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A classical interpretation of Bell’s inequality
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ABSTRACT. The author has been developing a classical particle
model theory which satisfies almost all the requirements of quantum
mechanics (QM) including known unsolved logical problems except
the superposition principle. To make such a classical approach
acceptable, it is necessary to examine how the model theory responds
to Bell’s inequality. In this paper a lack of required symmetry in
positive detection pairs of correlated particles and ill-defined nature
of the inequality are identified following the logic of classical physics.

RÉSUMÉ. L’auteur a développé un modèle de particule classique,
qui satisfait presque toutes les exigences de la mécanique quantique,
y compris des problèmes logiques non résolus, à l’exception du prin-
cipe de superposition. Pour qu’une telle approche classique soit ac-
ceptable, il faut examiner comment cette théorie répond à l’inégalité
de Bell. Dans cet article, en suivant la logique de la physique clas-
sique, on met en évidence un défaut de symétrie dans la détection
de paires de particules corrélées ainsi que la nature mal définie de
l’inégalité.

1. Motivation for this work

Based on an earlier work [1], the author has been developing
a classical particle model theory, which is consistent with almost all
required particle properties in QM, including known unsolved logical
problems, but with exception of the superposition principle. Interestingly
enough, Penrose has independently questioned the applicability of the
principle in dealing with spacetime geometries in Hawking’s quantum
black hole model [2]. Therefore, the famous superposition principle
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can be a suspect as more fully investigated later in another paper.
Although such an exclusion of the principle may suggest imposition
of serious detriment and hindrance to QM theoretical formulation, the
new model theory remains consistent with the currently established
results of QM theories and supports all the basic facts without any need
for alteration except the concept of mixed states. The model particle
satisfies Lorentz transformations in its internal microscopic formulation,
and yet macroscopically exhibits Galilean invariance. A comprehensive
modeling of three generations of particles and a cosmological model
both can logically be deduced from the simple model stipulations, and
gravitational effects can easily be modeled. These discussions are left to
other papers.

Bell’s inequality has been recognized as the cornerstone of QM tri-
umph over classical physics. Because of this, it is necessary to determine
how the model theory reacts to the inequality as investigated in this pa-
per. Lack of required symmetry and ill-defined nature of Bell’s inequality
are identified through the classical reasoning developed in the particle
model theory. Without recognition of the simple but critically importan-
t results presented in this paper, phycisits in favor of QM would likely
remain skeptical of the merit of the proposed particle model theory.

2. Preliminaries

In case of spin-1/2 particle pair, QM predict with certainty that,
if measurement of the x-component σx(1) of the spin for the particle-1
yields +1, the measurement of σx(2) yields -1 for the partner particle-2.
However, the actual chance of measurement yielding a positive detec-
tion result decreases in proportion to the cosine cosσ(i) · x of the angle
between the true spin orientation unit vector σ(i) of the i-th particle,
i=1,2, and the detector orientation unit vector x. This fact is incorpo-
rated in Bell’s prediction formula for the case of quantum mechanics,
and in the comparison between the predictions using a hidden variable
and quantum mechanics.

In Bell’s presentation the role of the hidden variable λ in A(a, λ) is
not clearly stated. In this paper the author makes a classical assumption
that each undisturbed classical particle pair satisfies a particular set of
initial conditions defined by the initial spin (or polarization) orientation
values σ(i), i=1,2, which remain unchanged until they reach detectors.
Note that this assumption is not in agreement with general QM concepts
and violates Bell’s local hidden variable concept. However, it nicely
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eliminates the problem of communication between the pair at a speed
faster than the speed of light, and requires no introduction of the λ.
So, the introduction of initial conditions in classical sense immediately
solves this logical problem long recognized in QM.

To investigate the symmetry of the spin correlation on three positive
detection pairs, the incorporation of the cosine detection factor simply
complicates the issue. It is the best to specify the angular range of
true spin orientation as within ±π/2 of the detector orientation for
yielding a positive detection, and then analyze the angular ranges over
which positve detections are declared. In this way, the computation of
mathematical expectations with respect to random spin orientation can
be substituted by interval statements. The true spin orientation σ(1) of
the first particle can be assumed uniformly distributed over [−π, π], and
similarly for the second particle with σ(2) = σ(1) + π. However, the
assumption of uniformity is not required so long as the assumed density
is continuous.

