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Josephson junctions as E.P.R. pairs?
G. STEPHENS

Darwin College, Cambridge University, CB3 9EU, UK

ABSTRACT. We apply the principle of indistinguishability to macro-
scopic quantum objects in the form of superconducting bodies. A quan-
tum object being defined as that which is Lorentz and CPT invariant.
In case of two close but separate superconducting bodies, we thereby

obtain the Josephson equation j~ sin (X2 — X1 — %P 12 A1dai) from a
different perspective. Generalising to once connected junctions we find

the localisation in time of macroscopic SC phenomena is lost. The
formalism is discussed.

1. Introduction

It is known that matter is time extended and this is formalised in the
Lorentz and CPT invariance of the quantum theory. It has been ar-
gued [1] that this -time extension- shows up macroscopically in a su-
perconducting body and is the principal cause of the whole macroscopic
superconducting (SC) electrodynamics.

2. Case of 2 close but separate superconducting bodies

With this in mind, let us examine the case of two separate supercon-
ducting bodies which are brought into close proximity, of the order of
a coherence length, so as to allow supercurrent to pass from one to the
other.

We wish to calculate the amplitude for the propagation of supercur-
rent from SC body 1 to SC body 2, i.e. the amplitude for the occurrence
J(1—2).

We note that the amplitude for this process is dependent on the
relative macroscopic phases (phase angle) of each superconducting body.
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We also note that time reversal symmetry is present. More precisely, the
quantum field of material points is Lorentz and CPT invariant [1].

We cannot define a definite frame and therefore must use a gener-
alised path I'yp for two points a and b within a superconducting body,
whereby I'yp is valid whatever the character of the spacetime path, in-
cluding curved spacetime paths. Usually we can define a definite space-
time path according to the inertial frame, but we must relax this condi-
tion within a SC body. A statement may be made about the phase. It
must satisfy the equation

Xiuv = Xsou = 0 (1)
which is valid in any frame [1].
Following the notation of Hoyle and Narlikar [2] but relaxing the

specification of an inertial frame, one might think that the amplitude
for the occurrence J (1 — 2) is of the form?

F21 H P (T i z+1 (2)

where I'" is a generalised path going forwards in time and I'~ is a gen-
eralised path going backwards in time.

We must now include the coupling of the electromagnetic and quan-
tum fields. Due to the time symmetric nature of the occurrences in a
superconducting body, we must use both advanced and retarded waves
in the description of electromagnetic phenomena. To do this, we write
the potential as

1 padv
A ={ thie peon 3
where AT influences a forward time process (from initial to final state)
and A% influences a backwards in time process (from final to initial
state). The amplitudes for the paths I’ 1 or I'}; in the presence of the
potential A; are therefore of the form

pA (Fgl) =P (F;) €Xp [—i%/ <1> Afetdai] (4)
h Fg'l 2

1Here we encompass general properties of a quantum object (forwards and back-
wards in time occurrences), (product of amplitudes) following the lead by London
[3]; that a superconductor may be thought of as a macroscopic quantum object with
phase x and wavefunction ¢ = |¢|exp {(ie/hc) x} where x is a scalar function of
position.
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PA (') = P () exp [_ﬁ / (1> Azd”dai]

If we put P (I'J;) equal to (exp[i(x2 —Xl)])l/z, the amplitude

for a forward time propagation of supercurrent and P (I‘f2) equal to

(exp[—i(x1 — X2)D1/2, the amplitude for a backward time propagation,
then the total amplitude for the process J (1 — 2) is?

PA(r3;) PA(T1,) (5)

) 2e i
exp |f (XQ - X1 — " A,da )] (6)
F;—l’Fl_2

but this is not the whole picture as we shall see shortly.

