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ABSTRACT. Klein’s paradox for both spin % and spin 0 electrically
charged particles is correctly formulated in the spirit of Klein’s orig-
inal consideration. On the basis of the interpretation of relativistic
quantum mechanics set forth in Part I of this paper the paradox is
then resolved as being due to a pointlike image of the relativistic
microparticle that leads to unphysical results in the presence of very
strong classical fields. Conventional theory (part of which is quan-
tum field theory) is demonstrated to have achieved little success in
resolving the difficulties, so Klein’s paradox may prove to be one of
the fundamental theoretical facts that could stimulate novel physical
developments.

1. Introduction

The well known paradox of O. Klein [1] was formulated for spin
% particles (electrons) at the very beginning of the development of
relativistic quantum mechanics (RQM). Klein examined one-dimensional
electron scattering from a simple semi-infinite potential barrier A°(z)
generating potential energy V (z) = eA%(z) of the form

V(z)=0,2<0;V(z) =V =const >0,z >0 (1)
and noticed that in stationary states of eigenenergy
0<E=E(p) = (p*+ m2c4)% <V —mc (2)

(p > 0 standing for the momentum of the incident electron in the region
z < 0) there exists not only a reflected wave of momentum -p in the said
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region but also a nonvanishing transmitted wave in the region z > 0.
This is at complete variance with what we have in nonrelativistic QM
where semi-infinite barriers V' > FE are always impenetrable. Since the
kinetic energy of the monochromatic electron at z > 0 turns out to
be negative, it would appear that part of the incident electrons of mass
m > 0 undergo a certain transmutation m — —m upon impinging on the
barrier. The latter thus would be attractive for such electrons (positrons
being then yet undiscovered), allowing their free motion in region z > 0
as well. (The existence of unphysical negative kinetic energies and hence
masses within the conventional interpretation can be demonstrated even
in a quasi-classical approximation [2]).

Sauter [3, 4]considered the paradox in the case of different potentials
and noted that it tends to disappear for semi-infinite barriers in which
the potential energy of a charged point varies about z = 0 by <mc?
over distances 2 Ac = h/me, A¢ being the Compton wavelength.
This result was perceived by Sommerfeld [5] as a resolution (for all
practical purposes) of the difficulty both on the basis of an ad hoc
postulate of Bohr forbidding the existence of classical fields of strength
larger than that following from the above restriction and on arguments
about inapplicability of classical electrodynamics in such conditions.
Resolutions of this kind, however, were not universally felt as definitive.

Hund [6] was perhaps the first to notice that Klein’s paradox exists
in bosonic RQM too, the paradox range being once again defined by Eq.
(2). (cf. also Winter [7]) and it was demonstrated in [8] that in the case
of spin 0 bosons the paradox tends to die off in fields statisfying the same
conditions as spin 3 fermions. Hund [6] was also the first to study the
paradox from the viewpoint of second quantization and pair production
in very strong classical fields. The quantum field-theoretic viewpoint was
taken up later by a number of authors (cf. e.g. refs. [9-15]) and became
dominant in the attemps at resolution of the paradox. With the only
exception of ref. [13], the latter papers assert a final resolution of the
paradox.

The correct character of this claim, however, does not appear self-
evident. Indeed, it is well known that the quantum field operators
@(x) = &(t,f) are constructed in the usual field-theoretic approach
with the aid of one-particle RQM states which represent appropriate
solutions of the Klein-Gordon equation (KGE) and the Dirac equation
(DE). (We shall restrict our consideration to the cases of spin 0 and spin
% electrically charged particles.) Therefore, one would have to determine
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first the properties of the RQM (first quantized) solutions of the KGE
and the DE in the given physical conditions and then justify a particular
representation of the field operators with the aid of a pertinent complete
orthogonal set of such solutions. We shall demonstrate below that this
task has not been resolved in the cited references and that Klein’s
paradox turns out to represent a profound difficulty for both RQM and
quantum field theory (QFT) which employ the conception of local (point)
interaction of charged (point) entities with classical (external) fields.

