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ABSTRACT. We propose a theory whereby the dynamics of mass and
charge are described simultaneously in a simple 4-tensor equation de-
scribing the conservation of potential flux in its own flow field. We
show how this equation can be expanded into a set of four first-order
non-linear equations, and how under appropriate limits these equations
reproduce the conventional equations for electrodynamics, mass (iner-
tial) dynamics, and the equation of motion for an idealized charged
massive particle in a specified electromagnetic field.

RÉSUMÉ Nous proposons une théorie décrivant simultanément les dy-
namiques de la masse et de la charge, via une équation tensorielle
(á 4 indices) simple exprimant la conservation du flux de poten-
tiel dans son propre champ advectif. Nous démontrons ensuite com-
ment cette équation peut être développée en un systéme de quatre
équations non-linéaires du premier ordre, et comment, sous certaines
hypothéses, ces équations reproduisent les équations conventionelles de
l’électrodynamique, de la dynamique de la masse (inertielle), ainsi que
l’équation du mouvement pour une particule chargée et massive dans
un champ electromagnétique donné.

1 Introduction

In this paper we show that simple aspects of the dynamics of systems
involving mass, electrical charge, momentum, and electrical currents can
be derived from the following simple conservation equation:

∂λ(AµAλ) = 0. (1)

The tensor AµAλ is the product of components of a 4-vector Aµ having
three space components and one time component as will be discussed in
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more detail in later sections. We shall refer to the 4-vector Aµ as the ‘po-
tential flux field’ since in vacuum electrodynamic applications, Aµ will
be shown to have space components identical to the conventional mag-
netic vector potential and a time component proportional to the electric
potential scalar. Similarly, when rest mass is absent or negligible, the
electrodynamic aspects of the tensor AµAλ will be seen to have some
obvious similarities with the Maxwell stress-energy tensor. In more gen-
eral applications, however, other aspects of Aµ are unusual and suggest
that a better name might be ‘amplitude’ (after similarities it bears to
the amplitude function used in quantum mechanics) or ‘photon flux den-
sity’ (since it is the fundamental carrier of the electromagnetic field and
energy). In fact (to give contrast to the purely electromagnetic case)
for applications where mass advection dominates, the D’Alembertian of
AµAλ resembles the conventional stress-energy tensor for matter.

In the following sections, we will attempt to show that (1) is a fun-
damental equation describing the field dynamics of mass and charge.
Charge density is related to curvature in the Aµ field, while energy and
mass density are related to curvature in the square of the Aµ field. In the
safest approach (which we will presume unless stated otherwise), we can
follow a conventional approach and regard the material charge and mass
as being imposed in the problem and that these ‘cause’ the fields. The
tenor of the formulations we will show suggest, however, that it might
be more natural to regard the mass and charge as aspects of the field. In
fact, in the derivations we find relationships governing the form of field
configurations that will produce mass and charge densities. In this paper
we focus on simple fields which do not have such configurations since the
main purpose of this paper is just to show that the formulation proposed
reproduces conventional formulations in the appropriate limits.

In section 2 the general formulation is laid out together with a ta-
ble listing the relationships of Aµ to the conventional quantities, and a
subsection presents a discussion in terms of the Lagrangian density. In
section 3 we verify that in the idealized limit where only electromagnetic
fields are presumed to be important (no rest mass effects), a correct wave
equation is obtained for the electric potential and in fact the present for-
mulation can be reduced to a conventional description in terms of the
vacuum Maxwell’s equation. In section 4 we test the other limiting case
where electrodynamic effects are neglected and only inertial effects due
to rest mass are important. In this case both the correct unforced mo-
mentum equation for a particle, and the correct energy tensor description
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for a noninteracting ‘dust’ continuum are reproduced. In section 5 we
treat a simple case which combines the inertial effects of a small particle
and the electromagnetic effects of a background field which is presumed
to be large enough that the effects of the particle on the total field can
be neglected. In this case the correct momentum equation is obtained
for a particle subject to electric and Lorentz forces (due to the magnetic
field and the particle’s velocity).

