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The Vacuum in Quantum Optics
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ABSTRACT. A heated enclosed cavity, often referred to as a black body is filled with radiation which depends
only on temperature and has a characteristic spectrum first deduced by Max Planck on the hypothesis of quanta.
The amount of energy in a small volume within the black body fluctuates; this fluctuation was computed by
Albert Einstein from thermodynamic principles. It became possible to relate it to light quanta or photons from
the discovery of the statistics of the photons by Satyendra Nath Bose. At the same time in the wave picture of
light waves it became natural to ask to what extent the wavefronts at nearby points are steady or fluctuating.
These fluctuations give rise to partial coherence of light. With the advent of lasers we can construct wavefronts
which are steady and hence exhibit coherence over a wide area. This topic can be strictly treated by quantum
theory even for feeble light using the optical equivalence theorem discovered by George Sudarshan. When light
falls on a clean metal surface, photoelectrons are liberated; the statistics of these photocounts is a method of
studying the intensity fluctuations of light. Here classical stochastic theory will show that photocounts come
bunched together so that there is an excess fluctuation over a purely random (Poisson) process. This is called
“photon bunching.” But quantum theory allows less than Poisson fluctuations, called “antibunching” which
demonstrate conclusively the quantum nature of photo-counting. The propagation of coherence with rigorous
details was formulated by Emil Wolf. The photocounting distributions were given by Leonard Mandel and Roy
Glauber.

All these questions require a number of ingenious experiments to demonstrate and measure. Beginning with
the work of Hanbury-Brown and Twiss and significantly advanced by Leonard Mandel, these are important
contributions to be discussed in the article.

The quantum state of the photon and more generally of the electromagnetic field require careful discussion.
C.A. Mead14 had shown how the photon vacuum changes from empty space to a transparent dielectric. The
work on “squeezed states of light” has shown that the photon vacuum is still more complex than we imagined;
details are given in the full article.

Vacuum as a State of the Electromagnetic
Field.

An enclosed cavity from which all air has been
exhausted is empty space, what we usually call a vac-
uum. As the empty container is heated to a high
temperature the cavity gets filled with light, the com-
position of which is independent of the walls of the
cavity. This “blackbody radiation” is a continuous
spectrum with the energy density going as the fourth
power of the absolute temperature. The spectrum of
this radiation is continuous with the maximum at a
frequency which is proportional to the temperature.
One can say that the emission spectrum of a black-
body is a single very broad line, with the shape in
terms of the reduced frequency (ν/T ) being universal.
Earlier attempts based on classical thermadynamics
gave absurd results. The first successful attempt to
derive this universal shape was made by Planck1) at
the turn of the century, and he had to introduce the
quanta of energy and a universal constant of action.
This was the birth of quantum theory. We may also
recall that the blackbody radiation was the first place
where classical statistical mechanics gave the absurd

answer,2) that the specific heat capacity of the black-
body was infinite. There was thus “Much ado about
Nothing.” Vacuum was no longer the vacuum but the
theatre for the play of electromagnetic radiation of all
frequencies. The only case the empty cavity is liter-
ally a vacuum is at absolute zero when there is no
radiation in the cavity. Thus we could say the vac-
uum is also a state of the electromagnetic field; it is
the ground state of the electromagnetic field.

Planck considered, following Rayleigh and Jeans,
that the standing modes of the electromagnetic field
could be considered as oscillators with frequencies
ν, 0 < ν <∞ and that the energy levels of the oscil-
lator could only be

En = nhν

The probability for the nth state is

Pn = Z−1 exp(−βnhν); β =
1

kT

Z =

∞∑
0

exp(−βnhν)
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Then the mean value of the energy is

〈E〉 =
hν

ehνβ − 1
.

The number of modes with frequency between ν and
ν + ∆ν, taking account of the two polarizations, is
given by

2.V.4πk2dk = V 8π
ν2∆ν

c3
,

where V is the volume of the cavity and K = ν/c is
the wave number of the radiation. Hence the energy
density is

u(ν) =
8πhν3

c3(eβhν − 1)
.

