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Metallic conductivity at low temperature
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ABSTRACT. Sodium below 20K exhibits a resistivity as a function of
the temperature which apart a constant term of impurity tends to zero
with T. The interpretation of this property shows that at every time,
only a small fraction among the possible electrons of conduction takes
part in the current flow. This result opens new perspectives for the
study for the high Tc¢ superconductors. In this approach the conduc-
tivity is calculated using the mechanical action to which is submitted
the electron along its mean free path

1 Introduction

The current flow in metallic compounds such sodium for example was
initially explained within the framework of the model of the free elec-
tron. In this model all the electrons of conduction i.e. for sodium the
electron of valence, is supposed to take part in the current flow. With
the appearance of the low temperatures we learned that the specific heat
of the solids tends towards zero with the temperature. It was a serious
difficulty since the model of the free electron inspired by that of perfect
gases results in attributing to the electrons conduction a constant term
of specific heat. The thermal properties of the electrons of conduction
were then explained in their attributing quantum properties specific of
the solid . But this approach leads to a difficulty compared to the in-
teractions between the electrons of conduction. On the one hand, while
taking as starting point the atoms of a perfect gas where the time of
interaction is very short as compared to the average time between two
exchanges, one supposes the free electrons i.e. without reciprocal in-
teraction or almost and on the other hand the conduction electrons are
supposed to obey the principle of exclusion of Pauli. However if there is
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principle of exclusion of Pauli between the electrons of conduction, there
are necessarily interactions. Indeed without interaction between them
an electron cannot know the quantum state of one or more neighbours
and satisfy the principle of exclusion of Pauli. In addition the balance
of the charges between ions and electrons imposes on average in the
case of sodium one electron of conduction by atom what implies strong
interactions between electrons and ions.

Here it is necessary to recall that the quantum state is an intra-
atomic property, i.e. of one electron in a central potential which is
based, from the experimental point of view, on the spectroscopy. The
principle of exclusion of Pauli as for it is an elegant explanation of the
filling of the various atomic layers. On the other hand, the attribution
of inter-atomic quantum properties as it is usually accepted in solid
state physics remains an assumption made possible by the absence of
interpretation of the existence of the atomic quantum state. However
the intra-atomic character of the quantum state in its experimental bases
makes it possible to remain reserved about the existence of inter-atomic
quantum properties. The recent study ”Quantum states and doublets”
corroborates this criticism. Indeed the quantum state appears as the
quantification of the mechanical action in a central potential [1].
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Figure 1: The resistivity of sodium below 20K by MacDonal and
Mendelssohn [4,5].

We will show that in fact only a very small number of electrons of
conduction really take part in the current flow. However these electrons,
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except when the current flow is established, are localised at low temper-
ature. their small number allows to explain their very large mean free
path at low temperature. The other quantum homologous electrons are
strongly localised on their atom. To describe the localisation of the elec-
trons we suppose that they have a periodic motion around their atom [2]
a hypothesis that we have recently used to show the compatibility be-
tween Dirac’s and Sommerfeld’s models [1]. Moreover we suppose that
between quantum homologous electrons there is synchronisation of the
motions so as to give the maximum of cohesion to the solid. The prob-
lem of correlation between electrons is consequently solved. That of the
electronic specific heat which tends towards zero comes from what the
solid forms a whole. It will be tackled in a separate study. The assump-
tion that only a small number of electrons of conduction take part in
the current flow is suggested by the study of the high-Tc superconduc-
tors in which the existence of defects is necessary to be conductor and
superconductor [3].