2 General formulation

Before applying (1) to specific cases, we discuss some of the general
properties of Aµ together with the relationships with the conventional
quantities. In the following, Einstein summation is used (summation
over repeated indices is implicit), Latin subscripts refer to components
in 3-space, and Greek indices refer to components in 4-space. Also, for
simplicity, we will assume light speed c = 1. Throughout this paper, it
will be assumed that µ = 1, 2, 3 corresponds to orthogonal space com-
ponents while µ = 4 corresponds to the time component of the 4-vector.

First, the form of the 4-vector Aµ depends on the spacetime in
which it is interpreted. The simplest general form of Aµ seems to be
gained for a 4-space involving the proper time rather than the con-
ventional time. However, for clarity here, we will interpret Aµ in
a conventional 4-space described by the flat pseudo-Euclidean metric
gµλ =diag(−1,−1,−1,−1) wherein tensor indices can be easily raised
or lowered to form inner products by simply multiplying by -1: (e.g.,
Aλ = −Aλ, Fµλ = −Fµλ; for a description of this and other flat space-
time geometries see the book by Arzelies[1]). The components of this
4-space are xµ =

〈
xi, it

〉
and the fourth component A4 of the 4-vector

Aµ =
〈
Ai, A4

〉
≡
〈
Ai, iφ

〉
is also imaginary. In this section the position

of the indices is used in a conventional manner to indicate the covariant
and contravariant components, and ∂λ = ∂

∂xλ
refers to the contravariant

derivative. In other sections, however it is not necessary to make this
distinction.

Equation 1 can be expanded to give the following vector and scalar
equations:

∂t(φAi) + ∂j(AiAj) = 0, (2)

∂t(φ2) + ∂j(φAj) = 0. (3)

As will be supported in later sections, the components of Aµ =〈
Ai, iφ

〉
are related to conventional fields and sources. We list in Table
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1 the general relationships which throughout the text will be implicitly
referred to:

field potential φ
field potential flux Ai

field energy φ2

field momentum φAi

field rest energy (field mass) φ2
o = φ2 −AiAi

electric charge density 2φ = −ρe/εo
electric current density 2Ai = −µoJ i = −J i/εo
energy density 2φ2 = −ρE/εo
momentum density 2(φAi) = −pi/εo
rest energy density (mass density) 2φ2

o = −ρm/εo
electric field E = −∂tA−∇φ
magnetic field B = ∇×A
D’Alembertian 2 = ∂t∂t −∇2

Relationships between fields and densities

In the simplest sense, a field potential φ is associated with electric
charges, and the flux of this potential is described by the vector Ai.
A complicating factor in practical problems involving material media
with charge and mass, however, is that usually the variables used to
describe the dynamics are implicitly macroscopic averages. By analogy,
the variables used in equations of fluid dynamics are often implicitly
understood to be larger scale averages but pressure or viscous terms are
included to reflect the parts of the unresolved small scale dynamics which
have non-vanishing macroscopic averages.

We will also follow this approach in that the variables in (2) and
(3) will often be implicitly treated as macroscopic averages but in some
cases the unresolved scales must be considered.

For example, in many cases, φ can be viewed as being similar to the
usual electric potential with a similar correspondence for the macroscopic
variables. For an electrically neutral material, φ will be high near positive
charges lower near negative charges and the macroscopic average of φ
would be rather uniform (or zero, in the conventional description). But
the macroscopic average of the field energy φ2 is not simply the square
of the macroscopic potential. The field energy, because it is the square
of the potential, always includes energy from all scales: φ2 describes all
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of the energy present. The curvature in φ2 gives the total energy density
as described in the table.

In the table, we have shown some definitions for rest energy quan-
tities. From one standpoint, these definitions may be viewed as axioms
which are necessary to satisfy the above requirement that φ2 describe all
of the energy. From another standpoint (which we prefer), φ2

o is viewed
as a contribution to the correlation of AiAi due to unresolved subatomic
scales. That is, our view is that if all scales were resolved, the energy φ2

would always be equal to AiAi. Likewise, the magnitude of φ would be
equal to the magnitude of Ai. To say then that ‘rest energy is present’
means then that we are implicitly working with macroscopic Ai which
do not describe all of the potential flux, only parts which are organized
on larger scales.