This is the energy density that Planck derived for
blackbody radiation at inverse temperature β. Given
this mean energy, there is some fluctuation.3) It
maybe instructive why classical physics gave an ab-
surd answer when we calculate the energy density
of the vacuum when the temperature is raised and
how Planck’s quantum hypothesis cured it. In clas-
sical thermodynamics each independent mode of vi-
bration, technically called “degrees of freedom”, must
on an average have the same energy, proportional to
the temperature. So the “spectral energy density,”
that is the energy in a finite interval of frequencies
is proportional to the number of independent modes
per unit volume; and is therefore finite. This was
what Rayleigh and Jeans had predicted. Unfortu-
nately there are an infinite number of modes of oscil-
lation of the electromagnetic field if we count them
over all frequencies. So we find the absurd answer for
the full energy density integrated over all frequencies.
This is patently absurd and at variance with experi-
ence. We could heat a fireplace to red heat with a
finite amount of fuel.

So somehow we must make the number of de-
grees of freedom finite at finite temperatures. What
Planck chose to do is very similar to the usual custom
of allowing only those who can show a preassigned
amount of money on deposit. His requirement is that
only temperatures (for which the equivalent energy
β−1 is above the quantum of energy hν are able to
excite the mode with frequency ν. So eventhough
the number of potentially available modes is infinite
at any temperature only a finite number (growing as
the cube of the temperature) can effectively partici-
pate. The energy density is this number multiplied
by β−1 and therefore it goes as β−4. For frequencies
higher than β−1/L the contribution is not zero, but
falls to zero very rapidly.

When we think of a vacuum with zero energy
density, there should be no photons in it. Classically
this would mean zero electric and magnetic fields.
But the situation in quantum theory of the electro-
magnetic field is more subtle. Even in the state of no

photons, the electromagnetic fields have zero mean
value but they have fluctuations around this zero
mean. These vacuum fluctuations can be measured,
for example in the precision spectrum of the hydrogen
atom.

Classically the blackbody electromagnetic field
is contributed by adding together very many contri-
butions with varying amplitudes and phases. Con-
sequently the ensemble of real and imaginary parts
(of electric and magnetic fields) for each mode would
be Gaussian with zero mean. This implies that the
variance in the energy density per mode is the square
of the mean energy density per mode:

〈∆E2
ν〉 = 〈(Eν − 〈Eν〉)2〉 = 〈Eν〉2.

Since independent modes fluctuate independently, we
can compute the fluctuations of the energy for any
volume:

(∆uν)2 =
8π2V h2ν4

c3(eβhν − 1)2

(∆u)2 =

∫
dν(∆uν)2 =

δπ2V h2

c3

∫
ν4dν

(eβhν − 1)2
.

All these considerations are for the energy density
and energy fluctuations in empty space at tempera-
ture β.

Statistical Mechanics of Photons.

¿From the study of the photoelectric effect and
the Bohr model of the atom one concludes that the
energy differences hν of the oscillator or the atom has
its own existence as a physical object, the photon.
Compton effect in the scattering of X-rays confirmed
that the photons carry an energy of hν and a mo-
mentum of hν

c . According to the theory of special
relativity these correspond to a particle of zero rest
mass which moves with the constant speed c in all
inertial frames in empty space.

The statistical mechanics of an assembly of pho-
tons required however the discovery of a new statis-
tics of identical particles by Bose.4) The essence of
Bose’s motivation was to say that permutations of
identical particles does not change the state. There-
fore a state of n1 photons of energy hν1 each, n2
photons of energy hν2 each, etc. maybe viewed as
a single state with energy n1hν1 + n2hν2 . . .. It is
therefore identical with the state of the first oscilla-
tor excited to the nth1 level, the second to nth2 level,
etc. This together with the fact that photons can
be created or absorbed singly by the cavity so that
the photon number is not fixed in the ensemble (zero
chemical potential) enabled Bose to derive Planck’s
law as well as the extended grand canonical (Bose)
distribution for photons, the Bose statistics. Thus
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the blackbody at finite temperature becomes a col-
lection of photons distributed statistically. Equally
well it could be considered as being filled with an
ensemble of waves.

