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It is the dissymetry which creates
the phenomena.
Pierre Curie [1]

ABSTRACT. The study of the quantum state is revisited to put in view the
possibility to interpret all the quantum state in the framework of Sommerfeld
model. Taking support of the relativity of the motion which impose to have
the same causes responsible of it in the space of the electron than in that of
the proton, the variations of the mass of the electron are supposed to be re-
sponsible of the variations of the speed. As a result there are variations of the
radial but also of the angular speed independently of the angular quantifica-
tion. It is the possibility of constant or variable angular speed which origi-
nates the relativist doublets. The interaction is attributed to exchanges of
matter between the electron and the potential. This approach of the motion
leads to regard the rotation as the result of two orthogonal motions of rota-
tion. As a result only half of the action associated with rotation leads to an
observable magnetic moment. This property allows to understand the spatial
quantification for all the quantum states. It Appears that the spin notion es-
capes to Sommerfeld’s theory as well to Dirac’s theory.

1 INTRODUCTION

The experimental study of the spectral lines emitted by an atom reveals
that they are classified in series and that the lines of some of these series are
double, called regular doublets. The separation of double lines is very weak,
the traditional example is that of the line D of the sodium which is double,
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the respective wavelengths being A; = 5890A and A, = 5896A. The set of the

lines thus observed for various atoms forms the experimental base of the
quantum state. To interpret the spectral lines Sommerfeld was brought to
quantify in the motion study of the electron around the proton the angular
action and the radial action [2]. This manner of making leads to a great num-
ber of remarkable results but leaves without answer the origin of the regular
doublets and the existence of the half integer numbers [3]. Only up to now
the introduction of the wave functions and the theoretical model of Dirac
made it possible to find the set of the quantum states and the energy levels
associated with the regular doublets. However, it remains in the current state
of search a fact very surprising: these two theories lead to the same expres-
sion of the energy of the levels of the various quantum states whereas the
interpretation of the regular doublets escapes the corpuscular traditional ap-
proach from Sommerfeld.

Putting besides these difficulties the model of Sommerfeld with the con-
cept of trajectory has a remarkable explanatory force that have not Dirac’s
model. For example it makes it possible to understand the attraction between
atoms of which the most external electrons are in a state "s" [4]. The trajec-
tory indeed gives an electric dipolar character to the atoms and thus allows to
understand for example attraction between alkaline atoms. On the other hand
the trajectory of electron has allowed to propose an interpretation of the
mechanism of conductivity and superconductivity in the superconducting
oxides [5]. Furthermore the assumption of trajectory is suggested by the
magnetic properties of the matter: indeed magnetism is before all the reflec-
tion of the motion of electrical charges. These various aspects suggest that
there exists a connexion between the model of Sommerfeld and of Dirac and
that it is possible to consider the trajectory of electron in its different quan-
tum states. Thus the purpose of this work is to put in view this aspect of the
quantum state.

To find the connection between the theory of Sommerfeld and that of
Dirac it is necessary to notice that in the approach of Dirac the doublets are
related to two groups of very close states which differ by relativistic correc-
tions of the mass of the electron. But what is remarkable it is that these two
groups of states have radial wave functions very close [6], a point which in
the approach of Sommerfeld means that they gravitate on ellipses of very
close eccentricity. In particular on circles of practically identical radii for the
circular states. As the variations of mass are associated to variations of speed,
that means that it can exist variations of mass other that that associated to the
variations of radial speed. This result leads to reconsider the origin of the
orbital motion. In the study of the phenomena the causes of the physical laws
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must be independent of the place of the observation. Let consider the space of
the electron supposed very small, the question is which are the variables able
to determine the quantification of the system electron-proton. Let us consider
the radial speed of the electron. When it varies, in the space of the electron,
just the variations of the energy, thus of its mass can be associated with it. As
a result it is necessary to consider that in fact the variations of the mass of the
electron are at the origin of the variations of its radial speed. It results from it
that the interaction between the proton and the electron is related to ex-
changes of mass between them which lead to a motion with fixed or variable
mass. This approach of the interaction leads to consider the potential and the
electron itself as fluid matter. Let us suppose then that the density of mass
which describe the interaction is inversely proportional to the distance which
separates the centres of gravity of the electron and of the proton and propor-
tional to the charge of the proton. The classical characteristics of the potential
are preserved but they are widened. Indeed the motion with variable mass are
not related to only the variations of the radial distance. We will see that this
conception clarifies the comprehension of the quantum state.

By studying the concept of spin we already used exchanges of matter be-
tween the potential and the electron to interpret the wave function. It is sup-
posed to determine by exchanges of matter, the mechanical action to which is
subjected the electron and which guides it along its trajectory upon an ele-
ment of length and time {dl, dt} [6,7]. Thus the exchanges of mater deter-
mine the quantity of energy, mass and momentum which are exchanged be-
tween the potential and the electron, considered as a fluid mass [6,7]. They
are the exchanges of matter which determine displacements of the electron
compared to the proton and consequently the trajectory. This approach of the
motion by exchanges of matter reveals another difficulty in the traditional
description of orbital rotation. Indeed if the orbital motion of rotation just has
two degrees of freedom it remains that the exchanges which generate it take
place in the three directions of space. It is this aspect of the phenomena
which makes it possible to understand the half-integer angular momentums.