The resistivity of metals at low temperature allows to highlight this
conception of the electrons of conduction. Indeed the resistivity p can
be expressed by the relation:

p = pi + pL (11)

The pr, term tends towards zero with the absolute temperature T, the
pi term depends on the sample. It is consequently attributed to impu-
rities. The example of sodium on figure 1, highlights well this property
[4,5]. The resistivity of the sodium and that of other metals was stud-
ied to establish a law of variation at low temperature in T?. MacDonal
and Mendelssohn the authors of the study on sodium [4] underline that
below 8°K it is impossible to check the law in T? while Kittel [5] under-
lines that discrepancies with this law are usually observed. In fact the
analysis of the experimental data shows an exponential growth of the
resistivity on the whole of the points of measurement. The study of the
slope of the logarithm of the resistivity gives access to the number of the
electrons which take part really in the current flow. It is the goal of this
work which we will tackle after having discussed calculation of electrical
conductivity.

2 The conduction electrons.

Let us consider the resistivity of sodium below 20°K. After having sub-
tract from p the contribution p; the variation of the logarithm of pr,
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is practically linear between 2°K and 20°K figure 2. The slope of the
curve is very close to 0,27. To understand this result let us start from
the assumption of the localisation of the electrons of conduction at 0°K
3].

The various curves of resistivity according to the samples have very
close slopes of the variation of Inp. This property shows that the resistiv-
ity pr depends little on the sample. It results from it that the proportion
of the electrons which take part in conduction is practically independent
of the sample. We will call electrons of conduction the totality of those
which, in a material, are likely to take part in conduction. Indeed, even
if only a fraction of them are involve in the current flow during a short
interval of time, all over a sufficiently long time, are likely to take part
in it. For sodium and metals in general, it should be concluded that
the proportion of the electrons which take part in conduction is prac-
tically always the same one. We are there in a situation apparently
different from the high Tc superconductors where we supposed that the
electrons which take part in conduction are by assumption originating
in structural impurities which are in a variable number. However this
assumption allows to think that, for metals also, upon a short interval of
time only a weak fraction of the conduction electrons of metal take part
in current flow [3]. In fact for the superconducting compounds we will
see that the structural defects allow, as for metals, to a weak fraction of
conduction electrons to take part in the current flow.

Let us see now how with localised conduction electrons a weak frac-
tion of them can take part in the current flow. In fact the barrier of
potential or gap which retains each conduction electron to its atom fluc-
tuates in the time and has a certain probability to become practically
null. They are these fluctuations which allow to an appreciably constant
proportion of atoms to have a very small gap during a short interval of
time to participate in the current flow.

2.1 Attraction.

To describe the gap and its fluctuation it is necessary to describe the
mechanism of cohesion between the atoms. Cohesion comes from the
structure of the atom of metal which is made of an ion around of which
revolves the most external electrons ns, these two parts contributing both
to cohesion of the solid. The most significant term of cohesion of the solid
arise from that the ion is not a constant charge in the various directions
of space and in time. There are directions where the screening constant is
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Figure 2: Variation of the logarithm of the resistance given by the re-
sistivity term pr of sodium below 20°K, from the numerical values of
MacDonal and Mendelssohn [4].

weaker than the others, they are directions of positive attraction. These
directions interact mainely with the electrons ns, (n-1)s et (n-1)p of the
neighbour atoms when they pass in their vicinity. This interaction gives
rise to the concept of attraction which it is important to apprehend to
understand the behaviour of the conduction electrons.

Thus the positive directions attract the electrons of the neighbour
atoms. This aspect of the phenomena has as for result that each electron
is subjected to the interactions of the neighbour atoms which correspond
to a variable potential which is added to the central potential of its atom.
As a result each electron describes an energy band while remaining in
a quantum state well defined. There is a significant difference with the
model of the free electron where the energy band are supposed the result
of the multiplication of the quantum states in the solids.

