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This paper completes the series of three papers under the general title of Extended Electrodynamics. It aims to
give explicitly all non- linear vacuum solutions to our non-linear field equations [1] in canonical coordinates, and
to define in a coordinate free manner the important subclass of non-linear solutions, which we call almost photon-
like. By means of a correct definition of the local and integral intrinsic angular momentums of these solutions,
we separate the photon-like solutions through the requirement their integral intrinsic angular momentum to be
equal to Planck’s constant h. Finally, using standard spherical coordinates we consider such solutions moving
radially to or from a given center.

1 Explicit non-linear vacuum solutions

As it was shown in [2] with every nonlinear solution
F of our nonlinear equations (we use all notations
from [1] and [2])

δF∧∗F = 0, δ∗F∧F = 0, δ∗F∧∗F−δF∧F = 0 (1)

a class of F -adapted coordinate systems is associated,
such that F and ∗F acquire the form respectively

F = εudx ∧ dz + udx ∧ dξ + εpdy ∧ dz + pdy ∧ dξ

∗F = −pdx ∧ dz − εpdx ∧ dξ + udy ∧ dz + εudy ∧ dξ.

Since we look for non-linear solutions of (1), we sub-
stitute these F and ∗F in (1) and after some elemen-
tary calculations we obtain

δF = (uξ − εuz)dx+ (pξ − εpz)dy

+ε(ux + py)dz + (ux + py)dξ,

δ ∗ F = −ε(pξ − εpz)dx+ ε(uξ − εpz)dy

−(px − uy)dz − (px − uy)dξ,

Fµν(δF )νdxν = (∗F )µν(δ ∗ F )νdxν =

= ε

[
p(pξ − εpz) + u(uξ − εuz)

]
dz

+ [p(pξ − εpz) + u(uξ − εuz)] dξ,

(δF )2 = (δ ∗ F )2 = −(uξ − εuz)2 − (pξ − εpz)2

A simple direct calculation shows, that the equation

δ ∗ F ∧ ∗F − δF ∧ F = 0

is identically fulfilled for any such F and ∗F with ar-
bitrary u and p. We infer that our equations reduce
to only one equation, namely

p(pξ− εpz) + u(uξ − εuz)

= 1
2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
= 0.

(2)

The obvious solution to this equation is

u2 + p2 = φ2(x, y, ξ + εz). (3)

The solution obtained shows that the equations im-
pose some limitations only on the amplitude function
φ and that the phase function ϕ is arbitrary except
that it is bounded: |ϕ| ≤ 1. The amplitude φ is
a running wave along the specially chosen coordi-
nate z, which is common for all F -adapted coordi-
nate systems.Considered as a function of the spatial
coordinates, the amplitude φ is arbitrary, so it can
be chosen spatially finite. The time-evolution does
not affect the initial form of φ, so it will stay the
same in time. Since |ϕ| ≤ 1 and the two indepen-
dent field components are given by F14 = u = φ.ϕ,
F24 = p = φ.

√
1− ϕ2 this shows, that among the

nonlinear solutions of our equations there are (3+1)
soliton-like solutions. The spatial structure of φ can
be determined by initial condition, and the phase
function ϕ can be used to describe additional internal
dynamics of the solution.

Making use of the above mentioned substitutions

u = φ.ϕ, p = φ
√

1− ϕ2,

and the equality |A| = φ, we get

|δF | = |δ∗F | = |φ||ϕξ − εϕz|√
1− ϕ2

, L =
|A|
|δF |

=

√
1− ϕ2

|ϕξ − εϕz|
.

(4)
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For the induced pseudoorthonormal bases (1-forms
and vector fields) we find

A = ϕdx+
√

1− ϕ2dy, εA∗ = −
√

1− ϕ2dx+ ϕdy,

R = −dz, S = dξ,

A = −ϕ ∂
∂x −

√
1− ϕ2 ∂

∂y , εA
∗ =

√
1− ϕ2 ∂

∂x − ϕ
∂
∂y ,

R = ∂
∂z , S = ∂

∂ξ .

