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Generalized Maxwell Equations and Their Solutions
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ABSTRACT. The generalized Maxwell equations are considered which
include an additional gradient term. Such equations describe massless
particles possessing spins one and zero. We find and investigate the
matrix formulation of the first order of equations under consideration.
All the linearly independent solutions of the equations for a free par-
ticle are obtained in terms of the projection matrix-dyads (density
matrices).

1 Introduction

Now the Dirac-Kähler field in the framework of differential forms is of
interest [1]. This is due to the possibility of using the Dirac-Kähler
equation for describing fermions with spin 1/2 on the lattice [2]. Kähler
[1] investigated an equation for inhomogeneous differential forms

(d− δ +m) Φ = 0, (1)

where m is the mass, d being the exterior derivative, δ = − ?−1 d? turns
n−forms into (n− 1)−form; the ? is the operator connecting a n−form
with a (4 − n)−form; ?2 = 1, d2 = δ2 = 0; (d− δ)2 = − (dδ + δd) =
∂2
µ, ∂µ = ∂/∂xµ = (∂/∂xm, ∂/i∂t, t is the time. The inhomogeneous

differential form Φ is given by

Φ = ϕ(x) + ϕµ(x)dxµ +
1
2!
ϕµν(x)dxµ ∧ dxν+

(2)
+

1
3!
ϕµνρ(x)dxµ ∧ dxν ∧ dxρ +

1
4!
ϕµνρσ(x)dxµ ∧ dxν ∧ dxρ ∧ dxσ
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what is equivalent to introducing a scalar field ϕ(x), vector field ϕµ(x),
and antisymmetric tensor fields: ϕµν(x), ϕµνρ(x), ϕµνρσ(x). The an-
tisymmetric tensors ϕµνρ(x), ϕµνρσ(x) define a pseudovector and pseu-
doscalar fields, respectively:

ϕ̃µ(x) =
1
3!
εµνρσϕνρσ(x), ϕ̃(x) =

1
4!
εµνρσϕµνρσ(x), (3)

where εµναβ is an antisymmetric tensor Levy-Civita; ε1234 = −i. So,
Eq.(1) includes two scalar and two vector fields. This means the consid-
eration of fields with spins zero and one with the same mass m. Eq.(1)
with the definitions (2), (3) can be represented as the following system
of tensor fields [3]:

∂νψ[µν](x)−∂µψ(x)+m2ψµ(x) = 0, ∂νψ̃[µν](x)−∂µψ̃(x)+m2ψ̃µ(x) = 0,

∂µψµ(x) = ψ(x), ∂µψ̃µ(x) = ψ̃(x), (4)

ψ[µν](x) = ∂µψν(x)− ∂νψµ(x)− εµναβ∂αψ̃β(x),

where ψ̃[µν] = (1/2)εµναβψαβ is the dual tensor. There is the doubling
of the spin states of fields described because Eqs.(4) contain two four-
vectors ψµ(x), ψ̃µ(x) and two scalars ψ(x), ψ̃(x)). Equations (4) can be
represented as the 16 -dimensional first order Dirac equation [3]. That is
why there is a connection between description of fermions with spin 1/2
and bosonic fields ψ(x), ψµ(x), ψµν(x), ψ̃(x), ψ̃µ(x). At the restrictions
ψ̃µ = 0, ψ̃ = 0 we arrive at the Proca equations [4]. Stueckelberg’s
equation [5], describing fields with spin one and zero, corresponds to the
case ψ̃µ = 0 in (4).

From Eqs.(4) at m = 0 we arrive at the two-potential formulation of
massless fields with two gradient terms

∂νψ[µν](x)− ∂µψ(x) = 0, ∂νψ̃[µν](x)− ∂µψ̃(x) = 0,

∂µψµ(x) = ψ(x), ∂µψ̃µ(x) = ψ̃(x),

ψ[µν](x) = ∂µψν(x)− ∂νψµ(x)− εµναβ∂αψ̃β(x).