2.2 Cohesion and attraction.

With the study of the doublets, we introduced the assumption that the
electric potential is matter and that there is a continual exchange be-
tween the electron and the electric potential [1]. The density of this
matter characteristic of the electric potential is supposed by assumption
inversely proportional to the distance which separates the zone of con-
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sidered space from the centre of the positive charges. A given quantum
state corresponds to a number n of quanta of action h (Where h is the
Planck constant) along a period of the motion. If E is the energy of the
state and p the momentum, the quanta of action nh are the sum of the
elementary actions Edt or pdl. If the density of matter increases be-
cause of an external cause to the atom, the energy and the momentum
exchanged on the interval {dt,dl} increases. Consequently the period
and the length of the trajectory decreases in such a way to keep con-
stant the action nh during a period of the motion. If the majority of the
electrons of an atom as a result of the presence of the neighbour atoms
have their trajectories which decrease in length the volume of the atom
decreases. It is this phenomenon which is at the origin of attraction
between the atoms of a solid. Thus attraction far from delocalising the
conduction electrons brings them closer to theirs atom.

2.3 Synchronisation.

Beside the attraction there is the repulsion between electrons which gen-
erates the fluctuation of the gap. To describe its influence on the gap let
us consider the motion of the corresponding electrons of neighbouring
atoms which gives rise to the concept of synchronisation. To characterise
synchronisation let us consider in a crystal a chain of atoms of the same
chemical species, of a same crystallographic site and upon each of them
an electron in a same quantum state. To simplify let us supose a close
and periodic motion. Let us then consider for example two neighbour
atoms A and B each one having a conduction electron e, and ep (figure
3).

Figure 3: The synchronised motion

Without disorder at zero degree Kelvin there is correlation between
the motions of the conduction electrons in such a way to have the maxi-
mum cohesive energy. For example the electron ey comes between A and
B when eg is as far as possible from es. The interaction of the electron
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ea with the atom core B is thus maximum. In a similar way for eg with
its other neighbour in the same chain and so on. It is the same for all
the directions where there are identical chains. There is synchronisation
of the motion of the electrons in the same quantum state on an atom of
the same chemical species located in the same crystallographic site.

2.4 The fluctuation of the gap.

Let us return to the cohesion of the solid. There is also a term of cohesion
which comes from the synchronous motion of the electrons of neighbour
atoms which are quantum and structural homologous. There is thus for
the most important terms of cohesion one term for the electrons ns, an-
other for the electrons (n-1)s and another for the electrons (n-1)p. But
these electrons having different periods generates an oscillating term of
repulsion which contributes to the fluctuation of the gap. This oscillat-
ing term of repulsion also involves a local variation of the interatomic
distance which is another aspect of the fluctuations of the gap. We admit
that it is the oscillations of this term which allow to a proportion appre-
ciably constant ¢ zeta of atom to be temporally in position allowing to
their conduction electrons to take part in the current flow.

If there is no difference of potential between the ends of the conductor,
the presence of the neighbour atoms with their electron of conduction
prohibited to the electrons to conduction of the atoms zeta to leave their
atom. The possibility for a fraction of electron of being able to leave
their atom makes that their binding energy to their atom is temporarily
almost null, these electrons are temporarily almost free.

2.5 The zeta electrons.

Let N be the number of atoms per unit of volume likely to give an
conduction electron. The fraction Nj of the electrons which take part
in conduction during the relaxation time 7 is in mean value zeta. We
have :

N; = (N (2.1)

It is interesting to recall that at low temperature the conduction elec-
trons are known to have a mean free path A much higher than atomic
dimensions. At low temperature A can reach values from 10® to 10°
interatomic distances [6,7]. In the traditional expression of conductiv-
ity N; is supposed equal to N. The expression (4.6) giving conductivity
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shows, for a given experimental value, that the smaller factor ( is, the
larger the collision time 7 between two shocks is large and consequently
also the mean free path.

