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THE SHIFTING OF ELECTRONIC INTERFERENCE

FRINGES IN  A  FIELDLESS MAGNETIC POTENTIAL

by  Georges Lochak

(Fondation Louis de Broglie, 23 rue Marsoulan,  F 75012 Paris)

Abstract: It is shown that, if an interference or a diffraction phenomenon is created
in a magnetic fieldless potential (for instance owing to a Tonomura torus) and
without the possibility that electronic trajectories surround any induction vector, a
shifting of fringes  will appear and indeed even a change of the interfringe. For this
to happen an angle is needed between the potential and the incident beam. W i t h
rapid electrons the shifting is of the first order in eA

mv
  (quotient of the two terms of

de Broglie's wave-vector). The case of slow electrons is also examined. Finally  we
compare the local method (applied here) to the global method based on circular
integrals and we show that the latter confuses the phase and electron trajectories,
which prevents it from predicting the phenomena that are the subject of the present
paper. A new variant of the Aharonov-Bohm experiment is suggested, in which the
closed curves defined by pairs of trajectories coming from Young  slits cannot surround
any induction vector, so that the integral of A  above such curves is always equal to
zero. According to the local method the effect must subsist, according to the global
method, it disappears.

1. Introduction. The present paper is a development of a recent suggestion of
Olivier Costa de Beauregard and myself, to try electronic interference or
diffraction experiments in the vicinity of the center of a Tonomura magnetic torus,
in order to verify an old de Broglie's formula already given in his Thesis, and to
which he later came back several times, but that was never submitted to the
experiment. This formula is the one which gives the wavelength of an electron in a
magnetic potential A:

(1)   hk = mv   + eA   →  λ = hp ;   p= mv   + eA   

(k = ν
λ

 n =  wave vector, p = Lagrange momentum, ν = frequency, V = phase

velocity, λ = wavelength)

Such experiments are interesting for several reasons:
1) To verify the formula (1) which is exclusively based on the identity between the
principle of Fermat and that of least action: the equations of quantum mechanics
only repeat this result on which they are based.
2) The formula (1) is gauge dependent and so are the phenomena themselves.
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3) If the fringe shifting is experimentally confirmed, it will be due to the potential
alone because no induction line can play a role. The force generated by a fieldless
potential is only exerted through the wavelength and it may be considered as an
inertial force, just as may be considered, in general, the forces due to the de Broglie
wave which are at the origin of diffraction and interference phenomena. De
Broglie drew attention, starting from his first notes1, on the fact that the diffraction
of material particles violates the Galileo principle of inertia, because particles are
deviated from their inertial motion in the absence of external forces and without
colliding with any obstacle (unless the wave exerts a pressure on matter). The
existence of the wave forces a more general expression of the inertia principle, the
old expression of which remains approximately true when the diffraction effects
are negligible.  
4) Finally, such experiments would make the exact relations between waves and
particules more evident than usual experiments can do in the interference
phenomena. Let us recall some principles:

a) Everything is governed by the wave, to which the Fresnel arguments
may be applied. Particles (including photons) don't interfere "between
themselves" but only one by one. All the interferences may be realized
with isolated quanta and they often cannot be realized in any other
way. Phase coherence is only due to the wave. Even bosons are linked
only by the wave; electrons, which are fermions, are phase
independent (supraconductivity is another thing). It does not make
sense to speak of "coherent electrons, each passing by a slit". We can
speak only of one particle at the same time. We don't know from which
slit the electron comes and if we try to know it, the interference is
destroyed.
b) The calculation of phases is based on wavelength, defined as λ = hp

where p is the length of the Lagrange momentum. In the ordinary case
p = mv , but here we have: p= mv  + eA  and λ is the only length that

must be used. It makes no sense to speak about a phase difference due
to mv  , to which would be "added" a difference due to eA: such a
formulation mixes two different directions.
c) The phase differences are defined along the lines tangent to the
normal to the wave: the wave vector k  defined by the formula (1).
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d) The wave propagates with a phase velocity V. Just as the frequency
ν, this velocity is defined in relativity2. Therefore, ν and V   are wrong
in the Schr�dinger equation and correct in the Klein-Gordon and Dirac
equations. They are not (until now) directly mesured but they can be
deduced, owing to a relativistic reasoning, from the sole knowledge of
the wavelength λ2.