So what is Ai? In problems where there is either no rest mass (as in
the case for radiation to be discussed) or when rest mass is present but
the electrodynamic aspects dominate, Ai is much like the usual magnetic
vector potential. In the case described above of a neutral material but
now with some of the positive charges having a small relative velocity
(constituting an electric current), Ai can be viewed as the macroscopic
average of the flux of the Coulomb fields as they are advected with the
moving charges.

We will consider a contrasting case now where there is no relative
motion between the charges in the medium but the whole medium has
a velocity. We must first consider though what a velocity means in our
formulation because as can be seen, the quantities in the table can be
used with the equations (2), (3) for calculations without the notion of
a velocity entering. Also, since quantities such as momentum, energy,
and E, B are usually what is measured rather than a velocity (fluxes are
what is measured rather than velocities), calculations could be compared
with experimental results without discussing velocities. Still, for the
purposes of comparison and discussion we resolve to define a velocity in
the following way:

Because Ai is a flux of φ, it seems reasonable to define a velocity as

ui = Ai/φ. (4)

We can test the consistency of this assumption using items in the
table. Using a rearranged version of the description of the field rest
energy we have for the magnitude of the velocity
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|ui| =
|Ai|
|φ| =

|Ai|
(φ2
o +AiAi)1/2

(5)

which has a maximum velocity of 1 (as mentioned, this is equal to light
speed in our notation) and this only occurs when there is no field rest
energy φ2

o.

Now returning to our case of the neutral material moving with a uni-
form velocity which we will now call ui, we can expect that the macro-
scopic average Ai is zero if φ is zero. The macroscopic momentum,
φAi = φ2ui, however, is not zero for the same reasons that φ2 is not
zero. In fact, because φ2 is the total energy present, the momentum
describes the advection of all energy—rest, kinetic, and electromagnetic.

Expanding further, the momentum density can also be written as

φAi = φ2ui = (φ2
o +AiA

i)ui = (φ2
o + φ2u2)ui (6)

which in rearranging gives

φAi = (1− u2)−1φ2
oui. (7)

Taking the D’Alembertian 2() and substituting with variables in the
table, we have

pi = γ2ρmui (8)

where the Lorentz factor γ = (1−u2)−1/2. The right-hand side of (8) has
a familiar form given by the relativistic mass density times velocity. (For
relativistic mass density, a factor γ2 appears rather than γ (which would
be the coefficient relating relativistic mass to rest mass). Conventionally,
the extra γ factor is regarded as due to the Lorentz contractions on the
proper volume over which the density would be integrated [4] (see page
288).)

In a similar manner, a conventional form relating energy and mass
can be obtained from

φ2 = φ2
o +AiA

i = φ2
o + φ2u2 (9)

which, after rearranging gives

φ2 = (1− u2)−1φ2
o. (10)
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Taking 2() and replacing with variables in the table, we have

ρE = γ2ρm (11)

which relates energy to relativistic mass and in the usual notation is
E = mc2.

So far we have only shown that the relationships described (or de-
fined) in the table appear to be consistent. The task in later sections
will be to show that these relationships used in the governing equations
(2, 3) produce familiar dynamical equations. To finish this subsection,
we discuss some of the general aspects of (2, 3) .

Equation 2 represents conservation of field momentum while (3) rep-
resents conservation of field energy. Also, from (3) we see that the time
rate of change of the field energy is due to spatial convergence of the
field momentum. As will be made more clear in later sections, similar
conservation principles applied to discrete ‘particles’ or material densi-
ties are obtained by applying the operator 2 = ∂t∂t − ∇2 to (2, 3),
replacing with the appropriate densities in the table, and integrating
over the volume of the particle. Note, however, that such an operation
neglects the contributions of the rest of the field.