Consider the standard equation for supercurrent propagation [4,5]:

= [ [Kss)amar)dsas (7)

where A(s) and A*(s’) may be thought of as wavefunctions and
K (r,s,s') contains the influence of the electromagnetic field on the su-
percurrent propagation and is given by;

TZG,W (s,8") x {g {G’w (r,8) V.G (s',1) — Gu (s, 7) V.G, (7, s)}

AN G| @

where G and G are statistical Green’s functions for the superconducting
and normal states respectively.T" is the temperature. Equation (7) is
valid within superconducting bodies (case 1) and across two close but
separate superconducting bodies (case 2). For the latter case, it reduces
to j(r) = iK (A1AS — AsAY) , K real with Ajand Ay taken to be
constant either side of the barrier. Putting xo — x1 = arg Ay — arg Ay
and ji1 = £ K |Aq||As], j = jisin (x2 — x1) is obtained [5].

2We are not concerned here with an ab initio calculation of the form for the
amplitude. The choice is such that it is consistent with the standard result.
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Josephson has given the Feynman diagrams for the propagation of
supercurrent (Cooper pairs) between two close but separate supercon-
ducting bodies, shown below.
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Figure 1.

The lines represent single particle Greens functions. A dot at a ver-
tex represents a factor A* or A according to whether two directed lines
emerge from or go to the vertex. The sum of the frequencies labelling
the vertex must be zero. The dashed line represents the barrier. In ad-
dition to the 4 principal Feynman diagrams shown above there are other
corresponding to the propagation or more than one Cooper pair. There
is, for instance, a set of 4 diagrams corresponding to the propagation of
2 Cooper pairs (4 electrons) across, and on each side of, the divide. The
supercurrent propagation across the divide is proportional to the sum of
these diagrams [5].

We note that the supercurrent propagation J (1 — 2) is in general
proportional to processes occurring both across the barrier and on either
side of the barrier. This point is important and we will return to it later.

There is a correspondence between equ. (5) and the standard equa-
tion for supercurrent propagation (7):

(i)both relations take into account forward and backward in time occur-
rences

(ii)both relations contain the coupling of the electromagnetic and quan-
tum fields

(iil)in both cases only the complex part is taken to represent supercurrent
propagation.

As yet, we have not included the basic concept of indistinguishabil-
ity of identical particles in quantum mechanics. We may assume that
each Cooper pair is indistinguishable from any other, further that each
volume of SC charge carriers is indistinguishable from any other, further
that we must interchange each and all Cooper pairs, labelled with phase
angle y1 on one side of the SC junction with each and all Cooper pairs,
labelled with phase angle x2 on the other side. That is, we are effec-
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tively performing a macroscopic interchange. We do this to facilitate the
principle of indistinguishability [6].

The amplitude for the process J (1 — 2) is therefore of the form
PA (1) P4 (T) + P4 (M) P4 () 9)

with the path F1+1 arriving back onto itself as the close but sepa-
rate SC bodies are interchanged during the propagation process. It
is formally similar to the indistinguishability principle as it is applied
to an electron and a positron (time reversed electron) except that
we subtract amplitudes for Fermion objects. In Feynman propagator
notation, the amplitude for the electron-positron process is given by
KW (3,1) K™ (4,2) — K™ (4,1) KM (3,2), where the + index indi-
cates the -Feynman propagator- which takes account of quantum objects
travelling backwards as well as forwards in time. This is achieved by hav-

mg3
Ki(21)= 3 ¢n(2)n (1) xexp(—iBy, (t2 —t1))  for ty >t
POS. E,
== Y $n(2)dn (1) xexp(—iE, (ta—t1)) for to <ty
NEG. E,,
(10)

the sum being taken over positive energy states (¢ > t;) or negative
energy states (to < t1) so that between times ¢2 and t; the time direction
for the occurrence is not assumed to be necessarily positive [7]. These
processes are compared below.
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Diagram for the propagation of supereurrent from
superconducting body 1 (3C1) to superconducting
body 2 (3C) in the presence of titme reversal
sytnetty. Alternatively, interchange of 301 and
202 for the ocourence 01— after the
supetconducting bodies are brought into close
proximity.