e) The velocity of the electrons is not the phase velocity V (which
besides is greater than the velocity of light), but the group velocity. This
result of de Broglie is intuitive because the group velocity is the one of a
wave packet, thus of energy and finally of the particle. Usual
experiments in electron interference or diffraction are based on the
wavelength only: wave or particle velocities play no role because, in the
absence of potentials, they have the same direction.
f) On the contrary, in the experiments we are dealing with, the

distinction between phase and group velocities plays an essential role because
they are no more parallel:
- The phase goes, as precedingly, at the phase velocity along the normal

of the wave, while the particle goes (with the group velocity) along the
ray which is no more parallel to the normal.
- Therefore, the interference is controled by the wave through phase
differences along the normal of the wave, which defines non observable

fringes of phase coherence, while the observable fringes  are different
(despite the fact that they are indirectly defined by phase differences):
they are those on which the electrons fall and they fall in a direction
which is defined by the ray and not by the normal to the wave.

2. The problem of the calculation of the effect. First of all we must formulate
more precisely the question: "What is observable?"
A vector potential creates an anisotropy of space,  which is locally transformed in a
uniaxis crystal 2 the optical axis  of which is defined in the neighbourhood of each
point of space by the magnetic potential. In analogy with Fresnel's ideas on crystal
optics, this point will be taken as a focus of a revolution ellipsoid of velocities, the
equation of which is (A defines the z axis):  

(2)  
x2 +y2

mv 2 – eA 2
 + 

z + eA2

mv 2
 = 1
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The section by a plane containing the axis (Fig. 1) is an ellipse with parameters:

(3)    a = mv, b = mv 2 – eA 2, c = a2 – b2 = eA 2    mv > eA → mv 2 – eA 2>0

   

Q

.
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B' B

Q'

F

F'

eA
p = mv + eA

ϕ

Θ

eA cosΘ
H

J

K
p = mv + eA

(Lagrange momentum)

 FJ  = mv + eA cosΘ
= p cos ϕ

(ray)

wave frontmv

FK = 

N

Fig . 1

The normal  wave velocity  V (phase velocity ) is defined along the wave vector k, and
thus along the Lagrange momentum p, because the phase is carried by the wave
front. The theory of interferences is based on the wavelength  λ  defined in the

same direction FK.

It must be once more emphasized that the direction FK in which phase coherence

is defined is not the one of an observable fringe. The electrons travel with the

group velocity, along the ray FJ, which is the direction of the observable fringe.
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Contrary to the phase velocity, the group velocity does not depend on the
potential. Consider the superposition of two waves in a potential A, with slightly
different velocities (and masses):

(4)     
Ψ = sin 2π νt – mv  + eA

h
 . r  + sin 2π ν + δν t –  

mv + δ mv  + eA
h

  . r
 

→ Ψ= 2 cos π δν t – 
∂ mv

h
∂ν

  . r  sin 2π νt – mv  + eA
h

 . r  

The potential A appears only in the second factor: in the phase of the wave. The
amplitude slowly oscillates with a frequency δν and propagates with the velocity

∂ν

∂ mv
h

 equal to the group velocity  of the free particle: the velocity  v.

It may be surprising that the group velocity, which is the velocity of energy, does
not depend on the potential3. But the same happens in crystal optics: whereas all
the phenomena are described in terms of electrical induction and are a
consequence of the electrical polarization, the propagation of energy is given by
the Poynting vector which is expressed in terms of fields and not of inductions. But
we shall see that the propagation of energy is indirectly influenced by the potential
through the phase propagation (just as in crystal optics it is influenced by the
polarization of the medium).
The above calculation holds before the interference. But it is also valid after the
interference because the energy of the electrons is conserved, and thus the
velocity. But the conservation of velocity is only in absolute value. Its direction may
be modified and this will be the observable effect.

3. Calculation of the shifting of Young fringes. We shall consider three cases: the
incident beam is parallel to A, orthogonal to A, or under any angle.

1st case: The incident beam is parallel to A.