This approach of the motion consists to give to the mechanical action a
fundamental role. This role is natural since any momentum and any quantity
of kinetic energy are always related to a space displacement and an interval
of time. It was in fact the idea of Sommerfeld [2] to extend the assumption of
Bohr concerning the angular momentum [8] to elliptic orbits. With Louis de
Broglie the action also plays a fundamental role: it is guided by the idea of a
major identity between the principle of less action and that of Fermat that he
was led to propose the hypothesis of a wavelength associated to the momen-
tum of the electron by the quantum of action " 4 " [9]. It was also the idea of
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Schrédinger which builds the differential equation whose wave function is
solution by introducing a propagation velocity of surfaces of constant action
[10]. We propose in this work to show how this conception of the action by
exchange of matter between the proton and the electron makes it possible to
understand the existence of half-integer angular momentum and to find the
whole of the energy levels in the approach of Sommerfeld.

2 THE ACTION AND THE SPATIAL QUANTIFICATION

We wish to show how the mechanical action makes it possible to propose
a link between quantum corpuscular mechanics and that introduced with the
operators acting on the wave function. In classical mechanics the action is the
product on an element of space and time {dt, dl}, either of the momentum by
the element of length dl, or of the energy by the element of time. In the the-
ory of Dirac the operators act on the wave function by first order derivation
with respect of the variables of space and time. If these operators act on a
function representative of the action they gives access to the various compo-
nents of the momentum and energy. Then let us take a different position from
the classical interpretation and suppose that the representative function of the
action is precisely the wave function. Moreover we suppose that the action
generated by the wave function takes place by exchanges of matter between
the electric potential and the electron. The quantification of the wave function
is then that of the action associated over one period with the different degrees
of freedom. This assumption leads to suppose that the electron charge and the
potential are made of elements extremely small compare with dimension of
electron, having a mass and that we call grains. We suppose thus that the
exchanges of matters result of exchanges of grains between the electron and
the electric potential.

To describe the motion of the electron around the proton we consider Ra
an atomic reference frame considered as fixed, made of a system of orthogo-
nal axes, the centre of gravity P of the proton being at the origin. This centre
P is also the centre of the potential which acts on the electron. The intensity
of the potential in a A point is inversely proportional to the PA distance that
separates it from P centre. As a result the density of matter allowing to de-
scribe the potential is itself inversely proportional to this distance. Let us then
y be the centre of gravity of the electron. As for the potential we suppose that
in the space of the electron, the density of matter allowing to describe the
electron charge is a function inversely proportional to the distance to the
centre Y of gravity of the electron. The surface which delimits in the space of
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the proton the volume of the electron is consequently that which corresponds
at the minimum of density. It is through this surface that the exchanges of
matter determine the action and the trajectory.

2.1 The action of rotation

Let us consider the motion of the electron in the atomic reference frame.
To describe the motion the choice of the reference frame is arbitrary. As long
as we consider only the central potential as source of the interactions there is
no dissymmetry which makes it possible to privilege a reference frame more
than another. Let us consider the " 1s " states which are the deepest and cor-
respond to only one quantum of action /. In Sommerfeld’s model the motion
of the states " 1s " is circular and there are just two degrees of freedom which
are independent. On the other hand the exchanges of matter which determine
the momentum and generate the orbital rotation are distributed in a volume.
They do not have any raison to be only distributed on the two degrees of
freedom of the trajectory. Consequently the action associated with rotation
cannot be correctly described by the product of two vectors, the momentum
and dl displacement, all the two contained in the plan of the trajectory. These
two vectors must necessarily have two components in orthogonal plans so
that the action results from exchanges in volume. In other words the plane
rotation is the result of two orthogonal rotations. We will see how this prop-
erty makes it possible to put in evidence the half-integer quantum numbers.

We then have to consider two aspects of the motion : the rotation which
only makes it possible the electron to turn around the proton and a possible
supplement of momentum which without the rotation will not make it possi-
ble to the electron to turn around the proton. This supplement of momentum
causes to decrease the binding energy of the electron compared to the proton.
The deepest levels are those of the states " 1s " which have the characteristics
of the rotation. We will start by studying them.

Let us then consider the spherical reference frame : r, 8 and ¢, with 0 < ¢

< 2mand 0 < 6 < 12. This choice of frame of reference result supposing that

the motion is contained in a plane and that the action also. The hypothesis of
exchanges of matter, leads to consider that the mechanical action results of
exchanges in all the directions of the space. To respect this hypothesis we
suppose that the action of rotation, which is the alone present in the states "
Is ", is the result for each element of action pdl and whatever be the consid-
ered time, of two components of action working parallel to two orthogonal
planes. In other word one can consider that the motion is the sum of two
orthogonal motions each one having a variable ¢ with 0 < ¢ < 27U Further-
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more there is no reason to favour one variable more than the other. As a re-
sult the corresponding actions must be equal.