Partial Coherence.

In the propagation of natural light5) we can have
two equivalent pictures. One of these is to see it as
a jumble of waves, the wavefronts and phases being
distributed at random or according to some law. Be-
cause of this the light from two distinct locations in
the field are in general only poorly correlated. An
equally satisfactory (though less familiar) way is to
think of an ensemble of locally plane waves with rays
normal to their planewave surfaces.6) So we have a
collection of light rays simulating the motion of classi-
cal photons. In the special case when the light vibra-
tions are in good correlation with each other we say
that there is a patch of coherence; in this case there
is an extended wavefront with uniformly converging,
diverging or parallel rays over the region. In general,
natural light has a finite correlation length beyond
which the “partial coherence” decreases to zero very
rapidly. From a laser we get an intense beam of light
with a large “coherence length”. The reciprocal re-
lation between rays and wavefronts explains why the
coherence patch increases with the distance of prop-
agation, the van Cittert-Zemike theorem.5)

Photocount Statistics and Intensity Correla-
tions.

When light falls on a clean metal surface, pho-
toelectrons are liberated; the statistics of these pho-
tocounts is a method of studying the intensity fluc-
tuations of light.7) Given an intensity of light I, the
possibility that there will be a photocount in the in-
terval ∆t is proportional to I and ∆t and we may
write it as αI∆t where α is a suitable efficiency fac-
tor. The probability of a count in any small interval is
independent of what happend before. The counter’s
response is stochastic, and hence the counts in a finite
time interval from t = t1 to t = t1 +T is independent
of t1 and has the Poisson form:

p(n, T ) =
µne−µ

n!
where

µ = αIT

is the mean number of counts in the interval. For this
distribution the variance is∑

n2p(n)−
(∑

n

np(n)
)2

= µ =
∑

np(n)

which is characteristic of a Poisson distribution.

If the intensity is not unique but is a time inde-
pendent ensemble with probability P (I)dI the pho-
tocount distribution would have the effective distri-
bution

π(n, T ) =

∫
p(n, T, I)P (I)dI.

More generally, if the intensities fluctuate according
to a correlation

〈I(t1)I(t2)〉 = 〈I2〉C(t1 − t2)

we can express π(n, T ) in terms of C(t1 − t2). Here
it is assumed that the ensembles are “stationary.”
The intensity correlation function C(t1− t2) now be-
comes a quantity that influences the computation of
the effective counting distribution and hence of the
variance. Then photocount data can be used to deter-
mine the intensity correlations. Classically we would
expect a bivariate Gaussian distribution for the elec-
tric and magnetic fields or equally well the complex
wave amplitudes. In this case all correlations and
moments of counts can be computed, as Mandel and
Glauber have shown, in terms of the variance of the
Gaussian. The existence of intensity correlations was
discovered by Hanbury-Brown and Twiss, first in ra-
dio astronomy and then in laboratory optical sources.
In the meantime Wolf8) has shown that the various
correlation functions obey simple differential equa-
tions and he developed a rigorous theory of propaga-
tion of the two-point correlation functions.

Quantum Optical Fields and Coherent States.

But the electromagnetic field is quantized. For
each oscillator mode we have a pair of conjugate vari-
ables ϕ(ν) and π(ν) which behave like generalized
canonical quantum coordinate and momentum oper-
ators which do not commute. From them we can con-
struct creation and annihilation operators a†(ν), a(ν)
which also fail to commute:

[a(ν), a†(ν′)] = δ(ν − ν′) · 1

The vacuum with no excitation of the electromag-
netic field has no photons. Classically we would think
of the vacuum as having no electric and magnetic
fields. But since the fields are noncommuting quanti-
ties in quantum theory, the quantum vacuum cannot
correspond to zero value for both the fields ϕ(ν) and
π(ν). Yet much of our understanding of wave optics
would be appropriate for quantum optics if we could
make the vacuum state correspond to zero value for
“the field”, say ϕ(ν) + iπ(ν). This is the method of
coherent states outlined below: it makes all classi-
cal waveoptical phenomena like reflection, refraction,
image formation, interference, diffraction and polar-
ization “already quantized”. Yet it is no approxima-
tion, but an exact result; and it is capable of dealing
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with genuine quantum effects like photon antibunch-
ing. For this purpose we must make use, in addition
to the familiar Schrödinger and Fock representation
a very useful construction which was discovered by
Schrödinger9) and developed by Bargman. It is very
useful for quantum optics.10) This is over all entire
functions of a complex variable z with a scalar prod-
uct

(f(z), g(z) =

∫
(f(z))∗g(z)e−|z|

2 d2z

π
.