Equation 1 can be written as

Aλ∂λA
µ = −Aµ∂λAλ ≡ −AµS (12)

where S (= ∂λA
λ) can be viewed as a source term. If Aµ were viewed as

the conventional 4-potential, we could impose the Lorentz gauge which
is equivalent to setting S to zero (i.e. in appropriate units, the Lorentz
gauge is ∂λAλ = S = 0). Our viewpoint, however, is that Aµ is physi-
cally real and thus S must be chosen in accordance. Note also that the
governing equations (2, 3) require conservation of energy and momen-
tum but do not require conservation of the potential amplitude φ, hence
any constraint imposed on S is additional. In most of this paper, we will
make the simplest assumption S = 0 since a more sophisticated form for
S does not appear to be required to gain agreement with simple con-
ventional results. This assumption seems consistent with an assumption
of conservative wave field dynamics with material charge and matter
sources prescribed. We do not propose however, that this assumption is
valid for more complicated cases, particularly those where the dynamics
is dominated by interactions between the rest mass and electromagnetic
fields.
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2.1 Lagrangian

In this subsection we make comparisons based on Lagrangian density
formulations. The material presented is not needed, however, for later
sections and some readers may wish to skip this part.

A departure point for theories that treat both electromagnetic fields
and matter is often to start with a Lagrangian density which is created
by simply adding together energy terms describing Lagrangian densi-
ties from the various dynamical processes. In particular, the Maxwell’s
equations with sources are derivable from the Lagrangian

L1 = Lp + LI + Lm (13)

where Lp = − 1
4FµλF

µλ is an energy relating the electromagnetic field,
and LI = AiJ

i − ρeφ is called an ‘electromagnetic interaction energy’
between the particles and field. The last term Lm = −ρm representing
rest energy has sometimes been included since together with LI , the
equations of motion for charged incoherent matter can be produced when
the time track is varied[3]. (Note, however, that in the usual functional
variation approach, this term is assumed constant and is often omitted
since it would have no effect.)

It is useful to show here that the terms in the Lagrangian above
can be produced from (1) using a physical argument. Recall that (1)
describes the advection of potential flux Aµ (by the potential flux). For
a bound universe, we suppose that the flux of Aj through the boundaries
D of the universe is zero. Hence,∮

D

∂λ(AµAλ)daµ = 0 (14)

(the integrand is of course exactly zero by (1); the integration constant
is also made zero by the boundary assumptions above.) A 4-D extension
of Gauss’ Theorem[3] can be used to write (14) as an integral over the
4-space approaching an infinite volume V and arbitrary time interval T :∫

T

∫
V

∂µ(∂λ(AµAλ))dV dt = 0. (15)

Assume first the case where there is only radiation (no mass), and
we expect S = 0. We can differentiate the governing equation 1 with
respect to µ (calling the result −L2) to get

L2 = −∂µ∂λ(AµAλ) = −∂µAλ∂λAµ = 0. (16)
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It can be shown that a variation of the functional dependence of the inte-
gral (equation 15, using the integral L2) on Aµ, ∂λAµ, is also zero. Hence,
the integrand L2 satisfies the variational condition for a Lagrangian den-
sity but is more restrictive since the integrand is also exactly zero.

Of course The Lagrangian is not unique and the major requirement
is that it must also produce the correct dynamical equations when used
in the Lagrangian equations.

With Fµλ = ∂µA
λ − ∂λAµ, (16) can be written as

L2 = −∂µ∂λ(AµAλ) = 0

=
1
2
FµλFµλ −Aλ∂µ∂µAλ +

1
2
∂µ∂µ(AλAλ) (17)

which, noting the rules above for lowering and raising indices, multi-
plying through by εo and replacing with appropriate densities can be
written as

L2 = −1
2
FµλF

µλ −AiJ i + ρeφ+
1
2
ρm (18)

Equation 18 shows a balance of energy between the electromagnetic field,
the rest mass, and the electromagnetic interaction of mass with the field.
Note that the terms in L2 are similar to those in L1 but

L2 = 2Lp − LI −
1
2
Lm (19)

which can be compared with (13). Under the assumption that no mass is
present, LI = Lm = 0. Therefore, L2 is proportional to L1, and like L1

is also the correct Lagrangian density giving the source-free Maxwell’s
equations. The additional constraint that L2 is also exactly zero gives the
appropriate equipartition of energy since , L2 = − 1

2FµλF
µλ = εo(E2 −

B2) where E and B are the magnitudes of the electric and magnetic
fields, respectively.