2.2 The two components of the action of rotation

To study this property let us determine how the action of rotation can be
split up into orthogonal components. Let us consider to this end a differential
element dA of action. It is the product of a momentum p by a differential
element of length dl. The projection of the action is thus the product of pro-
jections of p and of dl. In view to have equivalent components to the starting
action, we will split up dA into two components equal in the tangent plane to
the sphere on which revolves the electron at the point where it is.

Figure 1. The motion of the electron.

Let G be the plane of gravitation of the electron which contains the axis
Px. Let us consider the equatorial plane E which passes by the centre P of the
potential and which contains the axes Px and Py (figure 1) and the plane N
containing the axes Px and Pz which is normal to it. They are these two
planes that we choose to split up the action associated with the rotation. The
plane of gravitation cuts these two planes along the axis Px. Let B be one of
the two points common to the trajectory and to these three planes. Let us first
consider the electron at the time where it passes in B (figure 1). The lines of
intersection of the tangent plane out of B with the two planes of projection
are the perpendiculars out of B with each one of these planes. For an interval
of time and of length {dt, dl}, which bring the electron from B to C, if p is
the momentum, the corresponding action is pdl. To split up the action of
motion of rotation into two orthogonal actions the corresponding actions
must be the product of the projection of momentun p and of the element of
length dl. Let a be the angle between the planes G and E, the projection of

pdl on E is dAg = cos’apd! and the projection of pdl on N is dAy = sin’apdl.

The sum of these projections gives the total action. For the action of rotation
that of the states " 1s " we saw that these actions are equal, which implies
that a = 45°.

Now let us suppose that the electron moved from B to By, and let us still
consider an interval of time and length {dt, dl} which brings B, in C, (figure
2). Let Dg be the straight line of intersection of the tangent plane in B, with
the equatorial plane and Dg the straight line of intersection of the plane of
gravitation with the tangent plane in B;. Let us call also Dy the straight line
of intersection of the planes G and N. In the tangent plane in B; we can still



The quantum state and the doublets 7

consider the decomposition in dA; and dA; to 45° here and there of Dg. We
have:

dA] :dAzz_pdl (21)

Figure 2. Study of the projection of the action.

Now let us suppose that the electron moved from B to By, and let us still
consider an interval of time and length {dt, dl} which brings B, in C, (figure
2). Let Dg be the straight line of intersection of the tangent plane in B, with
the equatorial plane and Dg the straight line of intersection of the plane of
gravitation with the tangent plane in B;. Let us call also Dy the straight line
of intersection of the planes G and N. In the tangent plane in B; we can still
consider the decomposition in dA; and dA, to 45° apart here and there of Dg.
We have:

dA] :dAzz_pdl (21)

These components of action are not parallel with the planes E and N. To
determine the projections from these points it is enough to project the two
components d4; and dA4, on Dg and Dy. Let us consider the projections
Pg(dA,) of dA, and Pg(dA,) of dA4, upon Dg. Let B be the angle between the

line carrying the component d4, and the straight line Dg. We have:
Pr(dA)) = dAicos’B et Pgp(dAy) = dA,sin’B (2.2)

Taking into account (2.1) we have :

Let us consider now Dy the straight line of intersection of the planes G and
N. The same reasoning shows that we also have:

dAN = PN(dAl) + PN(dAz) = _pdl (24)

2.3 The half-integer angular momentum

Let us then consider a homogeneous magnetic field H. It is generated by a
solenoid. As a result the modifications of density of grains which it involves
are described with only one angular variable that of orthogonal planes to the
field H. Consequently the field H modifies the action only in this direction of
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planes. These modifications act thus only on the projection of the two com-
ponents of action of the motion of rotation on the direction of planes perpen-
dicular with H. Let Sg and Sy be these components all of them equal to _pd!/
for the element of length dl and let & be the angle between the planes perpen-

dicular with H and the plane E. The projection of components of the action of
rotation are Sgcos>d and Sysin’d. We have :

Skcos®d + Sysin®d=_pdl (2.5)

Let us consider the states " 1s ". These states correspond to just one quan-
tum 4. For these states as for the others there is rotation. The action of rota-
tion is thus 4. For the states " 1s " the trajectory is a circle. Let r be its radius,
over one period the cover length is 21wr. Thus the corresponding action _pd!/

for the segment dl is :

bl

dl =
-PET - 2

(2.6)
As a result for the observable angular momentum upon an element of
length dI we have :

_rpdl=Mdl = _hdl 2.7)

Thus we have : M= 1 (2.8)

Thus has for the states " 1s " whatever be the orientation of the magnetic
field H one can observed only the magnetic moment which corresponds to
the kinetic moment 7.

It is interesting to notice that the relations (2.6), (2.7) and (2.8) show us
that the conservation of the angular momentum results from the quantifica-
tion of the action.