3 The transport of the electrical energy

By assumption the electrons of conduction are released during the appli-
cation of a difference of potential. For simplicity we suppose it applied
at the boundaries of the conductor. It is thus, initially, during the es-
tablishment of the current that the electrical energy is absorbed by the
electrons to leave their atom. Then in the second time, when the current
is established and stable, each time that an electron leaves its atom it
does it by absorbing electrical energy. The expression (1.1) shows that
sodium metal will have when the temperature T tends towards zero,
a resistance tending towards zero if there was no impurities. This fact
leads to suppose that for the resistivity py, the absorbed electrical energy
is then gives back because of thermal agitation when the electron itself
is absorbed on another atom. As a result if the electrical energy is ab-
sorbed in an ordered way in the direction of the current, it is given back
in a disordered way in all the directions of the space, and is transformed
consequently into heat. It is this transport of the electric energy given
back in the form of heat which determines the potential fall associated
with transport of the current. In this approach it is thus a discontinu-
ous absorption of the electric power which takes place in the solid. In
the theory of the free electron one supposes initially, that the electron
between two collisions is continuously accelerated by the electric field.
Thereafter for the calculation of electrical conductivity the electron is
supposed to move at constant speed but acceleration is supposed to be
null [6]. There is a difficulty compared to the concept of electrical field
which one can avoid by considering only the energy of the electron in a
potential.

Leaving its atom a zeta electron becomes a free electron. Its energy
E is given by the potential difference at the ends of the conductor giving
it a speed vp. It exchanges continuously this energy with the potential
in which it moves in such a way to keep the balance between the spatial
and temporal action. Let us then be m the mass of the electron. During
a short interval of space and time {dl,dt} the spatial and temporal action
gives :

mVDél = Eét (31)
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Then let us consider 7 the relaxation time between the emission of
an electron of conduction and its absorption and A the mean free path
associated to 7. The energy E being constant during the interval {\,7}
we have :

mvpA = Er (3.2)

Thus when an conduction electron is emitted, it acquires an energy
and momentum which are provided to it by the electrical potential. It
transports them in the direction of the current flow, at the distance A
during the mean time 7, then it is stabilised on another atom where it
releases the energy and momentum in a disordered way.

4 The electrical conductivity

We have just seen how the electron of conduction transports the elec-
trical energy in the direction of the electrical current. But the electrons
of conduction also receive thermal energy. This point is fundamental
because each electron transporting thermal energy leaves an ion likely
to be an obstacle to the current flow. Consequently the number of these
ions determines that of the obstacles to the current flow. It is this num-
ber which determines the mean free path A\ and the relaxation time 7
between the emission and the absorption of the electrons of conduction.

Let us then V be the average fall of potential on the mean free path
A and e the electron charge, the transported energy is :

E=eV (4.1)

Taking into account (3.2) it comes :

mvpA = eVr (4.2)

Let us then j be the density of current and o the electrical conduc-
tivity. As V is the difference of potential between two points A apart,
we have :

jA=0oV (4.3)

Let N; be the number of atoms per unit of volume providing an
electron of conduction during the relaxation time 7. We have :
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j = NieVD (44)

Using the relation (4.2), it comes :

§ = Nie?Vr(mA)~! (4.5)

Comparing to (4.3) one obtains the expression of the conductivity :

o =Nie?r (m)~" (4.6)

We thus find the classical expression of electrical conductivity by
introducing only the transport of the electrical energy which is then
dissipated in the form of heat during the collisions which are the result
of thermal agitation.

5 The resistivity as a function of the temperature.

To study the resistivity it is necessary now to calculate the collision time,
the only term in electrical conductivity which varies with the tempera-
ture. To this end it is important to determine how an atom can become
an obstacle for an electron of conduction.