Although with the assumption S = 0 above, we discounted formally
including massive particles, we find nonetheless the correct form LI for
the density describing the electromagnetic interaction of the particles,
as well as Lm describing the rest energy, suggesting that the assumption
of a conservative φ field might also extend to cases involving rest mass.
Note, however, that these terms do not appear in the conventional ratios.
For any one term considered independently, the multiplier is unimpor-
tant since the Lagrangian is not unique. But the ‘Lagrangian’ of (19)
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(integral of the sum of the Lagrangian densities) can be converted to
the conventional one of (13) by adding or multiplying by constants only
if Lp, LI , Lm have universal integrals which are independent of each
other. This additional constraint that would be required to reproduce
the conventional Lagrangian might be partially expected since the con-
ventional form (13) does not generally accommodate the conversion of
particle mass to electromagnetic energy or vice versa.

Another difference between the formulation here and the conventional
one is that in treating the dynamics of fields and matter simultaneously,
the mechanical energy of the particles have been automatically included.
Conventionally, another Lagrangian density must be added in or the vari-
ational scheme must be elaborated to account for this. When we assume
that Aµ is dominated by particle mass dynamics and electromagnetic
fields are neglected, it is easy to show that the correct Lagrangian de-
scribing the mechanical process can be obtained from (1). A more simple
and general demonstration of the adequacy of (1) in describing basic me-
chanics is given below in the discussion relating to the energy tensor of
dust.

So far we have only shown that the governing equation (1) can be used
to produce an energy balance with terms similar to those appearing in a
conventional composite Lagrangian density describing electrodynamics
with charged matter. In following sections we will show that (1) also
gives the correct dynamical equations for some particular applications.

3 Radiation

Consider first the idealized case where no field rest mass is present.
Then, φ2

o = 0, the field energy φ2 = AiAi and consequently |Ai| = |φ|.
As mentioned, in this and later sections we no longer need the raised
index notation.

For this fundamental example, we will assume that the potential φ is
an intrinsically positive quantity. In the conventional sense, this might
be regarded as simply a choice for the reference value. In the tenor of this
paper which regards φ as a physical quantity, however, this assumption
is more a statement for the non-existence of ‘anti-potential’. With this,
we define a velocity ci = Ai/φ which we see has unit (light velocity)
magnitude and simply indicates the direction of positive potential flux.

Using now Ai = φci in equations 2, 3 the first thing that is apparent
in this case is that the two equations become redundant because (3) can
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be obtained by taking the product of (2) with ci. This should not be
surprising because in this case where the field momentum advects all of
the energy present in the problem, the scalar momentum conservation
equation (obtained by taking the product with ci) is also an equation
for the total energy conservation.

Now let us rewrite (2) as

φ∂tAi +Aj∂jAi=0, (20)

where we have assumed S = ∂tφ+∂jAj = 0. Dividing (20) by φ we have
the description that the material derivative of the potential flux moving
with ci is zero.

We can also rewrite (20) while using vector notation and utilizing
some vector identities as

∂tA−
A×∇×A

φ
+

1
2φ
∇A2 = 0. (21)

Because |A| =φ in this example, and referring to the table, (21) also
gives

E =− ∂tA−∇φ = −A×B
φ

= −c×B, (22)

showing correctly both the relationship between the electric field and the
potentials, and the relationship between E, B, and c which is expected
for a plane wave at least.

Now we take the divergence of (22) using again S = ∂tφ+∇ ·A = 0
and items from the table to give:

−∇ ·E = 2φ = −ρe
εo

= ∇ · (A×B
φ

) (23)

which reproduces both the conventional relationship between the electric
charge density and the electric field ∇ · E = ρe

εo
, and (when there is

no charge density as expected for radiation) the correct wave equation
2φ = 0.
The additional equality relating the cross-product term in (23) can

be viewed in two ways. If we view the charge density as imposed, then
we have a condition for the way the fields must behave. With radiation,
for example, the charge density is zero and therefore we must have

∇ · (A×B
φ

) =∇ · (c×B) = B · ∇ × c− c · ∇ ×B =0 (24)
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which would appear to be satisfied for typical radiation fields.
In the second approach, (23) suggests that a more complex field con-

figuration can itself create an electric charge density

−ρe
εo

= ∇ · (A×B
φ

) (25)

in a manner similar to the way electric (Schiff’s) charge densities are cre-
ated by non-zero vorticity of conducting fluid in a background magnetic
field [6]. It is important to remember that these calculations assume
S = 0 on which we have made reservations.