(5)

Eqs.5 represent the generalized Maxwell equations which were studied
in [6-11]. In [3] we found and investigated the matrix formulation of
the first order of equations (5) and solutions for a free particle in the
form of the projection matrix-dyads. The matrices of an equation obey
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the Dirac algebra. In this work we study “minimal” generalization of
Maxwell’s equations by setting ψ̃β(x) = ψ̃(x) = 0 in (5). In this case
there is no doubling of spin states of fields: there is one state with spin
zero and two states with helicity ±1.

2 Matrix form of massless bosonic fields

Let us consider the following generalized Maxwell equations (see also
[12-14])

∂νψ[µν] + ∂µψ0 = 0,

∂νψµ − ∂µψν + κψ[µν] = 0, (6)

∂µψµ + κψ0 = 0.

Eqs.(6) follow from (5) at the replacement ψ̃β(x) = ψ̃(x) = 0,
ψµν → κψµν , ψ(x) → −κψ0(x). Fields ψµ, ψ0 are massless vector
and scalar fields, respectively, and κ is a parameter which we introduced
for convenience. So, equations (6) describe massless particles possess-
ing spins one and zero without doubling of spin states. The classical
Maxwell equations are obtained by setting ψ0 = 0.

It is easy to get the massive fields by adding the term mψµ in the first
equation (6) (at κ = m). In this case we arrive at the massive (with mass
m) Stueckelberg fields [5,15]. In [15] the matrix form of equations for
massive fields and solutions in the form of the projection matrix-dyads
were found.

Now we consider the matrix formulation of the first order of the field
equations (6) for massless fields which is convenient for constructing
the density matrix and for some electrodynamics calculations. Let us
introduce the matrix εA,B [16] with dimension n×n; its elements consist
of zeroes and only one element is unity where row A and column B cross.
So the matrix elements and multiplication of these matrices are(

εA,B
)
CD

= δACδBD, εA,BεC,D = δBCε
A,D, (7)

where indexes A,B,C,D = 1, 2, ...n. After introducing the 11-
dimensional function

Ψ(x) = {ψA(x)} =

 ψ0

ψµ
ψ[µν]

 (A = 0, µ, [µν]), (8)
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where µ, ν = 1, 2, 3, 4, and using the elements of the entire algebra (7),
Eq.(6) can be written in the form of one equation

∂ν

(
εµ,[µν] + ε[µν],µ + εν,0 + ε0,ν

)
AB

ψB(x)+
(9)

+κ
(
ε0,0 +

1
2
ε[µν],[µν]

)
AB

ψB(x) = 0.

Introducing 11-dimensional matrices

αν = εµ,[µν] + ε[µν],µ + εν,0 + ε0,ν ,
(10)

P = εµ,µ, P = ε0,0 +
1
2
ε[µν],[µν],

Eq.(9) takes the form of the relativistic wave equation of the first
order:

(αµ∂µ + κP ) Ψ(x) = 0. (11)

So, matrix equation (11) gives a unified description of a scalar and vector
massless fields.

Matrices P , P are the projective matrices (see [16,17]) which obey
the relations:

P 2 = P, P
2

= P , P + P = I11,
(12)

αµP + Pαµ = αµ, αµP + Pαµ = αµ,

where I11 is the unit matrix in 11−dimensional space. The Stueckelberg
equation for massive fields in the matrix form is given by [15].

(αµ∂µ +m) Ψ(x) = 0. (13)

It should be noted that the matrices αµ can be represented as

αµ = β(1)
µ + β(0)

µ ,

β(1)
ν = εµ,[µν] + ε[µν],µ, (14)

β(0)
ν = εν,0 + ε0,ν ,

where the 10−dimensional β(1)
µ and 5−dimensional β(0)

µ matrices obey
the Petiau-Duffin-Kemmer [18-20] algebra:

βµβνβα + βαβνβµ = δµνβα + δανβµ, (15)
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so that the equations for massive spin-1 and spin-0 particles are (see
[16]) (

β(1)
µ ∂µ +m

)
Ψ(1)(x) = 0, Ψ(1)(x) =

(
ψµ
ψ[µν]