Hence, the nonlinear solutions in canonical co-
ordinates are parametrized by one function φ of 3
independent variables and one bounded function of
4 independent variables. Therefore, the separation
of various subclasses of nonlinear solutions is made
by imposing additional conditions on these two func-
tions. In the next sections we are going to distin-
guish a subclass of solutions , the integral properties
of which reflect the well known integral properties
and characteristics of free photons. These solutions
will be called photon-like and will be distinguished
through imposing additional requirements on ϕ and
L in a coordinate-free manner.

2 Almost photon-like solutions

We note first that we have three invariant quantities
at hand: φ, ϕ and L. The amplitude function φ is to
be determined by the initial conditions, which have
to be finite. Hence, we may impose additional condi-
tions on L and ϕ. These conditions have to express
some internal consistency among the various char-
acteristics of the solution. The kind of internal con-
sistency to use comes from the observation that the
amplitude function φ is a first integral of the vector
field V, i.e.

V(φ) =
(
−ε ∂∂z + ∂

∂ξ

)
(φ) =

−ε ∂∂zφ(x, y, ξ + εz) + ∂
∂ξφ(x, y, ξ + εz) = 0.

In order to extend this consistency between V and
φ we require the two functions ϕ and L to be first
integrals of some of the available F -generated vector
fields. Explicitly, we require the following:

10. The phase function ϕ is a first integral of the
three vector fields A,A∗ and R: A(ϕ) = 0,A∗(ϕ) =
0,R(ϕ) = 0.

20. The scale factor L is a non-zero finite first
integral of the vector field S: S(L) = 0.

The requirement R(ϕ) = 0 just means that in
these coordinates ϕ does not depend on the coor-
dinate z. The two other equations of 10 define the

following system of differential equations for ϕ:

−ϕ∂ϕ
∂x
−
√

1− ϕ2
∂ϕ

∂y
= 0,

√
1− ϕ2

∂ϕ

∂x
− ϕ∂ϕ

∂y
= 0.

Noticing that the matrix∥∥∥∥ −ϕ −
√

1− ϕ2√
1− ϕ2 −ϕ

∥∥∥∥
has non-zero determinant, we conclude that the only
solution of the above system is the zero-solution:

∂ϕ

∂x
=
∂ϕ

∂y
= 0.

We conclude that in the coordinates used the phase
function ϕ depends only on ξ. Therefore, in view of
(4), for the scale factor L we get

L =

√
1− ϕ2

|ϕξ|
.

Now, the requirement 20, which in these coordinates
reads

S(L) =
∂L

∂ξ
=

∂

∂ξ

√
1− ϕ2

|ϕξ|
= 0,

means that the scale factor L is a pure constant:
L = const. In this way the defining relation for L
turns into a differential equation for ϕ:

L =

√
1− ϕ2

|ϕξ|
→ ∂ϕ

∂ξ
= ∓ 1

L

√
1− ϕ2. (5)

The obvious solution to this equation is

ϕ(ξ) = cos

(
κ
ξ

L
+ const

)
, (6)

where κ = ±1. We note that the naturally arising
characteristic frequency ν according to the equation

ν =
c

L
, (7)

has nothing to do with the concept of frequency in
CED. In fact, the quantity L can not be defined in
Maxwell’s theory.

Finally (recalling [2]) we note that the derived
phase function ϕ(ξ) leads to the following. Con-
sider the 2-form tr(R0), where R0 is the matrix of
2-forms, formed similarly to the matrix R in [2], but
using the basis (A, εA∗,R,S) instead of the basis
(A, εA∗,R,S). It turns out that tr(R0) is a closed
2-form. In fact,

tr(R0) = ϕdx ∧ dξ + ϕdy ∧ dξ − dy ∧ dz + dz ∧ dξ

and since ϕ = ϕ(ξ), we get dtr(R0) = 0. Note also
that the above explicit form of tr(R0) allows to define
the phase function by

ϕ =

√
|tr(R0)|2

2
.
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This class of solutions we call almost photon-like.

Remark. If one of the two functions u and p, for
example p, is equal to zero: p = 0, then, for-
mally, we again have a solution, which may be called
linearly polarized by obvious reasons. Clearly, the
phase function of such solutions will be constant:
ϕ = const, so, the corresponding scale factor becomes
infinitely large: L → ∞, therefore, condition 20 is
not satisfied. The reason for this is, that at p = 0
the function u becomes a running wave and we get
|δF | = |δ ∗ F | = 0, so the scale factor can not be
defined by the relation L = |A|/|δF |.