To this end we examine in Sec. 2. certain properties of determinate
states by which term we designate stationary states which are obtained
from the familiar scattering stationary states in quantum scattering
theory with the aid of the operation of time reversal. (In this case of
a short-range scattering potential the determinate states will be of the
kind usually denoted as (Z|p—) [16]). We then examine in Sec. 3 the
wave functions in the case of interest Egs. (1, 2) and demonstrate that
determinate states have no relevance to the normal formulation of Klein’s
paradox. (The choice of the simplest case of semi-infinite “rectangular”
barriers allows the most straightforward formulation of the main points
without blurring them with unnecessary complications). In Sec. 4 we
discuss the paradox within the frame of RQM and propose a resolution
on the basis of the reinterpretation of the DE and KGE theories proposed
by us [17], which treats particles as extended entities of size Ac. The QFT
resolutions of the paradox and their shortcomings are examined in Sec.
5. (These attempts largely rest, in particular, on the use of determinate
RQM states.)

Problems as properties of certain anomalous bound states in very
deep potential wells - which are sometimes regarded as variants of Klein’s
paradox - are not examined in this paper since these do not seem to offer
different viewpoints.

2. A nonstochastic property of determinate states

As a first example of such a property examine the familiar states of
the kind (Z|p+) describing e.g. the scattering of an incoming nonrelativis-
tic particle with momentum p by a short-range, shperically symmetric
potential V(&) = V(|Z|) [16]. The familiar asymptotic form of (Z|p4)
when |Z| — oo is

1O) jigiaisn
||

(B|p+) o< ePE/
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where f(), in an obvious notation, is the scattering amplitude. The
invariance of nonrelativistic quantum dynamics under time reversal has
as its consequence that the complex conjugate function (Z|p+)* =
(Z|(—p)—) will also be an admissible state of motion, so in particular
the above divergent spherical wave representing the scattered flux will
be replaced by the convergent wave (f*(8)/|Z|)e=1PIFA" in (#|5+)*.
The interesting point in this trivial fact is a remarkable “asymmetry”
in the interpretation of (Z|p+) and (Z|p+)* = (Z|(—p)—). Really, (Z|p4)
admits a stochastic interpretation in the sense that do = |f(0)|2dQ) (dQ
being an infinitesimal solid angle about a given direction (6, ¢)) gives the
effective scattering cross section which is connected with the fortuitous
character of scattering at different angles. In contradistinction with this,
the time-reversed state (Z|p+)* contains only one outcome (and in this
sense it may be termed determinate): in this stage an incoming plane
wave of momentum, say, —p'= (0,0, —p,) interferes with the above-said
convergent wave, the respective phase relations being such that, when
z — —00, we have a single outgoing plane wave of the same momentum
(0,0, —p.). That is, we have here a process of probability one in which
two incoming fluxes - a plane wave and a convergent spherical wave -
merge in a way leading to a pure outgoing plane wave, so this picture
is of essentially different nature than the usual (stochastic) picture of
scattering from a given external potential that contains, in particular, a
single incoming particle flux.

It is worth giving one more example of a similar phenomenon
within nonrelativistic QM that well imitates part of the subsequent RQM
consideration. Examine the case of a one-dimensional potential barrier
of the form

V(z)=0, z2<0;V(z)=const>0, 0<z<a;

V(iz)=0 a<z a>0. (3)