If now in addition to the quantum of rotation, the considered quantum state
have several additional quanta of action associated with an additional mo-
mentum, these quanta distribute between the two components of rotation and
those associated to the variations of mass as the study of doublet will show it.

Thus the remarkable property of the different quantum states to exhibit,
through the associated magnetic moment, an observable angular momentum
half-integer, comes of that the rotation have necessarily two equivalent or-
thogonal components of action while the magnetic field of have only one.
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Let us underlined that this property is that of the orbital rotation since the
study which just have been done concern only the movement of centre of
gravity. It is possible that the orbital rotation is related to that of the own
rotation but it is an open question out of frame of this work. Finally it is in-
teresting to stress that in all quantum state one must distinguish the quantum
of rotation which has different properties from other quanta.

3 THE MODEL OF SOMMERFELD

In the study of Sommerfeld which takes into account the relativistic varia-
tions of the mass, the electron is assimilated to a point. There are thus two
independent degrees of freedom. Let us consider the trajectory of the electron
and let be, in the plane of the trajectory, » and W the radial and angular co-
ordinates with the centre P of the potential at the origin. Let us then consider
an elliptic trajectory for example a state 2s. The momentum which are sup-
posed to be quantified, are py and p,. The calculation of the energy of a level
starts from the definition of the kinetic energy T and the speed v of the elec-
tron in relativity. If my is the rest mass of the electron and c the speed of the
light, we have :

0 0
T = moe’ B——x - 10 3.1)

-8 H
The speed v of the electron at the considered instant is contained in the
expression of 3:

g=Y=L1 42 (3.2)

C C

In this expression 7 and { represent the derivative with respect to the
time of the variables  and ¥. If e’/ is the potential energy, a quantum state is
defined by its total energy W which is a constant of the motion. We have :

m,c’ e’

W=t - (3.3)
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The search of the stable quantum states consists in determining the various
possible values of W. To carry out this quantification Sommerfeld uses the
relativistic Lagrange function:

L = moc? ,/1 -B*> -U (3.4)

where U is the potential energy, that is to say for the electron compared to the
proton U = e*/r. The moments of Lagrange of the variable r and W are :

oL d oL
P o o™y
While supposing that the mass which determines these two momentums is

the mass m, of the electron at rest, it comes

myc® 0B’

(3.5)

myr

Pr= —= (3.6)

NN

myc®  0p’ myr’
= 3.7
Po™ N G

The quantum conditions are:

IJ°=dw kh (3.8)
(3.9

f my — ph
V1-B°

The number k and p are by assumption positive integer numbers. In Som-
merfeld approach the number p can be null but not £.

These two equations define, during the period of the motion, the action as-
sociated with the considered degree of freedom. The equation (3.9) because
one integrate on a period the product of linear momentum p, by the element
of length dr. The equation (3.8) because one integrate on a period the product
r of speed associated to the variable W, by the corresponding mass

moﬁ— ﬁ2)1/2 and by the element of length rd W associate with Y. Conse-
quently the equation (3.8) definite an action on all the period of motion. This
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point is significant because we know that the observable angular momentum
is not equal to the action which generates it. As a result it is preferable of
regarding p as action per unit of angle that we will call the angular action,

more than like the angular momentum. Let us take notice that the angular
action always include the quantum of rotation that Sommerfeld theory’s does
not allows to apprehend.

Let us consider the energy levels W. They depend of the quantum numbers
k and p. Let us introduce the quantum principal number n = k£ + p. Let E be
the energy defined by the relation:

2
E=W-mc =T+ my? - (3.10)
r

For a couple of numbers n and k the calculation of the integrals (3.8) and
(3.9) allows that of energy E, ; of a level which is given by the relation:
1
2
2

=200
OoOod,

En,k +

a
m002 D 2 _ 2|j|:|
0 %h/k a5k

-1 (3.11)

a is the fine structure constant o = ez/hc, k characterises the number of
quanta of actions associated with py by the relation (3.8). As & occurs by its

square it can take any positive or negative integer values but not zero values.
However if it is supposed that k represents the angular momentum only the
positive values are to be considered. It is this interpretation which prevailed
at the time of Sommerfeld. The comparison with the model of Dirac where
the positive and negative values are retained leads to suppose that another
choice is possible.

Then let us consider the layer L which corresponds to n = 2. The experi-
ment shows that this layer contains three levels : 2s/, 2p;» and 2p;,. On the
other hand the expression (3.11) and the quantification of py and p, put in

view only two levels E, ; for the layer L. A level with k=2 and p = 0, whose
motion is circular, it corresponds to the level 2ps),; the other with £ =1 and p
= 1 whose motion is elliptic with a radial component of the linear momen-
tum, it corresponds to the level 2s;,,. It misses in this approach the level 2p,,.
It is the fundamental difficulty on which the approach of Sommerfeld stum-
bled and which seems to indicate that only the method of Dirac which finds
the three levels is correct.
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3.1 Speed and mass

In the approach of Sommerfeld only the variations of the mass with the ra-
dial speed of the centre of gravity y of the electron are considered. In the fluid

model of electron where the grains are the support of the energy of motion
and mass, when radial speed decreases or increases, the mass, that is the
numbers of grains, increases or decreases. On the other hand for a constant
angular speed, without radial speed, the exchanges of matter conserve the
mass. They are these two cases that are determined by the quantum condi-
tions (3.8) and (3.9). With the model of grains we can also consider varia-
tions of the mass associated with variations the angular speed of the centre of
gravity of the electron while preserving the radial momentum. This property
is already present with the variations of mass associated with the variations
radial speed. Indeed these variations preserve py and the two components of

the angular momentum associated to the rotation. This property can also
concerns p; if the mass varies independently of7 .