3 Intrinsic angular momentum (helicity)
and photon-like solutions

The problem of describing the intrinsic angular mo-
mentum (IAM), or in short helicity, spin of the pho-
ton is of fundamental importance in modern physics.
So, we are going to consider two approaches for its
mathematical description. But first, some prelimi-
nary comments.

First of all, there is no doubt that every free pho-
ton carries such an intrinsic angular momentum.
Since the angular momentum is a conserved quan-
tity, the existence of the photon’s intrinsic angular
momentum can be easily established and, in fact, its
presence has been experimentally proven by the im-
mediate observation of its mechanical action and its
value has been numerically measured. Assuming this
is so, we have to understand its origin, nature and its
significance for the existence of the photons.

So, we begin with the assumption:every free pho-
ton carries an intrinsic angular momentum with in-
tegral value equal to Planck’s constant h. According
to our understanding, the photon’s IAM comes from
an intrinsic periodic process. This point of view un-
doubtedly leads to the concept, that photons are not
point-like structureless objects: they have a struc-
ture, i.e. they are extended objects. In fact, accord-
ing to one of the basic principles of physics all free
objects move as a whole uniformly. So, if the photon
is a point-like object any characteristic of a periodic
process, e.g. frequency, should come from an out-
side force field, i.e. it cannot be free: a free point-
like (structureless) object cannot have a characteris-
tic frequency.

This simple, but valid, conclusion presents the
theoretical physics of the first quarter of this cen-
tury with a serious dilemma: to keep the notion of
structurelessness and to associate in a formal way a
characteristic frequency to microobjects, or to leave
off the notion of structurelesness, to assume the no-
tion of extendedness and availability of intrinsically
occurring periodic process and to build correspond-
ing integral characteristics, determined by this peri-

odic process. Reflection shows that the majority of
physicists have adopted the first approach, which led
to quantum mechanics as a computational method ,
and the wave-particle dualistic-probabilistic interpre-
tation as a philosophical consequence. If we set aside
the widespread and intrinsically controversial idea
that all microobjects are at the same time (point-
like) particles and (infinite) waves, and look impar-
tially, in a fair-minded way, at the quantum mechan-
ical wave function for a free particle, we see that
the only positive consequence of its introduction is
the legalization of frequency, as an inherent charac-
teristic of the microobject. In fact, the probabilis-
tic interpretation of the quantum mechanical wave
function for a free object, obtained as a solution of
the free Schroedinger equation, is impossible since
its square is not an integrable quantity (the inte-
gral is infinite). The frequency is really needed not
because of the dualistic-probabilistic nature of mi-
croobjects, it is needed because the Planck relation
W = hν which turns out to be universally true in
microphysics, so there is no way to avoid the intro-
duction of frequency. The question is, does the intro-
duction of frequency necessarily require some (linear)
wave equation and the simple complex exponentials
of the kind const.exp[i(k.r − νt)], i.e. infinite run-
ning waves, as ”free solutions”. Our answer to this
question is no. The classical monochromatic wave
does not seem to be the most adequate mathemati-
cal object needed. In fact, it does not represent the
finite nature of photons, it even contradicts it. As
for the frequency, there are non-linear finite waves,
which also have this characteristic.

These considerations made us turn to soliton-
like objects: they present the two features of mi-
croobjects: (localized spatial extendedness and time-
periodicity) simultaneously, and, therefore, seem to
be more adequate theoretical models for those mi-
croobjects, obeying the Planck’s relation W = hν.
Of course, if we are interested only in the behaviour
of the microobject as a whole, we can use the point-
like notion, but any attempt to give a meaning to its
integral characteristics without looking for their ori-
gin in the consistent internal dynamics and structure,
in our opinion, is an incinsistent perspective. One of
the basic ”stumbling points” of such an approach is
the existence of an intrinsic mechanical angular mo-
mentum, which can not be understood as an attribute
of a free structureless object.