The incident beam, the axis of the torus and the potential A are on Fz in the plane
of the Fig. 2. The torus is orthogonal to Fz.  The midpoint of Young slits is F, in the
center of torus. The slits are separated by a distance a on a straight line orthogonal
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to A in the plane of the figure. The circle of radius mv and center F defines all the
vectors mv of diffracted electrons.

p = m
v +

 eA

ϕ mv

z

eA θ

eA

Fig. 2
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For symmetry reasons, the central brilliant fringe is along Fz: is is true just as well
for the point of zero phase difference as for the fringe on which the electron fall
because here, mv and A have the same direction.
Let us find the following fringe. On Fig. 2 we have: θ = p, Fz = angle of the fringe
corresponding to a phase difference λ,  ϕ = (mv, p) and Θ = mv, Fz: the angle with

respect to Fz, under which the electrons fall:

(5)       Θ = θ + ϕ
  

(6)     θ ≅  sin θ =  λa = h
a p

 = h
a mv + eA

   (a = distance between the Young slits)

(7)  p  = p = mv 2 + eA 2 + 2mv eA cos Θ 1/2
 

We shall make use of the following definitions (note the expression of ε):
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(8)     

ε = eA
mv  ;  δ = h

mva  (interfringe without potential)

γ = 1 + 2ε cos Θ + ε2 1/2
 = 1 + ε cos Θ  1 + ε sin Θ

1 + ε cos Θ

2 1/2

Remark: The wavelength is λ=V
ν

=h
p. The phase velocity is V=hνp-1. In the

presence of a potential A, p is given by (7): p = mv γ. In the vacuum, p0=mv

and the phase velocity is V0=hνp0-1 with the same frequency ν=E/h, that does
not depend on A. Thus we have V0/V=p/p0=γ : γ is the quotient of the phase
velocities in the vacuum, and in the presence of the potential A: γ is the index

of refraction of de Broglie's wave, due to the potential .

Now, we have  p=mvγ → θ=δγ-1, from which:

(9)      θ = δ 1 + ε cos Θ  -1
 1 + ε sin Θ

1 + ε cos Θ

2  - 1/2

On the other hand, we see on Fig. 2 that:

(10)     p cos ϕ = mv + eA cos Θ

and, taking (8) into account:

(11)    cos ϕ =  1 + ε sin Θ
1 + ε cos Θ

2  - 1/2

Expanding (9) and (11) with respect to ε, we find at the first order:

(12)            θ = δ 1 - ε ,  ϕ = εΘ  → Θ = θ + ϕ = δ 1 - ε  +  εΘ  → Θ = δ

It is the same result as in the absence of potential. It is confirmed at higher orders
in ε and is easily verified in the particular case  eA = mv, where we cannot expand
with respect to ε = eA

mv  but the result is then trivial because the triangle of Fig. 2 is

isosceles, which entails:
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(13) ϕ = θ  → Θ = 2θ

From (7) we have:

(14) p2 = 2 mv 2 (1 + cos Θ) = 4 mv 2 cos2 Θ
2

   →  p = 2 mv cos θ

and owing to (13) and (14):

(15)  sin θ = λa = h
ap = h

 a 2 m v cos θ
  → 2sin θ cos θ = sin 2θ = sin Θ = h

 a m v  = δ  

          
Finally we find Θ ≅  δ again.
Are these results astonishing? No. Because the anisotropy of space due to the
potential cannot appear if the incident beam is parallel to the optical axis: there is
too much symmetry. As Pierre Curie said: "It is dissymmetry that creates the

phenomenon". We need an angle between the beam and the potential.

2nd case: the incident beam is orthogonal to the potential: parallel to the plane

of the torus and close to it.

The line passing through the centers of the Young slits is orthogonal to the
incident beam and parallel to the magnetic potential. It could be a good idea to join
two parallel tori as indicated on the Fig. 3.

a) Central fringe. See Fig. 4. There is, like previousely, a wave vector k (and a
Lagrange momentum p = mv + eA) parallel to the incident beam. It corresponds,
by symmetry, to a zero phase difference between the waves coming from the
Young slits: it is the central fringe  in the sense of phase equality.
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But the electrons will not fall on this fringe: they follow the linear momentum mv

corresponding to the group velocity v and, contrary to the first case, this velocity
is no more parallel to p even for the central fringe.  
The vector mv is given by the intersection of the circle of radius mv (centered on
F) and the straight line parallel to Fz at a distance eA (Fig. 4).
This is the observable "central" fringe which is shifted with respect to the

incident beam, by an angle:

