of
an underlying “medium”. See refs.[2,3] for a more detailed discussion.
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and, therefore, the speed that has as invariant char-
acter is

uk =
cb0
bk
. (16)

It follows that, in a given deformed Minkowski space,
there exist infinitely many different, maximal causal
speeds, corresponding to the different possible direc-
tions of motion (although, of course, only three of
them are independent). Clearly, this result is a strict
consequence of the spatial anisotropy of the space-
time region considered. Let us notice that there is
indeed a phenomenon - the Bose-Einstein correlation
- which can be fully described in the framework of a
deformed Minkovski space, but with the consequence
of a local loss of space isotropy(8).

Further details and implications of the deformed
theory of relativity can be found in refs. [2,3, 8]. To
our present aims, let us notice that, although the for-
malism illustrated above has been essentially derived
in order to deal with interactions structurally more
general than the standard ones, it can be applied to
all those processes in which nonlocal effects are ex-
pected to play a role. Then, according to the above
discussion (see eqs. (6), (7)), it is expected that, in
all physical phenomena where nonlocal effects occur,
field wavepackets may propagate faster than light in
vacuum.

3 - Wave propagation in DSR

Figure 1. Experimental setup of the Cologne experi-
ment. L = length of the smaller waveguide; a = width of
the smaller waveguide; A = width of the larger waveguide
(after ref.[9]).

We want now to discuss wave propagation in a
deformed Minkowski spacetime. In order to eluci-
date the connection between the formalism of DSR
and the tunnelling through a barrier, we shall con-
sider, in analogy with the electromagnetic case, the
propagation of a field inside a waveguide.

We consider, in particular, a rectangular waveg-
uide with variable section, schematically pictured in
Fig.1. We have taken the axis of the waveguide as
the z-axis of our spatial frame.

In the DSR formalism, the field propagating in-
side the smaller waveguide, given by(3)

Ej(x
µ) = Aj(x

i)eik̃x (17)

(i, j = 1, 2, 3, with k̃µ = (k̃x, k̃y, k̃z, ω/c) being the
wavevector inside the smaller waveguide), satisfies
the generalized Helmholtz D’Alembert wave equation

˜ Ej = 0 (18)

where the generalized d’Alambertian operator explic-
itly reads

˜ ≡ ∂∗∂ = b21∂
2
x + b22∂

2
y + b23∂

2
z −

b20
c2

(19)

For simplicity, we consider a TE10 mode. Then, it is
Ex = Ez = 0 and Ey can be written as

Ey(x, z, t) = g(x)e(ik̃z z−ωt) . (20)

Therefore the generalized Helmholtz wave equation
(18, 19) becomes

b21∂
2
xEy + b23∂

2
zEy =

1

c2
∂2tEy. (21)

Replacing (20) in (21) we get the following equation
for g(x):

b21∂
2
xg +

b4ω
2

c2
g − b23 k̃2zg = 0 (22)

whose solution is

g(x) = Acos(k̃xx) +Bsin(k̃xx) (23)

with

k̃2x =
b20 ω

2

c2
− b23 k̃2z . (24)

Imposing the boundary condition Ey = 0 for x = 0, a
(where a is the width of the smaller waveguide: see
Fig.1), we find

k̃x =
mπ

a
(25)

(m integer). In our case m = 1, so that k̃x = π/a.
Moreover, on account of the mode involved, we can
assume partial spatial isotropy inside the smaller
waveguide, i.e. b21 = b23. Then, eq.(24) yields the
following expression of k̃2z :

k̃2z = (2π/c)2[(
b20
b23

)ν2 − ν2c ] (26)

where ω = 2πν and

ωc =
πc

a
= 2πνc. (27)

We can also assume (without loss of generality)
that the barrier crossing does not affect time, so that
b20 = 1 (isochronism hypothesis). Therefore we get

k̃2z = (2π/c)2[(
1

b3
)2ν2 − ν2c ] (28)
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.

From eq.(28) it immediately follows that we
obtain a real wavevector inside the barrier region
(smaller waveguide), k̃2z > 0, provided that( 1

b23

)
>

(νc
ν

)2
. (29)

4 - Physical discussion

Let us analyze the results of the previous section
from a physical point of view. Two points must be
stressed. First, if we introduce the speed along z, uz,
as

uz =
b0
b3
c =

c

b3
(30)

(in the isochronism hypothesis b20 = 1), it can be
shown that the generalized wavevector k̃z is imag-
inary for nonlocal subluminal velocities (uz < c)
and real for superluminal velocities (uz > c) (for
uz = c, the deformed metric η reduces to the usual
Minkowskian one). In other words, an evanescent
mode in the usual Minkowski space is described as a
non-evanescent one, with a real wavevector, propa-
gating at superluminal speed in the nonlocal deformed
Minkowski space. This is why we can refer to condi-
tion (29) as the superluminality condition.