)
, (16)

(
β(0)
µ ∂µ +m

)
Ψ(0)(x) = 0, Ψ(0)(x) =

(
ψ0

ψµ

)
. (17)

The 10−dimensional Petiau-Duffin-Kemmer equation (16) is equiva-
lent to the Proca equations [4] for spin-1 particles and the 5−dimensional
Eq. (17) is equivalent to the Klein-Gordon-Fock equation for scalar par-
ticles. The 11−dimensional Eq.(11) describes massless fields with two
spins 0, 1 (multi-spin 0,1). It is not difficult to verify (using Eqs.(7))
that the 11−dimensional matrices αµ (10) satisfy the algebra (see also
[21]):

αµαναα + αααναµ + αµαααν + αναααµ + αναµαα + αααµαν =
(18)

= 2 (δµναα + δαναµ + δµααν) .

This algebra is more complicated than the Petiau-Duffin-Kemmer
algebra (15). Different representations of the Petiau-Duffin-Kemmer al-
gebra (15) were considered in [22-27].

3 Solutions of generalized Maxwell’s equations

Let us now consider the solutions of the matrix equation (11) for massless
fields. In the momentum space, Eq.(11) is given by

DΨk = 0, D = ik̂ + κP, (19)

where k̂ = αµkµ, k2
µ = k2− k2

0 = 0 and the matrix D obeys the minimal
equation

D (D − κ)2 = 0. (20)

It should be noted that this matrix equation of generalized Maxwell’s
equations with multi-spin 0, 1 is simpler than the minimal equation for
Maxwell’s equations with pure spin 1 [16,28]. Using the general scheme
[17] we find that the projection operator corresponding to eigenvalue 0
of the operator D is

γ =
(
D − κ
κ

)2

, (21)
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so that γ2 = γ.

Every column of the matrix γ can be considered as an eigenvector Ψk

of equation (19) with eigenvalue 0. Eq.(19) for projection operators tells
that matrix γ can be transformed into diagonal form, with the diagonal
containing only ones and zeroes. So the γ acting on any function Ψ will
retain components which are solutions of Eq.(19).

The generators of the Lorentz group in the 11−dimensional space
being considered are given by

Jµν = β(1)
µ β(1)

ν − β(1)
ν β(1)

µ . (22)

It should be noted that matrices (22) act in the 10−dimensional
subspace

(
ψµ, ψ[µν]

)
because the scalar ψ0 is an invariant of the Lorentz

transformations. So matrices (22) are also generators of the Lorentz
group for the Petiau-Duffin-Kemmer fields of Eq.(16). Using properties
(7), we get the commutation relations

[Jρσ, Jµν ] = δσµJρν + δρνJσµ − δρµJσν − δσνJρµ, (23)

[αλ, Jµν ] = δλµαν − δλναµ. (24)

Relationship (23) is a well known commutation relation for generators
of the Lorentz group SO(3, 1). Equation (11) is form-invariant under
the Lorentz transformations since relation (24) is valid. To guarantee
the existence of a relativistically invariant bilinear form

ΨΨ = Ψ+ηΨ, (25)

where Ψ+ is the Hermitian-conjugate wave function, we should construct
a Hermitianizing matrix η with the properties [16,17,24]:

ηαi = −αiη, ηα4 = α4η (i = 1, 2, 3). (26)

Such a matrix exists and is given by

η = −ε0,0 + 2β(1)2
4 − I10,

(27)
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I10 = εµ,µ +
1
2
ε[µν],[µν],

where the matrix η(1) = 2β(1)2
4 − I10 plays the role of a Hermitianizing

matrix for the Petiau-Duffin-Kemmer equation (16) [16]. The operator
of the squared spin (squared Pauli-Lubanski vector) is given by

σ2 =
(

1
2k0

εµναβkνJαβ

)2

=
1
k2

0

JµσJσνkµkν . (28)