In general terms, when rest energy is discounted we should find
consistency with the usual equations for electrodynamics. Of the four
Maxwell equations, two are implicitly contained in the descriptions in
the table, and a third is reproduced in (23). The fourth (Ampere’s law)
can also be reproduced by taking the curl of (22).

4 Mass dynamics

Now let us demonstrate the case where Ai is presumed to be dominated
by the advection of the rest mass field. For this purpose we will make
use of the concept of a velocity ui as it was defined and discussed in
the General formulation section. The case we treat could represent,
for example, the electrically neutral moving medium also described in
that section. Here, however, we no longer require that the velocities are
uniform. Then we are considering a fluid material; rigid body or particle
dynamics can then be obtained as a subset.

In this case the field momentum is φAi = φ2ui and (2,3) can be
written as

∂t(φ2ui) + ∂j(φ2uiuj) = 0, (26)

∂t(φ2) + ∂j(φ2uj) = 0. (27)

Applying the 2 () operator to (26) and (27) while neglecting the
curvature in the velocity fields, and substituting for densities described
in the table, we obtain

∂t(ρEui) + ∂j(ρEuiuj) = 0, (28)

∂t(ρE) + ∂j(ρEuj) = 0. (29)
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Because the dominant form of energy is assumed to be due to the mass
(and for simplicity assuming velocities much less than that of light) the
total energy density ρE is equivalent to the rest mass density ρm and
(28, 29) are simply the usual unforced momentum and mass conservation
equations of fluid dynamics. A more typical form is obtained by using
(29) in (28) to give

ρmDtui = 0, (30)

where Dt = ∂t + uj∂j is the material derivative (the time rate of change
following the material).

Typically, (28, 29) will include other terms such as pressure and vis-
cous terms when the velocities appearing in the equations are implicitly
averaged over the molecular (or greater) scale. A pressure gradient term
−∂iP , for example, may be added to the right side of (28). This term
arises because when averaging (28, 29) to obtain equations in terms of
the larger-scale variables, the larger-scale average of uiuj is typically
[ui][uj ] + δiju

∗
i u
∗
j where [] denotes the large-scale variables, δij is the

delta function (with unit value when i = j and zero otherwise), and
the starred quantities are the unresolved small-scale velocities. Then
(28, 29) may be used with implicit large-scale variables while keeping
the same notation but a pressure term ∂j(δijρmu∗i u

∗
j ) = ∂iP must be

added. If the medium is isotropic, then the pressure term can be de-
scribed as essentially the gradient of thermal energy: ∂i( 1

6ρm(u∗)2). The
macroscopic momentum equation then gains a force tending to cause flow
down the gradient of thermal energy. In a related way, viscous terms can
be obtained. Hence, in comparing (28, 29) with other formulations for
fluid dynamics it should be understood which terms result from simply
averaging and are implicitly included in (28, 29).

The terms which don’t appear in the momentum equation (28) and
maybe should are those describing external forces, and gravity. We might
get around the lack of external forces, certainly electromagnetic ones, by
arguing that our initial assumption that Ai is described basically by the
mass advection precluded having external forces. (In fact, in the next
section we give an example which includes electromagnetic forces.) Such
an argument for the lack of gravity is much weaker. We leave a proper
formulation for gravity beyond the scope of this paper. We will discuss,
however, how we expect these additional forces may appear:

We discussed in the General formulation section that we felt that
the field rest energy φ2

o resulted from an unresolved correlation AiAi.
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That is, when we describe a problem using rest energy then the poten-
tial flux Ai as well as other variables are implicitly averaged over the
atomic scales. We can keep the equations with similar notation for the
macro-atomic averages but then need, in analogy with the pressure ef-
fect described above, to include one or more terms on the right side of
the momentum equation which describe the components of the atomic-
scale dynamics which have non-vanishing larger-scale averages. If, as
speculated, the field rest energy density φ2

o is in essence an unresolved
correlation of AiAi, then in the simplest guess we might expect a term
proportional to −∇φ2

o to appear on the right side of the field momentum
equation. The dynamical effect of this additional term would then be to
create motion which reduces the field rest energy.