An incident plane wave ¢**(k = p/h) of unit amplitude from the left will
be partly reflected and partly transmitted by the barrier, the respective
probabilities being R > 0,7 > 0(R + T = 1). Correspondingly, the
amplitude b of the reflected wave will be of smaller magnitude |b] < 1
than that of the incident wave in the region z < 0 (region 1). In the
region a < z (region 3) we shall have a transmitted single plane wave
de’** in which |d| < 1, whereas the region 0 < z < a (region 2) is an
intermediate range of little interest for us.
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The operation of time reversal deletes the fortuitous element from
the picture and changes the very nature of the latter. In the new picture
we have two incoming waves : wave d*e~"** in region 3 and wave b*e'**
in region 1. The first wave completely penetrates the barrier (region 2)
without any backward scattering and interferes in such a way with the
second wave in region 1 (and with the intermediate wave function in
region 2) that the second incoming wave is totally reflected and the net
result is an outgoing wave e~**# of unit amplitude in region 1. In other
words, the phase relations within the time reversed state are such that
we have a process of probability one in which the two incoming waves
of initially opposite directions unite into a single overall wave e~**# in
region 1. This is certainly a determinate state that is of different nature
than the stochastic usual state containing a single incoming flux.

3. RQM states of motion employed in the formulations of
Klein’s paradox

With respect to potential energies V(z) as defined by Eq. (1)
practically all authors employing QFT for the resolution of Klein’s
paradox use one and the same set of E-eigenfunctions in the paradox
range Eq. (2). For ease of comparison we will employ for these the
notations of Hansen and Ravndal [14] in the system of units h =c=1:

1+k 1-x
=P ; = ——N — ——=N. > 4
pl(Z) 17'Z<07 Pl(z) 2\/E 1 2\/E 2, 270 ()
1-— 1
po(2) = Pz < 0; pa(z) = —5 ~Ni+ Rl 220 (5

— N
2k 2k

1+k 1—-r
nl(z):mPl—i—ﬁPg, z2<0 5 mni(z)=N1, z>0 (6)
1-—k 1+k
=——P +—F—P
no(2) NG 1+ NG 25
(In the notations of ref. [15] P1(z) = 13, Pa(2) = 94, n1(2) = 91, n2(2) =
19). For bosons

2<0 ;5 mne(z) =Ny, 22>0. (7)

Py = [p| "%, Ny = |g| 22 (8)

and for fermions (in a transposed form)

1
E+m\?2 P )
Pr = 1,0, ,0)e'P* | 9
F(5r) wo gt )
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E—-V+m\? q ,
N =——] (1,0, 5———,0)¢'"%* 9
1 ( 4 )(”EV+m’” )

(We examine only spin-up states since the spin-down results are identi-
cal). In these expressions p and ¢ are positive,

=

p=(E*-m*?,q=[(E-V)*—m? (10)
and E = (p? +m?)z > 0, and
q q E+m
= os — — 0> = Kferm = — 0 <, 0 11
K= Kp p> K = Ky pE7V+m< (11)

for bosons and fermions, respectively. P, and Ny are obtained from Py
and N; via the substitution p — —p and ¢ — —¢. In the paradox range
Eq. (2) the values of ¢ are real and the solution in the region z > 0 has
no tendency of dying off as z — oc.

However strange, there exists no agreement in the literature on
which of the functions Eqs. (4)-(7) describe Klein’s paradox and hence
what is its essence in RQM. For instance, n;(z) is proposed in refs. [14]
and [15] as the pertinent state that generates the paradox for both bosons
and fermions in the case of RQM. The inappropriate character of such
a choice in the case of fermions was already noted in the literature (cf.
e.g. [13], [18]) ; the said choice coincide with that of Bjorken and Drell
[19]. It is thus necessary to fix first the relevant RQM states.

The wave functions (4-7) statisty standard requirements for conti-
nuity at the plane z = 0: for fermions one demands continuity of the
wave function ¢ whereas for bosons continuity is demanded of both
and 0v¢/dz at z = 0. This guarantees continuity of the respective fluxes
at 2z =0:

TR IO Y-
jferm—w a3w7jbos_ 2m(¢ B ¢ 92

) (12)

where ag is the z-component of the familiar 3-vector @ in DE theory [19],
Jterm 1s the particle flux in the said theory, and jies is the electric flux in
KGE theory (for known reasons the fluxes in question are to be treated
exactly as particle and electric fluxes, correspondindly). The reflection
and transmissions coefficients in both cases are

R = |jref‘/|jinc|7 T = jtrans/jinm (13)
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where jine, jref and jirans stand for the fluxes connected with the incident,
reflected, and transmitted waves, respectively.