It may be verified that this operator obeys the minimal equation

σ2
(
σ2 − 2

)
= 0, (29)

so that eigenvalues of the squared spin operator σ2 are s(s + 1) = 0
and s(s + 1) = 2. This confirms that the considered fields describe the
superposition of two spins s = 0 and s = 1. To separate these states we
use the projection operators

S2
(0) = 1− σ2

2
, S2

(1) =
σ2

2
(30)

having the properties S2
(0)S

2
(1) = 0,

(
S2

(0)

)2

= S2
(0),

(
S2

(1)

)2

= S2
(1), S

2
(0)+

S2
(1) = 1, where 1 ≡ I11 is the unit matrix in 11− dimensional space. In

accordance with the general properties of the projection operators, the
matrices S2

(0), S
2
(1) acting on the wave function extract pure states with

spin 0 and 1, respectively. Now we introduce the operator of the spin
projection on the direction of the momentum k (helicity) :

σk = − i

2k0
εabckaJbc = − i

k0
εabckaβ

(1)
b β(1)

c . (31)

The minimal matrix equation for the spin projection operator is

σk (σk − 1) (σk + 1) = 0 (32)

and the corresponding projection operators are given by

Ŝ(±1) =
1
2
σk (σk ± 1) , Ŝ(0) = 1− σ2

k. (33)

Operators Ŝ(±1) correspond to the spin projections sk = ±1. It is
easy to verify that the required commutation relations hold:[

S2
(0), k̂

]
=
[
S2

(1), k̂
]

=
[
Ŝ(±1), k̂

]
=
[
Ŝ(0), k̂

]
= 0,
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(34)[
S2

(0), Ŝ(±1)

]
=
[
S2

(1), Ŝ(±1)

]
=
[
S2

(0), Ŝ(0)

]
= 0.

Thus the projection matrices extracting pure states with definite spin
(0 and 1), and spin projections (helicity ±1) take the form

Π(0) =
(

1− σ2

2

)(
D − κ
κ

)2

,
(35)

Π(±1) =
1
2
σk (σk ± 1)

(
D − κ
κ

)2

,

where we took into account that
(
σ2/2

)
σk = σk. Projection operators

Π(0), Π(±1) extract states with spin 0 and 1, respectively. The Π(0),
Π(±1) are the density matrices for pure spin spates. It is easy to consider
impure states by summation of Eqs.(35) over spin projections and spins.
Projection operators for pure states can be represented as matrices-dyads
[17]:

Π(0) = Ψ(0) ·Ψ(0), Π(±1) = Ψ(±) ·Ψ(±), (36)

where the wave functions Ψ(0), Ψ(±) correspond to spin 0 and 1, respec-
tively. Solutions of Eq.(13) for massive particles with spins 0 and 1 in
the form of matrix-dyads were found in [15].

Expressions (35), (36) are convenient for calculating different electro-
dynamics processes involving polarized massless particles. It is possible
to make evaluations of different physical quantities in a covariant manner
without using the matrices of first-order equations in a definite repre-
sentation.

4 Conclusion

Compared to the Maxwell equations which describe left and right polar-
ized waves (helicity ±1), Eqs.(6) admit also an additional longitudinal
state corresponding to spin-zero of the field. This state gives the nega-
tive contribution to the Hamiltonian of fields under consideration and it
is necessary to introduce an indefinite metric to quantize such a field (see
[15]). To eliminate the additional state with spin-zero one may impose
the constraint ψ0(x) = 0 in equations (6), and we arrive at the classical
Maxwell equations, where ψµν(x) is the strength tensor; Em = iψm4,
Hm = (1/2)εmnkψnk are electric and magnetic fields, respectively. It is
possible also to treat the scalar field ψ0(x) as non-physical one in the gen-
eral gauge ψ0(x) 6= 0 (an orthodox point of view). In this way after some
calculations one should eliminate the contribution of this non-physical
scalar field in this general gauge. In extraordinary point of view, vector
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and scalar states of the system (6) can be treated on the same footing
with introducing indefinite metric. This, however, requires the further
development and physical interpretation of quantum field theory with
indefinite metric.
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