Having in mind the above considerations, we con-
sider two ways to introduce and define the intrinsic
angular momentum as a local quantity and to ob-
tain by integration its integral value. Thus, these
two approaches will be of use only for the spatially
finite nonlinear solutions of our equations. Both ap-
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proaches introduce (in different ways) 3-tensors (2-
covariant and 1-contravariant). Although these two
3-tensors are built of quantities, connected in a def-
inite way with the field F , their nature is quite dif-
ferent. The first approach is based on an appropriate
tensor generalization of the classical Poynting vec-
tor. The second approach makes use of the concept
of torsion, connected with the field F , considered as
a 1-covariant and 1-contravariant tensor. The first
approach is purely algebraic with respect to F , while
the second one uses derivatives of Fµν . The spatially
finite nature of the solutions F allows us to build cor-
responding integral conserved quantities, naturally
interpreted as angular momentum. The scale factor
L = const appears as a multiple, so these quantities
go to infinity for all linear solutions, i.e. the solutions
of Maxwell equations.

3.1 The First Approach

In the first approach we consider just almost photon-
like solutions and make use of the corresponding scale
factors L = const, isotropic vector fields V and the
two 1-forms A and A∗. By these four quantities we
build the following 3-tensor field H:

H = κ
L

c
V ⊗ (A ∧A∗). (8)

The connection with the classical vector of Poynt-
ing comes through the exteriour product of A and
A∗, the 3-dimensional meaning of which is just the
Pointing’s vector. In components we have

Hµ
νσ = κ

L

c
Vµ(AνA

∗
σ −AσA∗

ν).

In our system of coordinates we get

H = κ
L

c

(
−ε ∂

∂z
+

∂

∂ξ

)
⊗ (εφ2dx ∧ dy),

hence, the only non-zero components are

H3
12 = −H3

21 = −κL
c
φ2, H4

12 = −H4
21 = κε

L

c
φ2.

It is easily seen, that the divergence ∇µHµ
νσ →

∇µHµ
12 is equal to 0. In fact,

∇µHµ
12 =

∂

∂z
H3

12+
∂

∂ξ
H4

12 = κ
L

c

[
−(φ2)z + (εφ2)ξ

]
= 0

because φ2 is a running wave along the coordinate
z. Since for the Minkowski space-time the tan-
gent bundle, the co-tangent bundle and their ten-
sor and exterior products are trivial bundles, we
may consider the tensor field Hµ,νσ as 1-form on the
Minkowski manofold with values in the exterior prod-
uct K∧K, where K is an algebraic Minkowski space:
H ∈ Λ1(M,K ∧ K), H = Hµ,νσdx

µ ⊗ eν ∧ eσ, and

{eν} is a basis of K. Now, making use of the Hodge
∗ on M we get the 3- form

∗H = (∗Hµdx
µ)νσ ⊗ eν ∧ eσ,

where ∗ acts only on dxµ. This 3-form has values
in K ∧K and is closed because of the original zero
divergence of H. Now, we can integrate ∗H on the
3-space and we can form an antisymmetric 2-tensor
H ∈ K ∧K:

Hνσ =

∫
R3

H4,νσdxdydz.

According to Stokes theorem, the components of this
antisymmetric tensor shall not depend on the time
coordinate, i.e. they are conserved quantities.

H12 = −H21 =
∫
R3 H4,12dxdydz = κεLcW

= κεWT = κεWν .

The non-zero eigenvalues of Hνσ are purely imagi-
nary and are equal to ±iWT . This tensor has unique
non-zero invariant P (F ),

P (F ) =

√
1

2
HνσHνσ = WT. (9)

The quantity P (F ) will be called Planck’s invariant
for the finite nonlinear solution F . All finite nonlin-
ear solutions F1, F2, , ..., satisfying the condition

P (F1) = P (F2) = ... = h,

where h is the Planck’s constant, will be called fur-
ther photon-like. The tensor field H will be called the
intrinsic angular momentum tensor and the tensor
H will be called spin tensor or helicity tensor. The
Planck’s invariant P (F ) = WT , having the physical
dimension of action, will be called integral angular
momentum, or just spin or helicity.