We want to have an incident flux oc e?P* of charged particles coming
from the left (—oo — 0, region A). It is to be expected that in region A
there will exist a backward wave oc e *P? as well whereas in the region
z > 0 (region B) there can be only a transmitted wave o e~ %% (recall
that p and ¢ are always positive). The adequate RQM wave functions in
this picture are therefore those of the kind n2(z) Eq. (7).

The necessity of the apparently strange choice of —g as the momen-
tum of the transmitted fermion wave was noted first by Klein himself
[1]. The general validity of this choice can be demonstrated most easily
by defining particle macroscopic velocities in plane waves via

v=Jj/p (14)
with j from egs. (12) and
P = Pferm = Q;Z)T'l/] ) (14)
_ _ 5¢ op*
P = Pbos = (w ot ) ) (15)

respectively. In both cases we obtain that in the paradox range Eq. (2)
positive velocities (transmitted waves) in region B correspond to negative
“momenta”’ —¢. (The more appropriate term in such cases appears to
be pseudo-momenta [17]). Relations of this kind between velocities and
(pseudo)momenta are characteristic of antiparticles (charge —e) to the
“basic” particles (charge e), so we have here the first indication that
Klein’s paradox has to do with the existence of antiparticles in region B.
A straightforward demonstration of this - which seems to be absent in
the literature - is possible as well and is given below.

4. Discussion and resolution of the paradox within RQM

A “pictorial” demonstration of what we have in region B is obtained
as follows. Examine the charge density ppos Eq. (16) in our stationary
states ma(z) for values +0 of z that are infinitely close to the origin
z=0:

E
pros(z = =0) = —(0)]?



216 N.S. Todorov

(E=V)[$(0) (17)

Evidently, for barrier values V"> E > 0, ppos changes sign at z = 0, so
bosonic RQM directly predicts the existence of anticharges to the right
of 2z = 0 when V > E. At that, in the interval £ < V < E 4+ m, ppos
exponentially tends to zero as z — oo whereas, in the paradox range
V > E +m, ppos # 0 will be constant in the entire region B. This gives
the idea that in the first case the particles, penetrating the barrier, can
only tenporarily reside in it, at that in the form of anticharges, whereas in
the second case the collision of the incident particle with the barrier can
cause the real creation of charged boson-antiboson pairs, with paticles
to the left and antiparticles to the right of z = 0. The pair creation
interpretation is borne out by the properties of jis : we have

e
pbos(z = +O) = —
m

14+ 5)\>
Rbos = (1 ) > ]waos < 0a}zbos +Tbos = 13 (18)
— K

so the backward electric flux in region A is larger than the incoming one.
Comparison of the magnitude of the incoming, backward (“reflected”)
and transmitted electric fluxes is easily seen to show that all incoming
charges are totally reflected from the barrier, whereas the amounts of
the charges and anticharges created at the barrier are precisely equal.

The same values of R}os and T} are obtained when one examines
a picture containing an incident flux of antiparticles (wave o €!9%) from
the right (co — 0, region B), a backward antiparticle flux 0 — oo (wave
o e~%* and a transmitted particle flux 0 — —oo (wave o eP?, region
A). Clearly, the pertinent wave function now is ps(z).The existence of
two adequate stationary eigenstates na(z) and p2(z) is connected with
the twofold degeneration of the eigenvalue E.