Let then / be the quantum of action associated with rotation. This unit of
action always contributes to the value of the quantum number & defined by
the relation (3.8). The exchanges of matter associated with rotation can take
place with constant mass, but there are other possibilities. For the states with
constant mass, the corresponding units of action contribute to the quantum
number k& which characterises the angular action independent of the action
associated with variations of mass. If the rotation takes place with variable
mass in addition to the unit of action which generates the rotation it can have
one or more units of action associated with variations of mass. These varia-
tions of mass generate variations of speed: either radial, or angular. The
number of these units of action belongs to the quantum number p defined by
the relation (3.9).

Let us consider then, for a same value of the principal quantum number 7,
a state with a unit of action generating variations of the angular velocity and
another state where this unit of action is transferred on the quantum number
k. For these two states the number of quanta associated at the radial speed
remains the same one. Their trajectories are thus very close, their energies
differ only by relativistic corrections. They correspond to two types of solu-
tions which give rise to the regular doublets. We will discuss further the pos-
sibility of several units of action generating the variations of the angular
velocity. Thus the two types of solutions, associated with the two lines of a
doublet, are the reflection of : " The capacity of the electron, for a same an-
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gular momentum, to have a constant or variable mass independently of the
variations of the mass corresponding to those of the radial speed ". On the
other hand, nothing indicates that they correspond to two orientations of the
own rotation like the assumption of this rotation introduced by Uhlenbeck
and Goudsmit [ 11,12 ] can let it believe, it is a question which remains open.
They correspond in fact to two energy levels which differ one from the other
by relativistic corrections and which preexist to the application of a magnetic
field what, with George Lochak, we have already underlined [13 ].

3.2 The degrees of freedom and the calculation of the energy of a level

Thus a variation of mass can take place on a component of the linear mo-
mentum without modified the other. This property implies that the different
components of the linear momentum associated with these variations of mass
are independent degrees of freedom. For radial speed this property while
bringing a particular enlightening, does not give access to new properties, for
the variations of the radial speed are always connected to variations of the
mass. On the other hand, the independence of the variations of mass com-
pared to the quantification of the angular momentum associated with the
angular speed is a property which has not yet been recognised up to now for
the perpendicular speed to the radial speed. It results from it indeed that there
are two degrees of freedom which quantify rotation and this leads to consider
again the calculation of the energy.

Since there are two degrees of freedom which quantifies the rotation we
can still to call p, the angular momentum defines by the relation (3.7). It is

independent of the variations of mass. Let then  be the linear component of
speed, orthogonal with the radius vector » associated with the variations of
mass related to the orbital motion of rotation and let p, be the linear mo-
mentum associated with these variations of mass. For a circular trajectory this
component is tangential with the circle but distinct from py. The momentum
P., affects the angular velocity, it is the reason for which we use the Greek

letter omega, but it is not an angular momentum since it is generated by
variations of mass independent of the angular velocity. We have:

o

3.12
ow 12

P
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2 2 .
it comes : Do= o® 6[3. = M@ (3.13)
21-p2 0@ [1-p?
Le us write : wadl =ah (3.14)

The variations of mass associated with p,, involve variations of the angular

speed w just like the variations of mass associated with the radial speed, but
they are independent from the radial speed. It results from them that for a
same total energy, the quantum conditions which determine the elliptic tra-
jectories remain valid for the variations angular speedw , as the experiment
shows it for the states 2s;, and 2p;,, their energy levels being practically
equal [14].

To see it in the field of calculation let us pose:

fP,.d( =rh (3.15)
let us equally write : Pm=pPrt Do (3.16)
It comes : -fpmdé = f(p, +pw)dl =(r+a)h (3.17)
let us write : p=a-+tr (3.18)

Let us show that the quantum number p defined by the relation (3.18) is
that of the relation (3.9) which determines the value of the energy of the level
Eq k.

The momentum p, and p,, are orthogonal, one thus has :

Pu’ =Pt DS (3.19)
The independence of p,, and py makes that one has:
R R ) T (3.20)

As in the calculation of E, the momentum occur by their squares, the
leading of calculation remains the same if one replaces p, defined by the
relation (3.5) by p., defined by the relation (3.16). The calculation is due to
Sommerfeld [15] and it can be find with de Broglie [3].
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In the model of Sommerfeld the calculation of the energy of a level starts
from the definition of the kinetic energy T given by the relation (3.1) and the
speed of the electron in relativity, relation (3.2). Taking into account the
variations of mass associated with p,, it is necessary to replace the expression

of B relation (3.2) by :

p-t=L g 621
c c

The work of Sommerfeld evidently does not refer to existence of speed w
which characterises the speed associated with variations of mass in the direc-
tion perpendicular to the radius vector r. But as we will see the calculation is
not modify by this additional degree of freedom.