The reason to use this terminology are quite clear:
the time evolution of the two mutually orthogonal
vector fields A and A∗ is a rotationally-advancing
motion around and along the z-coordinate (admis-
sible are the right and the left rotations: κ = ±1),
with the advancing velocity of c and the frequency of
circulation ν = c/L. We see the basic role of the two
features of the solutions: their soliton-like character,
giving finite value of all integral quantities, and their
nonlinear character, allowing us to define the scale
factor L correctly. From this point of view the spin
of the photon is far from being an incomprehensible
quantity, it appears as a normal integral characteris-
tic of a solution, representing a model of the photon.
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3.2 The Second Approach

We proceed to the second approach to introduce
IAM . We recall the definition of the torsion of two
(1,1) tensors. If G and K are 2 such tensors

G = Gνµdx
µ ⊗ ∂

∂xν
, K = Kν

µdx
µ ⊗ ∂

∂xν
,

their torsion is defined as a 3-tensor Sσµν = −Sσνµ by
the relation

S(G,K)(X,Y ) = [GX,KY ] + [KX,GY ] +GK[X,Y ]

+KG[X,Y ]−G[X,KY ]−G[KX,Y ]

−K[X,GY ]−K[GX,Y ],

where [, ] is the Lie-bracket of vector fields,

GX = GνµX
µ ∂

∂xν
, GK = GνµK

µ
σdx

σ ⊗ ∂

∂xν

and X,Y are 2 arbitrary vector fields. If G = K, in
general S(G,G) 6= 0 and

S(G,G)(X,Y ) = 2
{

[GX,GY ] +GG[X,Y ]

−G[X,GY ]−G[GX,Y ]
}
.

This last expression defines at every point x ∈ M
the torsion S(G,G) = SG of G with respect to the
2-dimensional plane, defined by the two vectors X(x)
and Y (x). Now we are going to compute the torsion
SF of the nonlinear solution F with respect to the
intrinsically defined by the two unit vectors A and
εA∗ 2-plane. In components we have

(SF )σµν = 2

[
Fαµ

∂Fσν
∂xα

− Fαν
∂Fσµ
∂xα

− Fσα
∂Fαν
∂xµ

+ Fσα
∂Fαµ
∂xν

]
.

In our coordinate system

A = −ϕ ∂

∂x
−
√

1− ϕ2
∂

∂y
, εA∗ =

√
1− ϕ2

∂

∂x
−ϕ ∂

∂y
,

so,

(SF )σµνA
µεA∗ν = (SF )σ12(A1εA∗2 −A2εA∗1).

For (SF )σ12 we get

(SF )112 = (SF )212 = 0,

(SF )312 = −ε(SF )412 = 2ε{p(uξ − εuz)− u(pξ − εpz)}.

Remark. In our case (SF )σ12 = (S∗F )σ12, so further
we shall work with SF only.

It is easily seen that the following relation holds:
A1εA∗2−A2εA∗1 = 1. Now, for the almost photon-
like solutions

u = φ(x, y, ξ + εz) cos

(
κ
ξ

L
+ const

)
,

p = φ(x, y, ξ + εz) sin

(
κ
ξ

L
+ const

)
we obtain

(SF )312 = −ε(SF )412 = −2ε
κ

L
φ2,

(SF )σµνA
µεA∗ν =

[
0, 0,−2ε

κ

L
φ2, 2

κ

L
φ2
]
.

Since φ2 is a running wave along the z-coordinate,
the vector field SF (A, εA∗) has zero divergence:
∇ν [SF (A, εA∗)]

ν
= 0. Now we define the helicity

vector of the solution F by

ΣF =
L2

2c
SF (A, εA∗).

Since L = const, then ΣF has also zero divergence,
so the integral quantity∫

(ΣF )4dxdydz

does not depend on time and is equal to κWT . The
photon-like solutions are distinguished by the condi-
tion WT = h.

Here are three more integral expressions for the
quantity WT . We form the 4- form

− 1

L
S ∧ ∗ΣF =

κ

c
φ2ω◦

and integrate it over the 4-volume R3 × [0, L], the
result is κWT . Besides, we easily verify the relations

1
c

∫
R3×[0,L]

|A ∧A∗|ω◦ = L2

c

∫
R3×[0,L]

|δF ∧ δ ∗ F |ω◦

= WT.