(16)  α0 = ε = e A
m v

As we shall see, at the first order, the whole interference pattern will be shifted

in the direction opposite to eA.

b) First fringe on the right of Fz: We keep the same angles θ, ϕ with the same
definitions, but Θ = eA,  mv  is not any more small. The small angle is the angle α
between mv and the beam:

(17) α  = mv , Fz  = π
2

 - Θ

We shall have, instead of (9) and (11):

(18)   θ = δ 1 + ε sin α  -1 1 + ε cos α
1 + ε sin α

2  - 1/2
;  cos ϕ =  1 + ε cos α

1 + ε sin α
2  - 1/2

and we find at the first order in  ε and δ:

(19)        θ = δ;  ϕ = ε             

With the new orientation of eA, we have instead of (5):

(20)          α = θ - ϕ.

So that the first observable fringe, on the right of the central fringe is:
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(21)       α = δ - ε

At the first order the interfringe  δ  is not modified by the potential  A  but the
shifting   α0 = eA

mv   of the interference pattern is confirmed.

c) First fringe on the left of Fz. The calculation is the same as for the right fringe,
but it is evident on Fig. 4, without any calculation, that there is a dissymmetry
because the momentum p and therefore the wavelength λ are different on the

right and on the left: a consequence of the orientation of eA.
Nevertheless, there is a certain symmetry of the position of the fringes.
We have here the relation:

(22)         α = θ + ϕ

and the first observable fringe on the left is:

(23)       α = δ + ε

in full analogy with the formula (21) for the right fringe, in spite of the change of
sign before ε, because the angles are not algebraic, only their absolute value is
well-defined:  they are angular distances with respect to Fz. The term δ is the
classical interfringe, as previously, and the term +ε is a shift on the left just as was  -
ε  in formula (21) for the right fringe.

d) Other fringes. They are given by the substitution of  nλ to λ  in  (6), and nδ to δ
in (8). Thus we find, for the right and left fringes:

(24) α = nδ - ε   ; α = nδ + ε         

At the first order, the classical interfringe  δ  is not changed by the potential A,
but  we find a shift  α0 = eA

mv  = ε  of the whole interference pattern.
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e) Higher order effects. We must solve more carefully the equations (18) for θ and
ϕ, which give respectively for the right and left fringes:

(25)     αr = nδ - ε  1 - ε nδ - ε  ; α l = nδ + ε  1 - ε nδ + ε

The interfringe and the shift are both modified by a second order effect.

3rd case: Other angles between A and the beam.

We give the figure and the result only for the central and the right fringe.

Fig. 5
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The angles  α,  θ  and  ϕ  keep their definition, but we must introduce the angle  Ω 
between the potential and the beam (Fig. 5):

(26)  Θ = Ω - α  ;  Ω = eA ,  Fz  
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It is realistic to suppose that  Ω >> α   because  α  is a small diffraction angle while Ω
is the tilt of the torus, which makes sense only if the beam is able to come through
the torus.
We shall use the equations (9) and (11) again, introducing (26) and expanding
cos Ω - α   and  sin Ω - α , which gives:

(27)          θ = δ 1 - ε cos Ω  ; ϕ = ε sin Ω

We have:

(28)        α = θ - ϕ

And the central fringe is thus:

(29)   α0 = ε sin Ω

The first fringe on the right is:

(30)     α  = δ 1 - ε cos Ω  - ε sin Ω

Actually the term  ε cos Ω is a correction of the second order. This is why, if  Ω = 0

(beam parallel to eA) we find  α0 = 0 as in our 1st case, but for the first fringe  we
find  α  = δ 1 - ε   instead of α = δ.
If  Ω = π

2
 (beam orthogonal to eA) we find α0 = ε,   α = δ  - ε, as in the 2nd case.

Formula (30) shows that, despite the fact that the parallelism between the incident
beam and the magnetic potential annihilates the effect, one must not be worried
about a small angle between these two vectors.
For instance, if we have: Ω = eA,  Fz  = 800, i. e. an angle of 200 between the beam
and the plane of the torus, formula (30) gives:

(31) α  = δ 1 - 0,17 ε  - 0, 98 ε

The difference with the result of formula (21) is very small.
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4. General  method and calculation of the fringes in other cases.