5.1 The mechanism of the conductivity.

By assumption at low temperature only a fraction of the electrons of
conduction called dzta, takes part effectively in the current flow. The
other quantum homologous electrons have a too high gap to leave their
atom at low temperature. During the current flow the electrons zeta are
consequently generally in excess on an atom which has kept its electron
of conduction. Let us then consider a zeta electron. As long as it is in
excess it cannot be stabilised on the atom. Let us now suppose that it
gravitates in space of an atom which has lost its electron of conduction,
i.e. an ion. If there is no thermal disorder it will just carry on its path
as the electron which it has preceded it and which left itself the atom.
On the other hand if this zone of space is subjected to thermal agitation
then it exists a certain probability so that the electron of conduction
is stabilised on the ion which thus becomes again a neutral atom. The
electrical energy that it transported is then dissipates in the form of
heat, it is the Joule effect. Thus the only possible obstacles to the
current flow are the atoms which lost their electrons of conduction. At
low temperature, the field that we consider for the resistivity of sodium,
their number is equal to that of the electrons zeta.
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5.2 The calculation de la resistivity

Let then P be the probability for an atom of having thermal energy
higher than that necessary to become an obstacle. Among the N; atoms
there are constantly creation and annihilation of obstacles. Let p. and
Pa be the corresponding probabilities. The maximum number of possible
obstacles is IV; P. The number of the obstacles destroyed per unit of time
is N; Pp,. The number of the obstacles created per unit of time is N;(1—
P)p.. In stable current, at the macroscopic scale, there are necessarily
balance between creations and annihilations of obstacles. Consequently
it comes :

N;iPp, = Ni(1 — P)p. (5.1)
whence : L p
Pa -
fa _ - 7 5.2
De P (5:2)

The annihilation of obstacles generates a conducting term, conse-
quently the collision time 7 is proportional to p,. On the other hand
the creation of obstacles generates a resistant term, 7 is consequently
inversely proportional to p.. It comes :

Pa 1-P
T=Ta— =Ta—— 5.3
o Iz (5.3)

The term 7, is a time to determine. Taking P = % it comes T = T,.
Thus 7, is the value of 7 when P = %

It comes for the conductivity :

P-1 N;e?
0 =0, Iz avec Oy = TenTa (5.4)
and for the resistivity :
m
= A a = —— 5.5
PEPTp  AVC pa= o (5.5)

To determine the variations of p it is necessary to study those of P.
The function P is the probability for an atom of having thermal energy
higher than that necessary to become an obstacle.
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5.3 Mean energy and dispersion

The function P comes from the integration of the densities of probability
for an electron to have an energy higher than the barrier of potential I,
which retains it to its atom at zero Kelvin degree. Let D(E,U) be the
representative function of the densities of probability. In this expression
E is the thermal energy of the particle and U is the average thermal
energy by particle, as a result it characterises the dispersion of energy.
Indeed more U is high more the density of probability takes significant
values for high energies.

At high temperature the atoms of a solid tend in an asymptotic way
to absorb thermal energy proportionally at the absolute temperature. It
is the law of Dulong and Petit. This property authorises to describe the
distribution of their energy as for the atoms of a gas while taking for
their mean thermal energy U = 3kT with corrective terms if one want a
better approximation.

At low temperature the situation is different, the atoms tend to be-
have like a whole. It is in particular what shows the specific heat of the
solids which tends towards zero with 7. In fact the zeta electrons can
be regarded as privileged receivers of the thermal energy received on the
surface of the solid. By assumption we suppose zeta atoms disordered.
Now as a result of the very small number of the zeta electrons, we sup-
pose that they practically do not exchange directly between them their
energy. Under this angle the zeta electrons can be considered indepen-
dent from each other as the atoms of a perfect gas. We can thus take
as representative function of the distribution of the thermal energy of
the electrons zeta that of the atoms of gas. The calculation itself of the
energy of the electrons zeta comes out of the framework of this work and
we will propose it in a separate study.

5.4 The calculation of number of the zeta electrons.

Let us consider the N electrons which take part in conduction. The
energy of the barrier of potential which retains them to their atom at zero
Kelvin degree is I/,. Their participation to the current flow depends on a
probability during which F, is practicaly zero. Before this participation
when the temperature increases the electrons receive an average thermal
energy, let E,, be this energy. The barrier of potential decreases as much.
Let E4(T) be this barrier, one has :
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Ey(T) = Ey — B (5.6)

They are the ions left by the electrons having a thermal energy E,,
which are likely to contribute to the formation of the obstacles to the
current flow.