The stationary states nj(z) and pi(z) that are usually used in the
literature are clearly determinate states which are obtained from ns(z)
and ps(z), respectively, via time reversal é(é = Opos = K, K denoting
complex conjugation). The state nj(z), for example, corresponds to a
picture in which an incoming antiparticle flux from the right, generated
by the wave Np, is completely annihilated at the origin z = 0 by
an incoming particle flux (wave ((1 + k)/2v/k)P1), all the survinving
particles in the leftt incoming flux being totally reflected by the barrier
as a backward wave ((1+k)/2+v/x)P»). Evidently this has little in common
(even in principle) with experimentally realizable scattering stituations
in which one could test the paradoxical predictions.



Extended particles, Part II, on Klein’s paradox 217

We turn now to scattering states mo(z) in the fermion case. The
conserved particle density pferm (Eq. (15)) is always positive in con-
tradistinction with the charge density ppos. None the less, it is to be
acknowledged that the entities in region B are antiparticles. Indeed, in
region A we have, as usual, an incoming particle flux (wave x e?* and
a reflected particle flux (wave o e~P%), the respective coefficients being

2
1+ k&
Rferm = (1 — I‘i) < 1; Tferm > 07 Rferm + Tferm =1 (19)
(K = Kferm < 0 - cf. Eq. (11)). A straightforward check-up shows that
Rierm is equal to Klein’s reflection coefficient which in our system of
units and notations is written as

In order to see what are the spin % entities that penetrate region B
with probability 0 < T < 1 we examine a wave packet composed of
states no(z) within a narrow interval of F-values, coming from the left.
When t is large enough (¢ — oo) the initially single wave packet will
turn out split in two parts: a transmitted packet far to the right of the
potential step at z = 0 and a reflected part far to the left of it. We now
quickly (“instantaneously”) switch off the force field at z = 0, trapping if
necessary near the origin all particles and fields that could be generated
by this act so as to prevent any possible perturbations of the picture
by these. After the accomplishment of these manipulations and the fast
subsequent removal of the auxiliary devices we are left with two distinct
wave packets in free space that form a unique wave function. Due to the
remoteness of these wave packet from the origin their physical nature,
mathematical form and direction of motion could not be influenced in
any way by the fast removal of the potential step at the initial moment.
An easy computation of the pertinent Fourier coefficient shows that
the right-hand wave packet contains only plane waves corresponding
to negative eigenvalues of Dirac’s free “Hamiltonian” (the appropriate
terms being pseudo-energy eigenvalues and pseudo-Hamiltonian [17]).
Employing the theory of ref. [17] (containing the operators H and é of
actual energy and actual charge, respectively) in which negative pseudo-
energy states are in fact positive energy states of antiparticles to the
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“basic” particles, we see that the wave packet in region B respresents a
positron state (if the “basic” particles in region A are electrons).

This completes the necessary RQM proof that in Klein’s paradox
we always have particles in region A and antiparticles in region B for
both bosons and fermions.

As was the case with bosons we may also examine a ps(z)-type
fermion scattering state in which we have an incoming positron flux from
the right. The flux now is partly reflected back in region B and partly
penetrates region A, the particles in A being electrons and the reflected
ones in B positrons. In analogy with the bosons case, the coefficients
Rtorm and Tierm in the state po(s) are equal to those in the fermion
states ng(z).

The fermion states of the type mnji(z) and p;(z), used by many
authors as a basis of the discussion of Klein’s paradox, are once again
simply seen to represent derterminate states containing two incident
fluxes and obtained via the usual RQM operation of time reversal
[19] from suitable “spin-down” scattering states. The state ni(z), say,
represents an incoming “spin-up” positron flux from the right which
completely penetrates region A, undergoing a transmutation into an
electron “spin-up” flux at z = 0 and interfering with an incoming “spin-
up” electron flux from the left in a way causing the complete reflection
of the latter flux and the formation of an overall backward “spin-
up” electron flux in A of absolute magnitude equal to the sum of the
absolute magnitude of the two incoming fluxes. This is the essence in our
interpretration of what Bakke and Wergeland call “Klein superparadox”
[18] for fermions.