The method is given by formulae (7), (9), (10), abandoning ε which is no more

supposed to be small:

(32)        sin θ = δ  mv 2 + eA 2 + 2mv eA cos Θ  -1/2

cos ϕ = mv + eA cos Θ   mv 2 + eA 2 + 2mv eA cos Θ  -1/2

1st example: slow electrons in the particuliar case eA = mv .
We have seen it with formulae (13), (14), (15) in the 1st case (Fz parallel  to eA). Let
us consider now the more interesting 2nd case (Fz ⊥ eA). We give only an outline.

Let us go back to Fig. 4 with eA = mv . Obviously there cannot be a phase equality
in the center, otherwise the isoceles triangle would be right-angled, with the
hypotenuse equal to a side of the right angle. All the same, electrons cannot fall on
the center, because we would have θ = π/4,  which is impossible because θ depends
on δ. On the other hand, we see on the figure that:

(33) ϕ = Θ
2

 = π
2

 - θ ;  α  = θ - ϕ

and we find from (32):

(34)   sin θ = δ

2 cos Θ
2

 = δ
2 cos ϕ

 = δ
2 sin θ

   →  sin θ = δ
2 

 

So that the fringes are, on the right and on the left:

(35) αn = π
2

 - 2nδ

actually, we can see only the right  fringes... if at all.

2-nd example: slow electrons in a more general case.
a) We can, at first, take a perturbation of the preceding case:
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(36) mv = eA +η

The calculation is trivial.
b) We can suppose that eA >> mv, which is quite possible. Going back to (18), the
calculations are easy, in principle, but they require some care because the
definition of  ε  is reversed, the relations between angles must be reexamined and

it must be kept in mind that  v  remains the group velocity.

3-rd example: other interference and diffraction phenomena.
We can apply the same procedure:
a) Interferences on a grating or a crystal. The results will be, mutatis mutandis, the
same as for the Young slits.
b) The diffraction through an aperture, a slit or on the side of a screen.
the classical theory, in optics, gives a series of values: δ1,δ2, ...δn ...  for the
successive angles of diffraction (for instance the Fresnel fringes on a straight edge).
If we introduce these values in (32), making precise in each case the relations of
type (5) or (20), as we have done until now, we shall get a series of phase
coherence angles θ1,  θ2, ...θn ... and then a series of angles Θ1,  Θ2, ...Θn ... or
 α1,  α2, ...αn ... under which the electrons will be observed.

5. Some theoretical remarks.

We have made use, for the calculation of interferences, of the Fresnel formula (6)
that corresponds to Fig. 6. On the basis of this formula, de Broglie argued that
interferences are gauge dependent. He pointed out that the simple experience of
Young slits with an electron beam, even without any potential, implicitely defines
a gauge.
Actually, the phase difference between paths coming from both slits is:

(37) ∆ l
λ

 = a θ
λ

 = a θ mv
h

 

and if we add e∇χ  to the electron linear momentum, this difference becomes:  

(38)       ∆ l
λ

 = a θ
λ

 = 
a θ mv + e∇χ  

h
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so that (37) fixes a gauge value, even when the potential equals zero.

S

1

2

Fig. 6

∆ l

a θ

θ

Feynman developed a different argument about the Aharonov-Bohm4 effet.
Before recalling this problem, let us make some preliminary remarks.
First of all, Feynman never says that the magnetic potential must be added to the
Lagrange momentum, giving a new wave vector p = mv  + eA that controls  the
interferences owing to the law (1), and resulting in a change in the orientation of
group velocity. In short, he omits the essential change:

(39)      hk = mv    →  hk = mv   + eA     

He considers separately the two terms of k  (actually, he is only interested by eA)
and he makes no distinction between phase velocity and group velocity, or
between the normal to the wave and the ray. He overlooks the fact that electrons
do not fall on the points of equal phase and that the latter define only indirectly
the observable fringes. The angles that appear on our figures escape him.
It is not so easy to realize it in his book because, in the Aharonov-Bohm effect, mv

is approximately parallel to eA in the active part of the potential, so that one can
hardly see that integrals are taken, in fact, along the electron trajectories and not on the

lines of phase. It is not very important in the particular case he is dealing with, but
the result would be wrong in a more general case like ours: looking at the Fig. 4, it
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is obvious that, if the phase difference was taken in the direction  mv  instead of
p = mv  + eA, forgetting that the wavelength is the one defined by (1), the result
would be wrong.
Feynman distinguishes the phase in the absence of the solenoid (Fig. 7), denoted
as Φ B = 0 , and the additional phase introduced by the potential A. And he writes
the total phase difference between both "paths", but it is difficult to understand if
he speakes of phase lines or electron trajectories:

(40)     δΦ = Φ1 B = 0  - Φ2 B = 0  + eA
h

.ds
1

 - eA
h

.ds
2

At first glance, one could think that this formula gives (37), because if we

remember that Φ B=0  = mv
h

.ds, (40) may be written as:

(41) δΦ = mv + eA
h

.ds  ≅  l1 - l2  
mv + eA

h
 =  ∆l 

λl1 - l2 

 

which is (37) indeed. But in reality, I have introduced two hypotheses:
a) I suppose that the wavelength is given by (1), contrary to Feynman's discussion.
b) When I writeÊthe mean value of the integral l1 - l2  mv + eA , I assume
implicitely that the integral is taken along a curve tangent to k (to the normal of
the wave), what Feynman never does. In his case, the cosine of the angle between
k and ds must be introduced.   
In any case, the gauge problem appears again in (41), because if ∇χ  is added to the

potential, the phase difference is modified (except for the central fringe ):

(42) δ' Φ = ≅  l1 - l2  
e∇χ

h

But Feynman pays attention, in (40), only to the second bracket which he writes in
the form of a circular integral:

(43) eA
h

.ds
1

 - eA
h

.ds
2

 = eA
h

.ds
1 - 2
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Here the gauge invariance appears and also the induction vector because:

(44)                 A .ds = rot A dσ = B dσ

Therefore, the Aharonov-Bohm effect seams to be due to the induction flux
through the closed loop of the paths followed by the electrons, but in doing so,
the orthogonal lines to the surfaces of equal phase are confused with electron
trajectories. And it should be noted that, in the circular integral,the localisation of the

interference fringes  is lost.

To summarize, we do get a gauge invariant integral but it does not describe the

phenomenon because: a) the integration path is not the one that corresponds to

the calculation of phase differences; b) the wavelength never appears; c) the

localisation of observable fringes - the first question which must be answered -

is forgotten.

In the Aharonov-Bohm effect, all that is more or less rubbed out because phase
lines and electronic trajectories are not very different, but it is no more the case for
the phenomena described in the present paper.

It must be added that, according to Feynman, in a zero induction flux, the added

phase is zero. Therefore, the effects described above cannot exist because the
potential is supposed to be uniform, i.e. a gradient field. We have indeed:

(45)  A  = ∇  U ;  U = ∇  A .x

And it is so for any fieldless vector potential in a connected domain  D, because

rot A = 0 and A.ds = 0
l

 along any closed loop and there is a scalar potential U

such that A = ∇ U. It is true for the potential of a magnetic torus because the

potential of a magnetic dipole M   is equal to:

(46)    A  = 
M  × r

r3
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and a magnetic torus is nothing but a closed chain of such dipoles. The total
potential is thus (Φ = magnetic flux trapped in the torus):

(47)  A=Φ
ds×r

r3

l

and we have:

 (48)  r
r3

 = - ∇ 1
r   → A=Φ ∇ 1

r  × ds
l

so that the potential A of a torus is a gradient field5. According to Feynman, all the
effects described here would be annihilated for this reason, but I claim that they do
exist.
This paper may be considered as a test for local and global theories of

interferences. If the predicted effects are observed, the local theories are right,

otherwise, the global are, as their predictions are concerned.

Now, according to the local theory, the Aharonov-Bohm effect (Fig. 7) is due to
the simple fact that  e A

h
  is added to the wave vector, on the phase line passing

through one slit and substracted from the other phase line, without putting
forward any induction line surrounded by an integration path.
One can thus suggest the following variant of the Aharonov-Bohm experiment:

if the solenoid between the slits is substituted with two parallel solenoids

situated on both sides (Fig. 8), according to the local theory the effect subsists,

according to the global theory the effect disappears.
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