Figure 2.

Feytunan diagram fior an electron- positron
pair found at 1,4 is found at 3.2, Or interchange
of an electror, - tithe reversed electron, after
ititeraction at one time in aregion A,

3¢n (1) and ¢, (2) are energy eigenfunctions at points 1 and 2.
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We should note, though, that in the above we have actually applied
the Indistinguishability principle to macroscopic quantum objects, pos-
sessing a phase field x which satisfies equation (1). From figure 2 we see
that supercurrent propagation between two close but separate supercon-
ducting bodies depends on processes occurring both across the divide
and on each side of the divide as was also apparent from figure 1. But
now we have given a physical meaning to this, namely as a consequence
of superconducting body 1, superconducting body 2 interchange.

Equation (9) is therefore

exp [2 (XQ —x1— % [+ P A;dat )}

21>

(1)
+exp [l (3) 04 —x1) =i (%) (xa— xb) — 24 [t rs, Ada]

11

By following arguments* similar to those used by Josephson [8], we
find that the right hand term of equation (11) is negligable and so

2 .
j =sin <X2 - = Aidm) (12)
h F21,F

by taking the imaginary part, j being real. The standard formula [9],

2
J =sin (X? - X1 2—}:/ Aidai> (13)
1

is thereby recovered, the linkage being taken around a closed loop lying
across superconducting bodies 1 and 2, but this time as a consequence of
applying the indistinguishability principle to two close but separate SC
bodies.

In the above description, we have assumed the equality of advanced
and retarded waves within the quantum field of material points which
constitutes the superconducting body.

We could now proceed to generalise directly to the case of more than
2 SC bodies which have been brought into close proximity. Before we do

4These arguments show that for a rectangular path which contains the barrier
whose short sides are parallel to the normal to the barrier, then the flux enclosed
by this path is given by the contribution to the alteration of the phase by the paths
F;Ll and I'},, the contribution from the paths F;rl and I';, being negligible. The flux

enclosed is therefore Ax ( ) Ax ( ) = (%e) P.
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this, for the purpose of illustration, let us consider 4 quantum objects;
an electron and a positron (time reversed electron), an electron and a
positron (time reversed electron). The time directions for interchange of
each are then commensurate with the time directions for the propagation
of supercurrent for 4 SC bodies, brought into close proximity, each having
respective phases x1, x2, x3 and xj4.

3. Illustration: Occurrences for an electron-positron electron-
positron exchange

In this section we consider the existence of indistinguishability for 4
quantum objects having once interacted in a region A. That is, an elec-
tron positron pair found at 1,6 is found at 5,2 while an electron positron
pair found at 3,2 is found at 7,4. This is easily done using the Feynman
propagator method. The amplitude for the above occurrence is given by
the antisymetric sum > :l:Kf (perm;1,2,3,4) with a + or —
perm(5,6,7,8)

sign being taken according to whether the permutation is even or odd.
There are 10 terms in all. These quantities are listed below,

Ky (5,1) Ko (6,2) Ko (7,3) K4 (8,4)
Ky (6,1) Ko (5,2) Ko (7,3) K4 (8,4)
Ky (T,1) Ks (6,2) Ky (5,3) Ky (8,4)
K4 (8,1) K4 (6,2) K4 (7,3) K1 (5,4)
Ky (5,1) K4 (7,2) K4 (6,3) K1 (8,4) (14)
Ky (5,1) Ko (8,2) Ko (7,3) K4 (6,4)
Ky (5,1) K4 (6,2) Ky (3,3) K (7,4)
K. (6,1) Ky (5,2) K. (8,3) K, (7,4)
Ky (7,1) Ko (8,2) Ko (5,3) K4 (6,4)
Ky (8,1) Ky (7,2) Ky (6,3) K (5,4)
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and shown in fig.3 by Feynman diagrams (i) to (x)
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Figure 3.