On this vector space define a, a† by

(af)(z) = zf(z)

(a†f)(z) =
∂

∂z
f(z)

The state corresponding to the function 1 is annihi-
lated by a and is the vacuum. The n-excited state is
represented by the function 1√

n!
zn. These states are

very useful for describing coherent radiation. The
state having states z(ν) for the modes ν with mode
functions v(ν, x) then the (positive frequency or an-
nihilation part of the) electromagnetic field (with the
appropriate helicity) has the eigenvalue∫

z(ν)v(ν, x)dν .

The excited modes of any particular state of the
quantum electromagnetic field are those that arise in
the eigenmode decomposition of the two-point corre-
lation that we have already talked about:

Γ(x1t1, x2t2) = 〈ϕ(x1, t1)ϕ(x2t2)〉 .

This leads to the possibility of the display of the
states of a quantum field as a quasi-classical ensemble
of fields. This is true not only for intense fields but
even feeble fields: and it is not an approximation
but an exact “equivalence theorem” discovered by
Sudarshan.11) If the coherent states are represented
by |z �, then the statistical density matrix for the
quantized field may be realized as

ρ =

∫
φ(z)|z �� z|d2z

where φ(z), the “diagonal weight” acts as density of
the wave field.

Squeezing and Antibunching.

In classical stochastic theory the photocounts
will show excess fluctuations that show “photon
bunching.” For the Gaussian quantum fields the ex-
cess fluctuation per mode is

〈n2〉 − 〈n〉2 = 〈n〉2 + 〈n〉 .

Here the first term on the right hand side is the clas-
sical wave noise that Einstein had calculated; and
the second one the classical Poisson noise. Such pho-
ton bunching7) can therefore arise in suitable classi-
cal field ensembles. But in all such cases the variance
is bounded below by the Poisson variance. But in
a quantum wave ensemble the weight function φ(z)
can be negative and these could be “photon anti-
bunching” with less than Poisson variance. In the
extreme case of a state of a fixed number of pho-
tons, the variance can vanish. Experimentally such
antibunching12) has been demonstrated.

Whenever we have canonical variables we can
make linear canonical transformations. This leads to
a Bogoliubov-Valatin transformation on the creation
and annihilation operators:

q → e−λq, p→ eλp

a→ cos h λa− sin hλa†

a† → − sin h λa+ cos hλa†

The state which is the vacuum for a and a† is no
longer the vacuum for the transformed operator.
These new operators and the new vacuum are called
the “squeezed operators” and “squeezed vacuum.”13)

Such a situation naturally obtains for light in a trans-
parent dielectric. Mead14) has worked out the the-
ory of light propagating in such media. But such
squeezed states can even be in empty space; this has
also been experimentally verified.15)

Concluding Remarks.

All the above discussion is for the free electro-
magnetic field. But the electromagnetic field is in in-
teraction with the quantized electron field and other
quantized fields. The original vacuum is no longer
the minimum excitation state. In fact that there are
photons in quantum electrodynamics and/or a vac-
uum state are very reasonable assumptions but not
proved by any means. It is generally accepted that
they do exist and that the treatment we have for free
fields continues to be applicable in the cases which
we have considered in this article. So the vacuum
of quantum electrodynamics has a very rich struc-
ture. In curved spacetime appropriate for gravita-
tional fields the vacuum for the incoming fields and
for the outgoing fields are not the same leading to
particle creation. Hawking has used this to deduce
that a blackhole radiates like a blackbody at a tem-
perature proportional to the area of the blackhole.
If tachyon exist the vacuum depends on the Lorentz
frame in which it is viewed.
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