The calculation of E,; consists in calculating p,, starting from W given by
the relation (3.3). By integrating p,, over one period, the quantum condition
(3.17) with a + r = p leads then to the expression of E, ;. Let us consider then
the momentum p,, p, and py. They are defined by the relations (3.5) and
(3.12). Their expressions given by the relations (3.6), (3.7) and (3.13) allow
to calculate p,, starting from the following sum :

2.2 2.2 2
2 myr o My Py morl[l
;= ; = ;> = 3.22
p 1—[32 pw l_Bz }"2 I—Bz ( )
it comes
2
p ’;_2 +d.)2 +r2¢,2 mZCZﬁZ
2 p L =m? =20 3.23
Pr TPy 2 0 1_Bz 1—,32 ( )
thus :
2.2 p2 |:| mzcz
met sptepie = e S oy
r 2 [3
D -B° 0

The expression of W given by (3.3) is transforms using (3.24) in :

2 2

W—c‘/mgc2+p3+p;+£f—-e— (3.25)
r r
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A quantum state will be stable if there are constant values of W. As the
energy of the rest mass is a constant, it is convenient to rewrite the relation
(3.10) in the following way:

W =E+ myc* (3.26)

As we have seen py is a constant of the motion different from the observ-
able angular momentum. The relation (3.8) then makes it possible to write:

py=kh (3.27)
Using the relations (3.3), (3.25) and (3.26) we can write:

Pn=1% A+¥+% (3.28)

with the following notations :

E’ O
A= Z0my =+ mec T +—E- 0 -10 (3.29)
c myc E
Ee® + 2 )
B= = mye” + mge (3.30)
4 4
e e
C= — =Py =——k'I (3.31)
c c
By introducing the fine structure constant e*//ic one obtains :
_ 220 a*0
C=kng-=—5g (3.32)
O 0

By integrating p,, over one period by the method of the residues one ob-
tains :

r r

2B 2 0 0
ji A+_+—§dr = 21'%}/6—%Eﬁph (3.33)
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The equality with ph comes from the quantification by taking account of
the relations (3.9), (3.17) and (3.18). By replacing A, B and C by their values
one obtains after a simple calculation the expression (3.11) in which p = a +r.

4 THE MODELS OF SOMMERFELD AND DIRAC

Any quantum state associated with p,, can seem to have the same charac-

teristics as those associated with p,. There is however a significant difference:
let us suppose that there is a quantum of action associated with p. It charac-

terises the variations of the angular speed, consequently it contributes to the
angular momentum for 7. On the other hand each quantum of action associ-

ated with p, leaves it unchanged. In addition, the quantum number p relates to
the radial motion as well as the motion which results from p,,. It is necessary

thus to distinguish the quantum numbers associated with these two types of
speeds. It is this possibility for the rotation of having a constant or variable
angular speed which is at the origin of the doublets.

In theory of Dirac it can seem that the sharing of the quantum number p
does not exist. That comes from the fact that one put the accent on the two
possible values of &, that is k = / and k = —(¢ +1). These two values allow to

find all the known quantum states, as a result there is no reason at first sight
to consider that p can be the sum of two distinct numbers, each one being
characteristic of variations of mass in two orthogonal directions. However,
when the number & changes from k£ = —(/+1) to £ = / the number p passes

from p = n —({+1) to p = n —(. The number p thus varies of one unit, the total
angular momentum remaining the same one. Indeed, one has M= (/+ )k [6
and 7], (let us recall that the numbers j = ¢ + andj= ¢ — characterises the

maximum value in Bohr magneton of the observable and observed magnetic
moment, according to the negative or positive values of &, the quantum num-
ber which in the model of Dirac takes the values k = —(/+1) or k=7, [13, 6,

and 7]). There is thus well a unit of quantification corresponding to the
quantum number «a in the model of Dirac. Thus for a same value of the prin-
cipal quantum number #, the values ¢ = 0 and a = 1 make it possible to find
all the known quantum states. In the model of Dirac this point is known ex-
cept that it is associated with both values of £ without the introduction of the
number a. This being, in the model of Sommerfeld or Dirac as well, nothing
prohibits to consider values of a higher than one.



18 X. Oudet

Let us now study if the integer values of a higher than one are possible. To
this end it is useful to recall which are the possible values of quantum number
r. When r varies, the eccentricity of the trajectory varies. In the hydrogenoid
atoms we know that the energy levels E, , for a same value of "n" but for

different values of 7, are different. This property is interpreted by screening

constant which affects the central potential, they are characteristic of the
eccentricity of the trajectory. In addition, the states corresponding to various
values of a with » = 0 are circular. Consequently, these interpretations show
that the quantum number r takes well all the integer values positive or null
obeying to the relation » < n —1. As a results with the two values ¢ = 0 and

a =1 all the known quantum states are interpreted. Consequently, the values

a > 1 are either forbidden, or unstable. If such states exist they have charac-
teristic energies which merge with those of the already known states. With
such an eventuality, these states in electronic transitions, all being unstable,
they must modify the statistical weights which one knows that they do not
always correspond to the expected values.