4. Occurrences for interchange of 4 superconducting bodies

The analogous situation in a superconducting body is the occurrence
J (1 —2)and J (2 — 1) (time reversed process) with application of the
indistinguishability property basic to quantum objects. In this case, the
inertial frame is not fixed and we must use a generalised path. The
important point is that the amplitude for the occurrence J (1 — 2) and
J (2 — 1) are dependent only on the relative phase angles of each su-
perconducting body. All possible paths for these occurrences are shown
below, the notation for I' being consistent with that used in equation
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(9). ie. we put Ky (5,1) =Ty, Ky (6,2) =Ty, Ky (7,3) = ['f..etc.

Al

Figure 4.

The occurrences which may happen for interchange of each of the 4
SC bodies are listed below using the generalised paths I'.

P (T3,) P (Ty,) P (T5) P (Tsy)
P (1) P (Ty) P (Vi) P (T34)
P (T35) P (T3,) P (T1,) P (Tsy)
P () P (I'yp) P (Tis) P (Ty)
P (T4) P (Ty) P (Ti3) P (Ts4) (15)
P (T3,) P (Ts;) P (Ti3) P (T'1y)
P (T3;) P (Typ) P (Ts) P (Tyy)
P (T]) P (Tg) P (Tg5) P (Ta)
P () P (Isp) P (T35) P (T'ry)
P () P (Ty) P (Ty) P (Ty)

Here 1"; denotes propagation from quantum object ¢ to j in the
positive time sense and I‘; propagation from quantum objects j to 4

. . . ; 1/2
in the negative time sense. We therefore have l";rl = (ez(X"‘_Xl)) / ,
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', = (e‘i(X1_X2))1/2, etc. Following this nomenclature, with A; set to
zero, (15) becomes
(taking the imaginary part)
) ( ) sin (x2 — x1 + x4 — x3)
)" ( ) sin G - )
) ( ) sin (x2 — x3 + x4 — X1)
) ()
6¢(><17><3>)% (67¢(XS7><4>) sin (x2 — Xx3)
{(xa— ) ( ) sin (x2 — X1 + X4 — X3)
) (o)t g
) (a0 ea
) ( ) sin (x2 — x3 + x4 — X1)
) -(real)
Therefore, the amplitude for the occurrence J (1 — 2) while all other
processes occur is
J(1—2) = sin(x2—x1+x4a—x3)+
sin (x4 — x3) +
sin (x2 — X3 + x4 — x1) +
sin (x2 — x3) + (16)
sin (X2 — X1+ X4 = x3) +
(
(

sin (x2 — x1) +

sin (x2 — x3 + x4 — X1) with 7 terms in all.

We notice immediately that the supercurrent propagation at one
junction depends on the relative phase angles at each of the 4 quantum
objects. Furthermore, the above relation should hold for an arbitrary
time t after one junction (S1,52) has been separated in space from the
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other junction (S3,54). That is after the 4 quantum objects have in-
teracted. This parallels the case of the positron-electron system; the
wavefunctions remain nonfactorizable at any time t after their interac-
tion in region A.

A variation of the phase difference x4 — x3 (by application of a vector
potential A;, for instance) on one of a pair of once connected junctions,
should influence, instantaneously and over arbitrary distance, the max-
imum voltage- free supercurrent propagation at the other junction, now
spatially separate from the former.

Consider a Josephson junction S1,S2 below it’s transition tempera-
ture which is subsequently broken up into two junctions S1,52 and S3,54
as illustrated in figure 5a,b such that there exists no material connec-
tions between the junctions. The maximum voltage free supercurrent
J (1 — 2) tunneling across S1,52 is then measured (by a standard 4 ter-
minal method) versus the field strength B applied parallel to the plane
of junction S3,54. According to equation (16) one should find that the
applied field across S3,54 alters the phase difference (x4 — x3) by an
amount —%e f34 A;da’ thereby altering the maximum voltage free super-
current across S1,52, the junctions being at arbitrary separation.