Secondly, the same formalism, used in the case
of barrier crossing, can be exploited to describe ”vir-
tual” objects, i.e. fields whose propagation wavevec-
tor is imaginary (like mesons, photons, and, in gen-
eral, the virtual boson particles which are the carriers
of fundamental interactions).

Then, the violation of energy conservation, ex-
pressed by the time-energy uncertainty principle for a

time interval ∆t
>∼ h̄/∆E, can be interpreted, in such

a framework, as the time during which the Minkowski
space is locally deformed, in order to permit the field
propagation at superluminal speeds under the condi-
tions whereby the field is regarded as a virtual object.
Indeed, it is possible to see that the superluminal ef-
fects are connected to the square of the field compo-
nent along the wavevector direction, as we found by
the analysis of the statical equilibrium of an elemen-
tary charge producing a Columb - like field.

Lastly, let us notice that our formalism of wave
propagation in DSR can be also exploited in order to
provide an effective description of the recent exper-
imental findings on propagation of electromagnetic
wavepackets at superluminal group velocities(9−11).
Indeed, although such results already find a natural
explanation in the framework of the standard electro-
magnetic theory(12), their interpretation involves a
mechanism of pulse reshaping which can be regarded
as due to nonlocal effects. On the basis of our discus-
sion above, such effects can be described in terms of
an effective deformation of the Minkowski spacetime.

A detailed discussion of the superluminal prop-
agation of electromagnetic wavepackets in terms of
a spacetime deformation inside a waveguide can be
found in ref. [13]. It has been shown, among others,
that such a propagation can be described by means
of a deformation tensor (analogous to the stress ten-
sor in a continuous medium). Here, we want only to
stress some points concerning the results of the pre-
vious section and directly connected to the data of
the Cologne experiments(9).

First of all, let us notice that the superluminal
condition (29) is indeed satified by the parameter val-
ues of the Cologne experiments (with (νc/ν)2 = 1.2).

Figure 2. a) Plot of the trasmission velocity L/tc vs the length L of the smaller waveguide (after ref. [9]).
b) Plot of the electromagnetic metric parameter b23(E) vs. the energy of the output signal.



178 F.Cardone and R.Mignani

Moreover, the analysis of the experimental data
[9] allows us to get the functional dependence of the
metric parameter b23 on the energy. This can be done
by using the expression of the energy, in the TE10

- like mode, of the output signal from the smaller
waveguide of length L:

E = hν e−L/Lo (31)

where

Lo =
( c

2π

)
(ν2c − ν2)−1/2 (32)

(ν < νc). Then, by using the experimental value of

the relevant parameters of ref.[9] (cf. Fig. 2a), we

get the plot of b23(E) pictured in Fig. 2b.

Figure 3. Twin photon interferometer with optical waveguides. The two mirrors have the same features. The optical
waveguides 1 and 2 have the same length L1 = L2 = L, while the former one presents a central part of variable length
`, whith reduced section d < D. It is easily seen that the waveguide 1 is the optical analogous of the electromagnetic
waveguide of the Cologne setup.

Let us stress that the behaviour of b23(E) with

the energy has exactly the same form of that obtained

in the leptonic case, from the analysis of the lifetime

of the K0
s - meson(1). This is an intriguing result,

on account of the well-known mixing between elec-

tromagnetic and weak interactions in the standard
model.

A similar analysis of the Berkeley experiment
[10] cannot be carried out, because it is difficul to
estimate the dimensions of the region with higher
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transmission coefficient (the analogous of the reduced
waveguide in the Cologne experiment). However,
since in principle a translucid mirror - like that used
by the Berkeley group - can be regarded as a high-
frequency cutoff filter, we propose an optical experi-
mental setup, in which all the parameters are known.
The corresponding setup, a twin-photon interferom-
eter with optical waveguides, is schematically shown
in Fig.3. Such an optical device unifies, from an ex-
perimental point of view, the two experiments [9] and
[10], which, admit - in our opinion - a similar inter-
pretation in the formalism of DSR. Such an exper-
imental setup may provide an independent, optical
test of superluminal tunneling of e.m. signals.
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(Manuscrit reçu le 4 juin 1998)