Since we distinguish the photon-like solutions by
the relation WT = h, the last expression suggests the
following interpretation of Planck’s constant h. Since
|A ∧ A∗| is proportional to the area of the square,
defined by the two mutually orthogonal vectors A
and εA∗, the above integral sums up all these areas
over the whole 4- volume, occupied by the solution F
during the intrinsically determined time period T , in
which the couple (A, εA∗) completes a full rotation.
The same can be said for the couple (δF, δ ∗ F ) with
some different factor in front of the integral. This
shows quite clearly the helical origin of the full en-
ergy W = hν of the single photon.
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4 Solutions in spherical cordinates

The soliton-like solutions obtained so far describe
objects, coming from infinity and going to infinity.
Of interest are also soliton like solutions ”radiated”
from, or absorbed by some central source, and prop-
agating radially from or to the center of this source.
We are going to show, that our equations (1) admit
such solutions. We assume this central source to be
a small ball R0 with radius r◦, and put the origin of

the coordinate system at the center of the source-ball.
The standard spherical coordinates (r, θ, ϕ, ξ) will be
used and all considerations will be carried out in the
region out of the ball R0. In these coordinates we
have

ds2 = −dr2−r2dθ2−r2 sin2 θdϕ2+dξ2,
√
|η| = r2 sin θ.

The ∗-operator acts in these coordinates as follows:

∗dr = r2 sin θdθ ∧ dϕ ∧ dξ ∗(dr ∧ dθ ∧ dϕ) = (r2 sin θ)−1dξ

∗dθ = − sin θdr ∧ dϕ ∧ dξ ∗(dr ∧ dθ ∧ dξ) = sin θdϕ

∗dϕ = (sin θ)−1dr ∧ dθdξ ∗(dr ∧ dϕ ∧ dξ) = −(sin θ)−1dθ

∗dξ = r2 sin θdr ∧ dθdϕ ∗(dθ ∧ dϕ ∧ dξ) = (r2 sin θ)−1dr

∗(dr ∧ dθ) = − sin θdϕ ∧ dξ ∗(dθ ∧ dϕ) = −(r2 sin θ)−1dr ∧ dξ

∗(dr ∧ dϕ) = (sin θ)−1dθ ∧ dξ ∗(dθ ∧ dξ) = − sin θdr ∧ dϕ

∗(dr ∧ dξ) = r2 sin θdθ ∧ dϕ ∗(dϕ ∧ dξ = (sin θ)−1dr ∧ dθ.

We look for solutions of the following kind:

F = εudr ∧ dθ + udθ ∧ dξ + εpdr ∧ dϕ+ pdϕ ∧ dξ, (10)

where u and p are spatially finite functions. We get

∗F =
p

sin θ
dr ∧ dθ + ε

p

sin θ
dθ ∧ dξ − usinθdr ∧ dϕ− ε sin θdϕ ∧ dξ.

The following relations hold:
F ∧ F = 2ε(up− up)dr ∧ dθ ∧ dϕ ∧ dξ = 0,

F ∧ ∗F =

(
−u2 sin θ + u2 sin θ − p2

sin θ
+

p2

sin θ

)
dr ∧ dθ ∧ dϕ ∧ dξ = 0,

i.e. the two invariants are equal to zero: (∗F )µνF
µν = 0, FµνF

µν = 0.

After some elementary computation we obtain

δF ∧ F = δ ∗ F ∧ ∗F = ε [u (εpr + pξ)− p (εur + uξ)] dr ∧ dθ ∧ dϕ+ + [u (εur + uξ)− u (εpr + pξ)] dθ ∧ dϕ∧ dξ,

F ∧∗dF = ε

[
u (εur + uξ) sin θ +

p (εpr + pξ)

sin θ

]
dr∧dθ∧dϕ−−ε

[
u (εur + uξ) sin θ +

p (εpr + pξ)

sin θ

]
dθ∧dφ∧dξ,

(∗F )∧∗d∗F =

[
u (εur + uξ) sin θ +

p (εpr + pξ)

sin θ

]
dr∧dθ∧dϕ−−

[
u (εur + uξ) sin θ +

p (εpr + pξ)

sin θ

]
dθ∧dφ∧dξ.