In the expression (5.5) giving the resistivity p = p, P/(1-P), the tem-
perature T being low the probability P is low, one can thus consider
that :

p=paP (5.7)

We defined P as the probability for an atom to have a thermal en-
ergy higher than that necessary to become an obstacle. It is thus the
probability for a conduction electron to have a thermal energy higher
than energy E,(T'). The determination of P [8,9] gives :

P=A"1'In [l—l—exp—oz <% - 1)} (5.8)

with A =1,7054 and a = 1, 5049

In this expression U is the average thermal energy of the atoms of
the gas. This energy is %kT for each of the three degrees of freedom. In
addition as we are at low temperature, in the expression of the logarithm
the exponential is small and we have with a good approximation:

P=A" exp—a (% — 1) (5.9)

Taking into account (5.4), (5.5) and (5.7) it comes :

E, En

Inp=Inp, —InA —« i +a i

The terms Inp,, InA and « are constant. When T tends towards zero
the term -aF,/U tends towards minus the infinite, the probability P
tends towards zero. The compound tends towards the superconducting
state. In fact impurities for sodium and the conductors which side with
in this type of compounds, are responsible for the p; term of the relation

+ o (5.10)



288 X. Oudet

(1.1). At low temperature we know that the specific heat C. of the
electrons of conduction varies linearly with T, we have C, = 1" where
v is the linear coefficient. Thus one has F,, = %fyTQ. The term -~ is
generally expressed by mol, as the disorder results from collisions in all
the directions of space, one has, for a mole, to replace U by 3RT'/2. But
for one gram atom carrying the conduction electrons only the fraction ¢
receives energy E,,. To take this point into account one has to replace

R by (R. It comes :

En ~T

T _a3CR =dT (5.11)
In this expression d is the slope of the logarithm of the resistivity.
Thus resistivity has at low temperature an exponential term of variation
with temperature. When this term overrides the aFEy/U term in the
expression (5.10) the logarithm of p presents a linear variation to low
temperature. It is what shows figure 2. Let us write, E;, = kT, the
experiment for sodium shows that T, is lower than two Kelvin [4 and

figure 1]. For Na we have v = 1,381 mJ/mol-degr?. It comes :

oy
¢= TRd (5.12)

The experiment gives for sodium d=0,269 and ¢ = 3.1 10~%. There
are thus very few atoms whose electron takes part in the current flow
and one understand that the mean free path is much higher than the
computed values while supposing than all the sodium atoms bring an
electron of conduction.

Thus there is a small number of electrons contributing to the current
flow associated to a gap. This result makes closer the metallic conduc-
tivity to that of the semiconductors and to that of the metallic glasses.

5.5 The mean free path

To calculate the mean free path at low temperature let us notice that
conductivity is proportional to the average time between the emis-
sion and the absorption of an electron. According to the experi-
mental data of MacDonald and Mendelssohn [4] to 2°K the relation-
ship between resistance to this temperature and that to 300°K is
R(2°K)/R(300°K) = 10~3. This result combined with factor ¢ leads
to A(2°K) =~ 109\ (free-electrons 300°K). With A(free-electrons 300°K)



Metallic conductivity at low temperature 289

~ 100A one obtains A\(2°K) = lcm, result which up to now remained
surprising in the frame of the classical model of the free electron as un-
derlines it Kittel [5,7].

Among the experiments which put in view large mean free path
within the framework of the model of the free electron there are those
of Bernamont and Surdin on the fluctuations of current in a conductor
[10-12]. To explain their results they admit the existence of rare soft
collisions i.e. obstacles on which the electrons dissipate the electrical en-
ergy, as a result a mean free path much larger. In the model developed
in this study the number of the atoms likely to lead to a soft collision is
equal to that of the electrons zeta. Moreover absorption of an electron
on an obstacle is the result of a certain probability, it is thus natural to
observe fluctuations of resistance. We thus find a great similarity with
the analysis of Bernamont and Surdin.