Whether such additional forces would act in the sense of gravity is
not clear and certainly requires further study. We feel that including
these speculations here is important, however, because if gravity cannot
also be extracted from the theory proposed then the theory is largely
inconsistent. This is because in general relativity it is the sum of the
energy tensors of matter and electromagnetic fields that acts directly as
the source of the gravitational field.

To conclude this section describing mass dynamics, we show that a
conventional formulation for a mechanical energy tensor can be repro-
duced directly from the governing equation (1).

An elegant description of the dynamics of continua which includes
internal stresses is given by the following energy tensor equation for a
‘non-interacting dust’:

∂λTµλ = ∂λ(ρoUµUλ) = 0, (31)

where ρo is the usual mass density and Uµ is the proper four-velocity [5].
This equation is easily reproduced directly from the governing equation
(1): For this case involving a non-interacting dust, we expect Aµ =
〈φui, iφ〉 which can also be written (using the velocity ui and Lorentz
factor γ as described in the General formulation section) as

Aµ = 〈φui, iφ〉 = φo 〈γui, iγ〉 = φoUµ. (32)

We take 2(1) (neglecting curvature in the velocity field) while using
(32) to replace for Aµ. Replacing for the mass density as described in
the table, (31) is obtained.
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5 Particle in an electromagnetic field

In this section we will attempt to consider the simplest case where both
electromagnetic and mass effects are important. We test the theory for a
simple case where the electromagnetic aspects of Aµ are prescribed over
a large scale and are assumed to be unaffected by the presense of a small
material particle, although the mass dynamics of the particle depend on
the dominant electromagnetic fields.

First, the field momentum equation (2) can be written using vector
notation together with some vector identities as

∂t(φA)−A×∇×A+
1
2
∇A2 + A(∇ ·A) = 0. (33)

Now consider a small particle having momentum mu, non-relativistic
velocity u and charge q in a steady and uniform imposed background
electromagnetic field Eb = −∇φb ≈ −∇φ, Bb = ∇×Ab ≈ ∇×A.

In consistency with the cases described in the Radiation section, we
take S = ∂tφ −∇ ·A = 0 and the potential φ is viewed as positive. In
this case, we will assume ∇·A =∇·(Ab+Ap)=0, where Ap = φpu is the
potential flux due to the advection of the potential of the particle. Also,
consistent with work in the Radiation section, we will assume A2 ≈ φ2.

Using these approximations, (33) can be written as

∂t(φA)−Ap ×Bb −Ab ×Bb − φEb = 0. (34)

We should note that a bit of a puzzle occurs. If we consider the
steady-state of (34) without the particle (Ap = 0) we see that we cannot
choose the background fields E and B arbitrarily but rather that they
must be related in the same way as appeared in the radiation section.
Conventionally, however, we are used to being able to consider back-
ground fields where only E or B is present, for example. What is the
source of this discrepancy?

To limit the scope of this study, we have not explored this completely
but note that we view this problem as similar to the question, “why
aren’t the relationships between E and B the same for static fields as they
are for radiation?”. One possibility is that they are at an appropriately
small scale. This is a very important point and should be studied in
conjunction with the structure of Aµ at the atomic level. To confine
our attention to the problem in this section, however, we will assume
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for simplicity that the background fields are chosen to satisfy the above
constraints.

We take 2(34), and replace with appropriate densities from the
table to obtain

∂tp− ρeu×Bb − ρeEb = 0. (35)

Integrating over the particle volume, we obtain

∂t(mu)− qu×Bb − qEb = 0 (36)

which agrees with the conventional expression for the equation of motion
of a particle in a background electric and magnetic field.

6 Discussion

In this paper, we have proposed that dynamics of interacting charge
and matter can be described by a governing equation for the ‘potential
flux’ 4-vector Aµ. If this idea is to be validated, it will have to be tested
against a wide range of examples because it purports to explain a wide
range of phenomena. In this paper, we have made only the most basic
tests.

Specifically, in one case where we assumed mass is either not present
or dynamically unimportant, the governing equation (2) together with
relationships given in the table were used to produce Maxwell’s equa-
tions.