3. Bell’s inequality

Let a,b,c denote three unit vectors identifying the detector orienta-
tions. When the first particle A of a pair with a hidden variable λ enters
the detector pointed along a, and the second particle B with the same
λ enters the second detector along b, the outcomes of

A(a, λ) = ±1 or 0, and B(b, λ) = ±1 or 0, and

are obtained. Bell introduced the locality assumption that the outcome
of A(a, λ) does not affect the outcome of B(b, λ), and vice versa. He
chose to analyse a set of particle pairs, A and B, simultaneously tested
for ±1’s on both detectors, in which the symmetry

A(a, λ) = −B(a, λ) and B(b, λ) = −A(b, λ) (3.1)

hold on the detectors pointed along a and b, and introduced the
expectation of joint positive detections of A and B as

E(a,b) =
∫

Λ

A(a, λ)B(b, λ)ρ(λ)dλ (3.2)
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where ρ(λ) is the probability density of the λ. By simple manipulations
using (3.1)

E(a,b)− E(a, c) =
∫

Λ

[A(a, λ)A(b, λ)−A(a, λ)A(c, λ)]ρ(λ)dλ

= −
∫

Λ

A(a, λ)A(b, λ)[1−A(b, λ)A(c, λ)]ρ(λ)dλ

(3.3)
Since A,B = ±1 must hold for each simultaneously registered pair,

|E(a,b)− E(a, c)| ≤
∫

Λ

[1−A(b, λ)A(c, λ)]ρ(λ)dλ (3.4)

holds. Using (3.1), (3.2) and
∫
ρ(λ)dλ = 1, Bell derived the final

inequality
|E(a,b)− E(a, c)| ≤ 1 + E(b, c) (3.5)

4. Deduced symmetry

In order to verify (3.5) the third particle C in

E(b, c) =
∫

Λ

B(b, λ)C(b, λ)ρ(λ)dλ

by definition must be introduced. Note that the expression of∫
Λ

A(b, λ)A(c, λ)ρ(λ)dλ = −
∫

Λ

B(b, λ)A(c, λ)ρ(λ)dλ

in (3.4) holds using (3.1), but the unmodified term A(c, λ) still remains
in it. If a perfect symmetry exists between all paired positive detections
along a, b, c, it is necessary to stipulate an universal symmetry between
A, B, C particles satisfying

A(a, λ) = −B(a, λ) = −C(a, λ)
B(b, λ) = −A(b, λ) = −C(b, λ)
C(c, λ) = −A(c, λ) = −B(c, λ)

(4.1)

in correspondence to (3.1). The right hand side of (3.4) then becomes∫
Λ

[1−B(b, λ)C(c, λ)]ρ(λ)dλ
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and therefore (3.5) must be modified into

|E(a,b)− E(a, c)| ≤ 1 + |E(b, c)| (4.2)

to account for the possibility of E(b, c) taking on negative values. With
the change of the last term, the (4.2) still produces the same numerical
inconsistency

√
2 ≤ 1 in the prediction that the case with the hidden

variable λ yields the same results as the case of quantum mechanics in
the particular set of a, b, c with a = (b− c)/|b− c| where b ⊥ c.

Focus of inquiry

Certain logical and notational problems of Bell’s presentations [3-6]
can now be identified as the reminder :

1) The identity of the said hidden variable λ is unclear, while the λ
may directly identify the true particle spin orientation values, σ, σ + π,
of each particle pair. Neither the density function ρ(λ) nor the set Λ of
λ over which the expectation is taken is specified. The ρ(λ) may choose
a continuous density over Λ = [−π, π] while λ = σ, or σ + π can be
assumed.

2) The notation E(a,b) is confusing, because the expectation oper-
ator E should be defined for the random variable λ, while the identifier
(a,b) actually indicates a particular subensemble Λ(a,b) of the Λ of pos-
itive detection pairs satisfying (3.1) for the fixed detector orientations
(a,b). The fact that (3.1) represents a conditional expectation over the
Λ(a,b) is not clearly indicated in the expression.