These charge < anticharge transmutations of fermions at the step
z = 0 represent the catastrophic actual nature of the original Klein
paradox since they give evidence about hidden charge nonconservation
in DE theory. (An analogous property of the DE in the case of nonstatic
potentials was considered in [17]). The situation with bosons appears to
be better due to the explicit charge conservation in the picture (cf. also
[17]) but this is just seeming,.

Indeed, as pointed out in [17], a necessary condition for the existence
of physically meaningful one-particle operators of actual energy H (ﬁ =
HA) and actual charge é(é = eA) is the existence of a gap between
positive and negative pseudo-energy states which demand makes the
definition of the charge-sign operator A possible. When V' > 2m ) which
is always the case with Klein’s paradox - this condition is violated and
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A cannot be defined. (For that reason we had the above states Eqgs.
(4-7) of indefinite charge content in the interval —co < z < o0). The
same applies to the actual energy E, as a possible quantum number
in the entire interval —co < z < o0o: despite the fact that the values
of the “basic” charge and the pseudo-ernegy E > 0 are fixed, it is
obvious that the anticharges in region B cannot have actual energies
E, = E as is the case with the charge in A. Really their potential
energy should be —V rather that V', whereas their actual kinetic energy
should be Eg;p, = m(1 — UQ)_%, where v < 1 is defined in B with the
aid of Eq. (14). Therefore, E, = Eyi, — V = —F in B, as easily seen
for both bosons and fermions, and E, = E in A, so the actual energy
of any particle-antiparticle pair is exaclty zero. This means for bosons
that under the impact of the incident particles the barrier can generate
charged matter and antimatter “from nothing”, i.e. without losing any
energy in the process - which certainly is an unphysical result whose
reason is the application of the one-particle KGE in situations in which it
is invalid. In the case of determinate states we have the converse process
in which matter is turned into nothing at the plane z = 0, which is
equally unphysical.

The reason of the inapplicability of both the DE and the KGE in
problems of the above kind is clear in the terms of our interpretation
[17]. Indeed, only an actual charged point may be assigned e.g. potential
energy V =0 at z = —0 and a finite value V' # 0 at z = +0. For entities
of size Ao ~ 1/m this is an unphysical definition of the interaction
term that would be expected to produce numerically unreliable results
even outside the paradox range, whereas within that range it leads to
the above spectacular paradoxes. The very idea to assign boundary
conditions for states at a given point (z = 0) is an inexplicit expression of
a point-particle outlook. Thus all the functions Egs. (4-7) have in fact no
relevance to physical reality. More generally, one-particle RQM becomes
ineffective for any point-potential energies that vary too fastly (by > mc?
over distances < Ao and not necessarily in a jump-like fashion) in the
sense of ref. [17]. The considerations in refs. [3, 4] and [8] represent
particular illustrations of these natural variation limits of external fields.
On the other hand, point-potential energies that vary by <mc? over
distances 2 A\¢ are good approximations of the interaction energy of an
extended particle of size ~ A¢ with the given field and the paradox tends
to vanish.

The consideration in this Section offers a concrete viewpoint (hope-

fully nonfuzzy enough) on the nature of Klein’s paradox and its resolu-
tion by assigning its existence to unwarranted applications of one-particle
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RQM to extended objects in certain extreme conditions. We pass now
to the evaluation of attemps at resolution of the paradox within QFT.

5. The QFT approach to Klein’s paradox

The general conclusion in the QFT resolutions [9-12], [14, 15] of
Klein’s paradox is that the incident particles are always reflected by the
barrier (which was our conclusion too for the particular case of bosons).
The presence of antiparticles inside the barrier is attributed eitheir to
spontaneous pair creation at z = 0 or to the existence of antiparticle
fluxes from the right. We shall now examine the basic assumptions on
which such considerations rest.