In the contrasting limit where the electrodynamic aspects become
unimportant (as can happen when averaging over neutral material me-
dia) the correct description of inertia is obtained (which, in the examples
given, for the case of a fluid is described by the unforced momentum
equation and for the case of a non-interacting dust is given by an energy
tensor).

We also examined perhaps the simplest case where both electromag-
netic and inertial effects are important. We considered a moving charged
particle in a background electric and magnetic field and successfully (sub-
ject to an important caveat mentioned) reproduced the conventional
forced equation of motion for the particle. In the terminology of the
theory presented, this would be better stated as the following: We con-
sidered a potential flux Aµ, the magnitude and uniform gradients of
which were dominated by prescribed background values. The curvature
in the fields was, however, dominated by the presence of the particle
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because the background field gradients were uniform. In applying the
D’Alembertian curvature operator to the governing equation for the Aµ
flux, we were then able to find the equation describing the particle mo-
tion subject to the ‘forces’ due to the background components of Aµ.
The particle and background field are, though, simply aspects of Aµ.

To discuss now some of the short-comings in validating the proposed
theory, we first note that even to obtain the simple validations given,
we have had to make various approximations which while they seem
reasonable to us might be further scrutinized. Probably, the biggest two
short-comings are that there remain questions about the interpretation
of field rest mass, and that gravity has not been included. We discuss
these two points further:

The fourth component of Aµ is unequivocally related to the square
root of the total field energy for all cases. In the case of radiation, the
space components of Aµ are the flux of this root total field energy and
we have |Ai| = |A4|. More generally though, when field rest energy is
present |Ai| 6= |A4|. Our preferred view is that rest energy arises due to
a correlation of the Ai field at small unresolved scales. That is, when we
say, ‘rest energy is present,’ we mean that Ai is implicitly an averaged
macroscopic variable. If all scales were resolved then the equality for
radiation would always hold and the use of rest energy would not be
needed. We have not, however, validated this idea.

The open question of whether rest energy is distinct is not just a
philosophical question but can effect the way calculations are performed.
If rest energy is distinct then it only contributes to the fourth component
of Aµ. If, it arises from averaging as speculated then it also effects our
expectations for certain correlations in Ai products when considering
larger-scale averages. Such correlations were considered in speculations
concerning how gravity might appear from the theory proposed.

It is not simply an added convenience if gravity can be derived from
the proposed theory but rather that the theory would be largely incon-
sistent without this. Matter and fields interact electromagnetically and
traditionally it is known that an energy tensor describing the electro-
magnetic field must be included to conserve energy and momentum. In
the formulation proposed here, this interaction is more direct since fields
and particles are treated simultaneously as aspects of one ‘thing’, Aµ.)
(In general relativity it is the sum of the energy tensors of matter and
electromagnetic fields that acts directly as the source of the gravitational
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field. Hence, it would be inconsistent if the gravitational effects were not
also contained in the formulation of Aµ.

Clearly, work that is much needed is to test the formulation presented
for subatomic scales. As a preliminary, we point out some potential
sources of confusion.

It should be kept in mind that the theory we have presented is most
naturally expressed and manipulated in terms of the field quantities. The
curvature (obtained by applying the D’Alembertian) of field quantities
produces another set of quantities (see the table) which are described
as ‘densities’ in this paper. Hence, there is both a field energy and
an an energy density. This distinction does not necessarily appear in
conventional work and making comparisons can become confusing. For
example, conventionally both the squared electric field and squares or
products of the electric potential may be called field energy (or energy
density) even though one involves derivatives of the other.

Consider some further effects of the distinctions between fields and
densities as we have defined them: The field energy φ2 is always positive
(we also prefer to view the potential φ as positive). The energy density
however is ρE = −εo 2φ2 and can have either sign. If we consider
applying this definition to a charged point particle with potential φ ∝ 1/r
we find that while the energy density at the point (whatever that means)
is likely positive reflecting the mass of the particle, outside the point
in the 1/r field the energy density is everywhere negative. While the
concept of negative energy is not new (e.g.[2]) it should be remembered
when making comparisons that in the theory presented here only the
energy density can be negative; the field energy is always positive. Also,
care must be used in determining whether conventional results describing
‘energy’ correspond here to field energy or energy density.
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