3) Note that Bell’s inequality (3.5) has a general mathematical
expression of

f(x, y) + f(x, z) ≤ f(y, z) (5.1)

where x ∈ X, y ∈ Y , and z ∈ Z, (x, y) ∈ X × Y , (x, z) ∈ X × Z, and
(y, z) ∈ Y ×Z. Such an equation is very uncommon, and unquestionably
is insufficiently defined. Unless the three domains of the variable pairs,
(x, y), (x, z), and (y, z), of the f are proven exactly identical, (5.1)
becomes ill-defined and meaningless. The additivity of the f on the
left-hand side of (5.1) is not definable unless X × Y = X × Z can be
demonstrated. Similarly the inequality is undefinable unless Y × Z =
X × Y and/or X × Z, or Y × Z = X × Y × Z can be shown.

4) The above argument of a mathematical function fails to apply to
E(·, ·)’s of (3.5), because (a,b), (a, c), and (b, c) identify three distinct
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subensembles Λ(a,b), Λ(a, c), and Λ(b, c) of the Λ with these given
fixed detector orientations. To have the additivity or equality of two
conditional expectations unambiguously defined over Λα and Λβ , the two
subensembles Λα and Λβ must satisfy that the set difference Λα − Λβ
has zero probability. Otherwise neither the additivity nor equality can
be established.

Given the above findings, it becomes necessary to investigate
whether the conditional expectations taken over different subensembles
can produce any meaningful mathematical relationship between them
as indicated in (3.5) under the required symmetry specified in (4.1). If
Bell’s analysis was confined to particle pairs identified as A and B, no
such complication should have arisen, because the detector orientations
a and b could simply be chosen π apart to satisfy (3.1). However, the
necessity of introducing the third particle C as needed in the Section 4
has complicated the problem.

6. Constraints of particle pairs and conditional subensembles

It is necessary to investigate what kind of dependency exists for
the specification of spin angular ranges satisfying (4.1). This task can
be initiated with the identifications of subensembles from which chosen
positive detection pairs can be acquired.

Consider the proposed analysis of angular intervals in which each
positive detection must results over the range of [−π/2, π/2) about the
detector orientation. Let σ and σ + π denote the true spin orientation
values of a particle pair over [−π, π) through hidden specification of
the λ (although this role is unclear, unless we assume λ = σ for one
and σ + π for the other). The detector orientations chosen for the
following analysis are identified by three unit vectors, b = (1, 0)T ,
c = (0, 1)T , and a = (b − c)/|b − c| = (1,−1)T /

√
2, as a special case

of importance. Any rotational changes of the orientations should result
in equivalent cases. Let aαbβcγ ∧ aξbηcζ with superscripts ± denote the
spin qualifications α, β, γ on the first particle and ξ, η, ζ on the second
particle when the given spin values are analyzed with respect to the
detection ranges of the three detectors oriented along the a, b, c. They
represent hypothetical detection results if each particle can be subjected
to three successive idealized detector tests of 100% positive detections
over the respectively specified detection ranges without ever changing
the original spin orientation, while actual observational constraints of
the cosine factor are disregarded.
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Only the following six possible angular ranges of joint detections
defined as disjoint subensembles can exist by exhaustion :
S1 : −π ≤ σ < −3π/4 & 0 ≤ σ + π < π/4 a−b−c− ∧ a+b+c+

S2 : −3π/4 ≤ σ < −π/2 & π/4 ≤ σ + π < π/2 a+b−c− ∧ a−b+c+
S3 : −π/2 ≤ σ < 0 & π/2 ≤ σ + π < π a+b+c− ∧ a−b−c+
S4 : 0 ≤ σ < π/4 & −π ≤ σ + π < −3π/4 a+b+c+ ∧ a−b−c−
S5 : π/4 ≤ σ < π/2 & −3π/4 ≤ σ + π < −π/2 a−b+c+ ∧ a+b−c−

S6 : π/2 ≤ σ < π & −π/2 ≤ σ + π < 0 a−b−c+ ∧ a+b+c−

where the last three subensembles are in mirrored images of the first
three subensembles.