5 THE DIFFERENT QUNTUM STATES

By studying rotation we saw that there is a quantum of action associated
with rotation. As soon as the rotation exists with this quantum distributed on
two orthogonal components, the other quanta can be distributed: either on the
action associated with the variations of mass, or on the angular action by
integers on each component of rotation. The existence of quantum of rotation
allow the count of the various quantum states, to understand their magnetic
contribution and to bring them closer of the count of model of Dirac where
the two types of states are characterised by k=-¢ -1 and k = /.

Let ¢/ be the number of the quanta of action which are added to that

of rotation and r that of the quanta of action associated with the variations of
the radial speed. Let us consider the rotation either at constant mass with k; =
{ +1 et p;=r, or at variable mass with k, = ¢ and p, = r +1. In both cases the

unit of quantification added to ¢ or to r contributes to the angular momentum.
In addition as the rotation contributes for _#, the total angular momentum M
associated with / is :

M=((+ i (5.1
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As the number £ is involved by his square in the expression of en-
ergy (3.11) it is also possible to consider negative values of k as Dirac does.
To respect this use that we used in the study of magnetism [13] we charac-
terise the two types of solutions with £k = —( /+1) and k= /. We have then for

the angular momentum:
M=0Ck+ [h (5.2)

Type I : Rotation with constant mass. The action of rotation /A can
be distributed, by integer number of quanta 4, on the two components of the
rotation. Let m be the number of quanta associated with the equatorial plane.
The possible values of m are 0 <m < /. Let us add to m the contribution _ of
the own rotation. This leads to introduce the number N = m + . In addition

any motion can as well take place in one direction as in the other. Conse-
quently the possible values of | are :

n=+(m+_) (53)

With this definition of | the number m takes zero value twice. It is possi-

ble to avoid these two zero values by choosing for m all the values of the
following interval :

—lsmsl+1 (5.4)

and by replacing the number | by the number u defined by the following
relation:

u=—(m-_) (5.5

This number is the magnetic quantum number of the theory of the
Dirac [3] which gives the value of the projection of the total angular mo-
mentum on the perpendicular to the equatorial plane which we use in the
calculation of the magnetic moment [13]. There are 2/ +2 different quantum

states for this subshell.

Type 11 : Rotation with variable mass. In this case there is one unit of ac-
tion used for the variations speed and mass. These variations affect the an-
gular motion and contribute consequently to the observable angular momen-
tum but decrease by one unit the absolute value of the boundaries of variation
of m. One has :



20 X. Oudet

(t-1)Sm <! (5.6)

The value of u is still given by the relation (5.5) but the number of possi-
ble values is reduced by two units. There are consequently 2/ different

quantum states for this subshell. That is for the whole shell 4/ +2 different
quantum states.

6 THE ACTION AND THE G FACTOR

It is interesting, in this study on the doublet, to recall that the g factor or
the Landé factor which is introduced in the calculation of magnetic moment
of a quantum state is a consequence of that the action of rotation is /# and not
_h as the half integer magnetic momentum can lead to believe it [6,7]. Let us
consider an electron on a classical electronic orbit of which the angular mo-
mentum M has for projection u% in the direction of the magnetic fields H. It

has a magnetic moment given by the relation :

He=upg  with  pp=h—— (6.1)
2mc
To establish this relation one has to use the classical expression giving the
moment L. of a current in a single loop or circuit:

He=1S/c (6.2)

where I is the current circulating in the loop (in electrostatic units), S is the
area of the loop and c the velocity of the light. In terms of moving charge e
and its period of revolution T, the current I is given by: 1= e/T. On the other
hand the area of a Kepler ellipse, valid in classical mechanics as well in spe-
cial relativity, expressed on one period Ty with the mass m of the electron
and its mechanical moment M, is given by the relation 2mS = TyM. For M =
h we find the relation (6.1) but just when T = Ty;. But the total angular mo-

mentum M = |k +_|i does not correspond to the angular action |k|%. As a

result T and Ty are different. The period Ty is indeed fictitious and we have
the relation:

2mS =Tkl 7 = Tk + | & (6.3)

That is : Tu=gT with g= K(k+) (6.4)
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For projection u the period Ty, and T are the same one as for the total an-
gular momentum M = |k + _|A. It results from it that the magnetic moment

corresponding to projection u of the total angular moment M is given by the
relation:

He = guHs (6.5)

In particular for the states “s” k = —1 and g = 2. For these states the
magnetic moment is the double of that obtained by the classical approach, but
they are the only states.