5.6 The case of the high Tc superconductors.

The assumption that only a low number of electrons among those pos-
sible take part in conduction comes from the study of the high Tc su-
perconductors [3]. The study of these compounds shows the need of
structural impurities to observe metallic conductivity and superconduc-
tivity. There is a difference compared to metals that is only apparent.
Indeed the structural defects introduce a first reduction of the gap. The
fluctuations of this gap related to the various electronic periodic mo-
tions are then sufficient to make it almost zero. The corresponding zeta
electrons are then pratically free as with traditional metals. Under this
angle the role of the structural impurities is to allow the gap, thanks to
the fluctuations, to reach sufficiently low values to make the compound
conducting.

The experimental verification shows that with the high T'c supercon-
ductors there also is a factor (. For YBasCu3O7_q with the curves of
Wu et al [13] one find d = 1, taking into account the value of v = 3,1
mJ/mol-degr? given by Eckert et al. [14] one obtains ¢ = 1.9 10~*.

This result comes to supplement the interpretation of the field high
temperature where the high Tc superconductors have a resistivity which
varies linearly with T [15,16]. Instead of having a number of electrons
and obstacles equal to the number of the atoms likely to bring conduction
electrons, there is only one very weak fraction of these electrons which
take part in conduction. On the other hand at high temperature all the
atoms likely to bring conduction electrons can become obstacles. We
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suppose that they become obstacle by thermal ionisation of their con-
duction electrons. This ionisation being disordered the electron emitted
like this does not contribute to the intensity of the current flow but the
corresponding ions are as much obstacles. Let us then FE,, be the en-
ergy of this barrier. If the solid is well crystallised the dispersion of the
values of F,p, is weak, all the obstacles will be formed in the vicinity of
the T, temperature such as Fg, =~ kT.. Moreover the disorder causes
a reduction in the FE,p, energy of disorder and amplifies the variation of
the resistivity p given by (5.5) which is of exponential type. These are
the variations of resistivity which give in cuprates the superconductiv-
ity and which we already discussed [15,16]. What is remarkable it is
that because of the very small number zeta of the electrons taking part
in the current flow, superconductivity is the result of a phenomenon of
order-disorder not on the conduction electrons but on the obstacles to
the current flow. Now for metals as sodium one does not observe abrupt
variation of the resistivity. We suppose that this absence comes from
the dispersion of the values of the F,}, energy of disorder.

Finally it is necessary to distinguish the superconductivity observed
with cuprates for example from that observed with metals or alloys as for
gallium [17]. For gallium indeed the specific heat exhibits a 4T term for
temperature higher than Tc but this term is present in cuprates below
this temperature. That comes from the two types of atoms carrying
the conduction electrons: those carrying the ¢ electrons and the others.
For different compounds or metals the zeta atoms and consequently the
corresponding electrons can be ordered at a temperature sufficiently low.
Then they have a temperature of order-disorder as the other atoms than
the zeta atoms. It is like this that one has to understand the variations
of specific heat observed on the gallium on which we will return in a
separate study.

6 Conclusion

Thus with localised electrons on their atom, the study of metallic con-
ductivity at low temperature shows that in metals only a small zeta
fraction among the possible electrons of conduction are involve in the
current flow. At low temperature they are the atoms of these electrons
which play the role of obstacles. For the other electrons the potential
energy cannot excite them. There is a point which makes it possible
to clarify the study of the superconductors because there are two types
of atoms carrying the electrons of conduction: those carrying the zeta
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electrons and the others. The atoms of these two types can each one
give rise to an order-disorder transition which generates each one a tran-
sition superconductor-conductor. We will propose in a separated study
the calculation of the heat capacity of the zeta electrons which was a
fundamental difficulty of the free electron model.
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