So, the two functions u and p have to satisfy the
equation

u (εur + uξ) sin θ +
p (εpr + pξ)

sin θ
= 0, (11)

which is equivalent to the equation(
u2 sin θ +

p2

sin θ

)
ξ

+ ε

(
u2 sin θ +

p2

sin θ

)
r

= 0.

(12)

The general solution of this equation is

u2 sin θ +
p2

sin θ
= φ2(ξ − εr, θ, φ). (13)

For the non-zero components of the energy-
momentum tensor we obtain

−Q1
1 = −Q4

1 = Q1
4 = Q4

4 =
1

4πr2 sin θ

(
u2 sin θ +

p2

sin θ

)
.

(14)
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It is seen that the energy density is not exactly a run-
ning wave but when we integrate to get the integral
energy, the integrand is exactly a running wave:

W = 1
4π

∫
R3−R0 ∗

(
Q4
µdξ
)

= 1
4π

∫
R3−R0

(
u2 sin θ + p2

sin θ

)
dr ∧ dθ ∧ dφ.

Since the functions u and p are spatially finite, the in-
tegral energy W is finite, and from the explicit form
of the energy-momentum tensor it follows the well
known relation between the integral energy and mo-
mentum: W 2 − c2p2 = 0.

5 Conclusion

Let’s try to summurize the rezults obtained so far in
EED.

Starting with some analysis of CED, we came
to the conclusion for the 2-vector component char-
acter of the electromagnetic field, so the modeling
mathematical object was chosen to be a 2-form on
Minkowski space valued in R2. Some further anal-
ysis, mainly of the local conservation laws, clari-
fied the ways of energy-momentum exchange between
the field an some other (continuous) physical ob-
ject. Then the idea for physical interpretation of
the Frobenius integrability equations as lack of dis-
sipation was realized. All this culminated in writing
down the local energy-momentum balance equation
(12) in [1] and the integrability equations for the all
six 2-dimensional Pfaff systems generated by the four
1-forms αi. These in general 24 equations for the 22
unknown functions (Fµν , α

i
µ) were assumed for dy-

namical equations in EED.

The nonlinear solutions of the vacuum equations
were extensively studed in [2] and in this paper. Af-
ter noting the conformal invariance of the equations
in this case and pointed out a 3-parameter family of
static non-linear solutions, we proved the important
Proposition 1 in [2], according to which all non-linear
solutions have zero invariants

I1 =
1

2
FµνF

µν = 0, I2 =
1

2
Fµν(∗F )µν = 0.

So, from the eigen properties of the the field and
from the local conservation laws it followed that
every nonlinear solution defines intrinsically unique
light-like (or isotropic) direction in the 4-dimensional
Minkowski space-time. This direction determines its
straight-line propagation as a whole with the ve-
locity of light. So, it becomes possible to intro-

duce F -adapted coordinate systems, in which all rela-
tions simplify significantly. Then the electromagnetic
frames were built and the amplitude function φ and
the phase function ϕ of the solution were introduced
in a coordinate free manner. The scale factor L as a
special characteristic of the nonlinear solutions, and
having no sense for the Maxwell solutions, was also
defined in a coordinate free way. So we obtained 3
invariant local scalar characteristics of the nonlinear
solutions.

Introducing all these features in an appropriate
way into the dynamical equations we found them
reduced to only one equation for the amplitude φ.
Hence, the general solution in an F -adapted coordi-
nate system was expressed through φ and ϕ: φ =
φ(x, y, ξ ± z) should be a running wave along the di-
rection of propagation, and ϕ should be bounded:
|ϕ|2 ≤ 1. Then the almost photon-like solutions were
distinguished by means of imposing some internal
consistency conditins on ϕ and L in a coordinate free
way. The important quantity of spin was introduced
in two independent ways and photon-like solutions
were named those having Planck’s invariant P (F )
equal to the Planck constant h. We showed four ways
to define and compute this very important invariant
characteristic of the photon. Finally, localized solu-
tions in spherical coordinataes were explicitly found.
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