7 THE ORIENTATION OF THE PLANES OF GRAVITATION

It is useful in the study of the crystal to know the orientation of the plane
of gravitation G of the trajectory of a quantum state compared to the equato-
rial plane E. Let a be this angle. The radial action does not modify the orien-
tation of the basic circular trajectory. It is thus enough to determine a for
such states. Let us consider the d/ displacement which brings the electron
from B to C (figure 1). The displacement corresponding to the increase d¢ is
rd@. The component of the action parallel to the plane E is the product of the

projections of the displacement and the projection of the momentum. One
thus has:

p¢rd¢
pdl

COSZU =

(7.1)

We saw that the projection of the angular action on the equatorial
level E is uh while the total angular action is k#. It comes :
m—1/2
k

u

k

COS2 a=

(7.2)

The trajectory of a state m crosses the equatorial plane in an unspeci-
fied point of the circle homologous with that of radius PB of figure 1. When
there are several states occupied on a same subshell the trajectories of the
various states deviate the one from the others in such a way to minimise the
interactions of repulsion between electrons. On the other hand, if the interac-
tions electron-electron are neglected, the angle a keeps a constant value. In

particular there is a minimum value. The exploitation of these properties
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makes it possible to deduce certain properties characteristic of the considered
atom. In particular the directions of space with a strong or small screening
constant resulting of the electrons present on the atom. In other words the
knowledge of these directions gives access to dissymmetries of the atom,
which generate those of the crystal. Thus we proposed an interpretation of the
preferential occupation of the octahedral site of spinels by chromium in
MnCr,0,4 [16].

8 CONCLUSION

In this study of the quantification, the motion is supposed the result of ex-
changes of matter between the electron and the proton. These exchanges take
place in all the directions of space. From this fact the orbital rotation must be
regarded as the result of a mechanical action which acts in two orthogonal
directions. In other words the rotation can be regarded as the sum of two
orthogonal rotations. As a results the magnetic field which corresponds to an
action on only one direction of planes can modify only half of the action
associated with the rotation. In addition the doublet have in fact for origin the
possibility for the electron to be able to turn for same angular quantification
with a constant or variable mass independently of radial speed and nothing
indicate that the doublets correspond to state of spin-up and spin-down [13].
These results lead in examining in which extend the hypothesis of own rota-
tion is confirmed.

The hypothesis of the spin was proposed in 1925 [11] to interpret the dou-
blets before the discovery of the equations of wave of quantum mechanics
1926 [10] for that of Schrodinger and 1928 [17, 18] for that of Dirac. How-
ever the spin i.e. the own rotation of the electron are a property of volume
and the study of the properties of a point in classical mechanics or special
relativity could not reveal the properties of a volume. Moreover the introduc-
tion in quantum mechanics of the differential operators presumably giving
again, while acting on the wave function, the properties of the centre of grav-
ity of the electron, cannot more reveal the own rotation.

For lack of a clear comprehension of the quantum phenomena this remark
into general is ignored. In fact the theory of Dirac have from the very start
been impregnated of the model of Pauli where the wave function have two
components : one being by hypothesis presumably attached to the one of the
type of spin the other component being attached to the other type of spin. In
theory of Dirac one can consider a similar step but the study of solutions
show that it is the whole of four components of wave function which charac-
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terises one quantum state. Thus the concept of spin escapes in fact from the
theory of Dirac just like from the theory of Sommerfeld.

To discuss more completely the assumption of the spin, there remains the
existence of the half integers angular momentum which belong according to
this study to orbital rotation as well to the solutions of the equation of Dirac.
It is with them that we calculated every magnetic moment by multiplying
them by the factor g=k(k+ )" characteristic of the subshell. They contributed,
before the equations of waves, to the hypothesis of the spin. These half inte-
ger numbers belonging to the model of Dirac, they consequently consolidated
the assumption of the spin. However they rise not, through the studies pro-
pose to date, of a property of the own rotation, but of studies describing the
properties of a point. As a result, we have not the right to present them as a
proof of the existence of the spin. Thus it is possible that the orbital rotation
of the electron is related to that of its own rotation but it is a question which
remains open.

On the other hand this study shows that the action associated with the own
rotation is the Planck's constant /4 and that it is this action which determines
all the quantum numbers. This state of things clarifies the comprehension of
the periodic table. Indeed the constant of action 4 does not depend on the
medium, i.e. of the complexity of the atom, the molecule or of the solid,
liquid or gas state of the matter in which moves the electron. Then we under-
stand that the quantum numbers which characterise the quantum state remain
whatever the situation of the atom. It is that which allows to understand the
structure of the periodic table which synthesises so many chemical and
physical properties of the matter. We also understand that the total angular
momentum, reflection of the action associated with rotation, subsists what-
ever the complexity of the atom to which belongs the electron and the me-
dium in which is the atom. It is this assumption which enabled us with
George Lochak to propose a calculation of the magnetic moments of the
atoms and whose coherence with the experiment remained mysterious [13,
19]. In the field of the prospects the understanding of the crystal state is en-
lighten by this approach. We already showed it [16] and hope to be able to
again show it in the near future.
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