(a) (b

K] a4

a1 =Y

Figure 5.

The case described here is similar to that of an EPR correlation tied
in the barrier except that the occurrence J (1 — 2) is proportional to the
sum of the amplitudes for the respective processes and not the square
of the modulus of the sum as is usually the case in quantum processes.
Normally the act of squaring the modulus of the amplitude wipes out
initial or final phase relations and we move from an internal reversibility
to the de facto irreversibility of classical phenomena (see reference [10]).
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In our example, the internal reversibility together with the respective
phase relations remain intact and we have

Occurrence J (1 — 2) & sum of the amplitudes for the
respective processes

~ respective phase relations

Retrocausation together with forward causation is implied. The for-
malism is relativistically covariant and has time reversal symmetry [1].
Strict adherence to this formalism implies the instantaneous transmis-
sion of information by the apparatus described herein.

However, in criticism to the above, the application of the magnetic
field (parallel to the plane of one of the separated junctions) may very
well have the effect of destroying the indistinguishability previously set
up, in which case the superluminal telegraph will not function. We are
therefore left with an extremely badly coupled EPR system. One in
which the “ passion at a distance” of Shimony does not show up. This is
very probable but not absolutely certain because the effect of the mag-
netic field is bound up with questions about measurements on macro-
scopic quantum systems, and this is recondite, and so should properly
be settled by experiment (like the one described above).

Lastly, as examples of experimental results which may have a bear-
ing on the above we note that recent experiments on stacked Josephson
junctions find no description at present through inductive or quasipar-
ticle coupling [11]. These experiments may find description through a
coupling of a non local quantum mechanical nature. These results ex-
hibit current locking or phase locking. The locking of critical currents
to a single value has also been observed in two closely spaced indium
microbridges biased in series [12]. Locking of phases (and associated
current locking) is to be expected from equation (16).

5. Discussion

The macroscopic phase x owes its existence to a novel manifestation
of macroscopic matter. One in which off diagonal matrix elements are
present. It occurs below the Einstein- Bose transition. C. N. Yang
[13] has illustrated this concept with aid of reduced density matrices
defined by Trp = 1, (j|p1|i) = Trajpa;, (k| ps|ij) = Trakalpajaj'
. . . In superconductors, as is well known, we may have many particle
elements behaving as though they have exactly the same momentum.
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e.g. persistent currents. In thermal equilibrium, p commutes with the
total momentum. Thus in the momentum representation, p; is diagonal:

@'lprlp) = Opprnp (17)

where n, is the average occupation number (from Bose statistics) of
single particle state p. In the coordinate representation, however,

(@' p1 |z) = l/Qan expip (¥ — x) (18)

and (2| p1]z) — (Na/Q)expip (2’ —z) as |2’ — x| — oo where « is
the fraction of particles in the state. And we have off diagonal ma-
trix elements (ODME). These ODME are retained (have persistence)
in the presence of macroscopic measurements (J,V). The macroscopic
wavefunction must therefore possess some rigidity.

Costa de Beauregard [14] has clarified the importance of off diag-
onal matrix elements (the phase) in connection with the cause-effect
symmetry apparent in the EPR and time reversed (spin 0 photon pair
anticascade or ¢ echelon absorption’ ) EPR paradox at the microlevel.

It follows logically that a superconducting body exhibits time sym-
metry or more precisely CPT and Lorentz invariance. Also, we must
use time symmetric electrodynamics, that is, we must have equality of
advanced and retarded waves in the description.

It is interesting that the idea of the difficulty of localising macroscopic
phenomena in time is not new. It was deduced, from the principles
of quantum mechanics, by Einstein, Tolman and Podolsky in 1931 in
connection with the opening and closing of a shutter [15].

Notes

I should like to thank O. Costa de Beauregard for excellent suggestions.
I extend my thanks to T. J. Foxon, H. H. Stoelum and R. J. Levett for
valuable discussion.
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