As well known, QFT is intrinsically connected with the one-particle
solutions of RQM equations of motion. As a direct illustrations of this
for the case of interest we examine the definition of the respective field
operators in ref. [14]. (The consideration in ref. [15] is a less rigorous
variant of the one in [14] that disagrees with the basic postulate of QFT
stating that field operators should satisfy equations of the same form as
those of RQM for wave functions [20]). Namely, Hansen and Ravndal
propose the field operator (in obvious notations )

(x) = Z(&lkplk + bl k) (21a)

k
= Z(d%p% + Egkn%) (21d)
k

(theirs Egs. (31a) and (31b), where e.g. a;; is the annihilation operator
of an incoming particle with the wave function piy, 511@ is the creation
operator of an incoming antiparticle with the wave function ni; and
analogously for daor and bor, in the case of outgoing particles and
antiparticles, pig, - - -, nox being functions of the kind (4-7), respectively.
Another essential assumption in [14] (and [15]) is the existence of two
different vaccum states [0, > and |0,y > in the second quantized
formalism.

1. Critique from a conventional viewpoint. One cannot insist that
p1k, for example, respresents only an incoming particle since, as we
know, p1; has an antiparticle content too one of whose components is an
incoming antiparticle flux in the region z > 0. Similar remarks apply to
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all the other wave functions in Egs. (21a,b) and to the interpretation of
all the above operators ayg, - - -, bog. Besides, the possibility to introduce
two different vacua in this problem is not obvious at all. Such a possibility
appears to exist in the case of non-stationary external fields [21] but no
proof of that appears to exist in the static case [11].

2. Critique from our viewpoint. The states (4-7) are unphysical and
their introduction in the second-quantized formalism of QFT does not
lead to physically understandable field operators.

Being aware of the conventional shortcomings of such formalisms
[10, 11] Nikishov made an attempt at circumventing them in his basic
work [10] on the theme by employing in the paradox range Feynman’s
non-second quantized variant of QFT (dealing only with RQM wave
functions and causal propagators) for the case of static fields that may
differ from (1) in the general case. In [11] he demonstrated that the
results of [10] agree with those of a nonstationary adiabatic approach to
the problem. In [10] he made use of a Green’s function (asserted to be
causal) in which the roles of z and ¢ are interchanged from the view of
the customary definition. This made it possible to fix the consideration
to asymptotic values z — 400 in analogy with the usual case in which
one examines moments ¢ — £00.

1’. Critique from a conventional viewpoint. In his consideration,
say, of reflection from the barrier Nikishov [10] employs for the role of
a wave, which is to be completed reflected, the completely penetrating
part of a determinate state in discord with the nature of such states.
Besides, despite the fact that this approach takes into consideration
only asymptotic values z — o0, it would not be correct to describe
without special justification (absent in [10]) spontaneous pair production
by examining matrix elements containing a state with an analogous
property in region B since any one of these states possesses an incoming
component in the other region that vitiates the picture and whose role
remains as unexplained as was the familiar case with [14]. And in the
end, the agreement between static and adiabatic results is typical for
QM and does not guarantee in itself correct physics.

2’. Critique from our viewpoint. Analagous to that of point 2 above :
the RQM wave functions that are to be used in Feynman’s approach
(both in the role of states of motion and as a means of constructing
causal operators) possess the unphysical properties of (4-7)-type states
in very intense fields due to the absence of pseudo-energy gap.
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6. Conclusion

Conventional quantum theory has proved inefficient for the resolu-
tion of Klein’s paradox. The RQM wave functions which it offerts on the
basis of its point-interaction conception and which have to be used either
directly (conventional RQM or Feynman’s approach) or as intermediate
factors for the definition of field operators (QFT) have physically inad-
missible properties in the case of very strong classical fields. The Klein
paradox is one of those theoretical facts which can bring about the cre-
ation of new physics. It is possible that the elementary particles will
enter the new picture in the form of extended entities with a well de-
fined internal structure.
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