The obtainable paired positive detections on specified pair of detec-
tors can now be derived and enumerated :

S1 : a−b− ∧ a+b+ a−c− ∧ a+c+ b−c− ∧ b+c+
S2 : [a+b− ∧ a−b+] [a+c− ∧ a−c+] b−c− ∧ b+c+
S3 : a+b+ ∧ a−b− [a+c− ∧ a−c+] [b+c− ∧ b−c+
S4 : a+b+ ∧ a−b− a+c+ ∧ a−c− b+c+ ∧ b−c−
S5 : [a−b+ ∧ a+b−] [a−c+ ∧ a+c−] b−c+ ∧ b+c−
S6 : a−b− ∧ a+b+ [a−c+ ∧ a+c−] [b−c+ ∧ b+c−]

where the required paired positive detections satisfying (4.1) can be
found only in those four subensembles with the paired detection results
indicated inside the square brackets. The A, B pairs satisfying the paired
detections of (4.1) are only possible in Subensembles S2 and S5, the A, C
paired positive detections are only possible in Subensembles S2, S3, S5

and S6, and the B, C paired detections are only possible in Subensembles
S3 and S6. From this finding, the subensembles over which the three
conditional expectations are taken can be identified as :

E(a,b) on Subensemble Λ(a,b) = {S2, S5}
E(a, c) on Subensemble Λ(a, c) = {S2, S3, S5, S6}
E(b, c) on Subensemble Λ(b, c) = {S3, S6}

respectively. The three domains of definition for the E(., .) are therefore
not identical. Clearly Λ(a, c)−Λ(a,b) = {S2, S3} and Λ(a, c)−Λ(b, c) =
{S2, S5} where neither one of them possesses zero probability for any
continuous density ρ(λ).

The above example shows that the required symmetry in positive
detection pairs of (4.1) cannot be satisfied for the chosen detector
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orientations of a, b, c of the particular special interest over the entire
Λ, and that (3.5) and (4.2) become ill-defined.

7. A simple combinatorial problem

It is possible to generalize the above findings independent of the
chosen detector orientations and of the exact σ, σ+ π spin pair require-
ment. In other words, a similar but more general argument should hold
for the photon pair polarization analysis equally well.

Write down the binary numbers 000 through 111 in correspondence
to 0 for “-” and 1 for “+” as the equivalent expressions of the superscripts
of particle detection results for a given particle as shown in Section 6.
Obviously these binary numbers consisting of three bits are unrelated
to any particular choice of spin angular ranges, which were used in
the previous analysis. Also, by treating only these binary numbers
in three bits combinations, the analysis is neither affected by the σ,
σ + π requirement, nor confined to either one of the particle pair. Take
two bits out of the three bits of each binary number. Three two-bits
combinations can be acquired from each binary number. For example,
from the binary number 010 the three two-bits combinations of 01, 10,
and 00 are obtained. It is easy to verify that none of the three two-bits
combinations of every binary number can satisfy 01 or 10 combinations
in all three throughout the binary numbers 000 to 111. This “01 or 10”
requirement reflects the constraints of (4.1). The negative finding shows
the inevitable general constraint of choosing two-bits combinations out of
the three bits constituting the binary numbers. The required symmetry
of (4.1) therefore can never be universally satisfied as demonstrated in
this analysis.

8. Summary and conclusions

A classical assumption of initial conditions was first introduced spec-
ifying that undisturbed particles of a correlated pair should maintain the
original spin (or polarization) orientation values until they reached detec-
tors. The derivation of Bell’s inequality required the symmetry specified
in (4.1). An examination revealed that the sign of the last term of the
inequality appeared to be reversed, and the modified form of (4.2) was
obtained. To understand Bell’s inequality the author first identified log-
ical and notational problems, and proposed to examine the relationship
between subensembles over which the conditional expectations were de-
fined. A particular case of interest with a = (b− c)/|b− c| where b ⊥ c
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had shown that these subensembles were not identical, and that the set
differences between the identified subensembles were not empty. For a
continuous density ρ(λ), the set difference should have positive prob-
ability. As the result, Bell’s inequality of the conditional expectations
became ill-defined and meaningless for the critically important case of
the analyzed example. The inability of getting the symmetry of (4.1) was
however mathematical and fundamental as demonstrated in the simple
combinatorial problem. The above conclusion suggests that no superi-
ority exists for QM theories in analysis of particle physics, and that a
variant of hidden variable concept, e.g., the concept of hidden initial
values, is now considered viable, leading to potential founding of new
classical particle model theories consistent with the established findings
of quantum mechanics.
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