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1 Introduction

Bell’s inequality has been derived in different ways [1-10], using the fol-
lowing assumptions: locality, determinism, hidden variables and coun-
terfactual definiteness. From this inequality, Bell concluded the so-called
Bell’s theorem: ” In certain experiments all realistic local hidden vari-
able theories are incompatible with quantum mechanics ”. Clauser and
Horne tried to drive an inequality without the assumption of determin-
ism [11] and showed that this inequality isn’t consistent with quantum
mechanics. In some cases, people have tried to introduce the locality hy-
pothesis as a natural condition ( e. g. the Bell’s inequality for the case
of a single particle ) and have shown the violation of Bell’s inequality
[12-15]. Ben-Aryeh used entangled singlet spin-state with spatial spher-
ical wave functions and showed that Bell’s inequalities are violated only
for subensembles which are not pure states, and he concluded that lo-
cality is not violated [16]. G. Lochak [17] analyzed the proof given by
J. S. Bell and showed that Bell’s reasoning involves not only his locality
assumption ( with which he agrees ) but also a statistical hypothesis
which is exactly the equivalent to the one introduced by von Neumann.
This hypothesis consists in the admitting that such a theory must re-
store the classical probabilistic pattern simultaneously in the statistics
of all measurement results. This leads immediately to a contradiction
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with the calculation of mean values in quantum mechanics. E. Santos (
and others) [18-19], considers experimental restrictions, and argues that
from actual experiments, with low efficiency detectors, one cannot con-
clude the violation of Bell’s inequality. In deriving Bell’s inequality most
authors assume the locality condition. Some authors use a weaker lo-
cality condition, For example, Helman [20] constructed a model with an
almost ideal correlation and an almost determinism, and showed that
this should suffice to derive an approximate Bell-type inequality. In
this model, outcome-independence and factorizability of joint probabil-
ity are not assumed, but rather an approximate from of factorizability is
derived. Elby and Jones [21] used K.S. theorem, and derived a simple al-
gebraic contradiction between various locality assumptions and the pre-
dictions of quantum mechanics. In this paper, we consider non-locality
in a special form and drive Bell and CH inequalities. Consequently, our
proof rules out a broader class of hidden variable theories.

2 Locality Condition and Bell’s Inequality

A typical Bell-type experiment consists of two particles which originate
from a source and propagate in opposite directions towards their corre-
sponding measurement apparatuses and detectors. Each detector detects
a dichotomic variable which takes the values ±1. We represent the pa-
rameters which characterize the measurement apparatuses (1) and (2)
by â and b̂ respectively (â , e.g., is the direction of magnetic field in
a Stern-Gerlach experiment). The measurement results depend on the
controllable variables â and b̂ and a set of uncontrollable variables, the
so-called hidden variables, which we collectively represent by λ.
In Bell’s original approach [2], the result A of the spin measurement on
particle 1 was taken to depend on â, b̂ and λ, i.e. we have A(â, b̂, λ).
Similarly, B(â, b̂, λ) represents the result of a spin measurement on the
particle 2. Bell, then, applied Einstein’s locality in the following form:

A(â, b̂, λ) = A(â, λ)

B(â, b̂, λ) = B(b̂, λ) (1)

In our approach, we replace Bell’s locality condition by the following
condition:

A(â, b̂, λ) = fA(â, λ)gA(b̂, λ)

B(â, b̂, λ) = fB(â, λ)gB(b̂, λ) (2)
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Here, Shimony’s parameter independence is clearly violated. We are,
as in Bell’s case [2], interested in the correlation of the results of joint
spin measurements performed on particles 1 and 2. Thus, we define the
correlation function C(â, b̂) in the form:

C(â, b̂) =
∫
A(â, b̂, λ)B(â, b̂, λ)ρ(λ) dλ (3)

where the probability distribution function for the uncontrollable hidden
variables λ is represented by ρ(λ), with∫

ρ(λ) dλ = 1, ρ(λ) ≥ 0 (4)

A(â, b̂, λ) = ±1, B(â, b̂, λ) = ±1

If the parameter of the measurement apparatus (1) can take values â or
â′ and that of the measurement apparatus (2) can take values b̂ or b̂′,
then, we have:

C(â, b̂)−C(â, b̂′) =
∫
ρ(λ) dλ{A(â, b̂, λ)B(â, b̂, λ)−A(â, b̂, λ)B(â, b̂′, λ)}

=
∫
ρ(λ) dλ{A(â, b̂, λ)B(â, b̂, λ)[ 1±A(â′, b̂′, λ)B(â′, b̂′, λ)]

−A(â, b̂′, λ)B(â, b̂′, λ)[ 1±A(â′, b̂, λ)B(â′, b̂, λ)] } (5)

Taking the absolute values of both sides and using

|A(â, b̂, λ)| = |B(â, b̂, λ)|= |A(â, b̂′, λ)| = |B(â, b̂′, λ)| = 1

|1±A(â′, b̂, λ)B(â′, b̂, λ)|= 1±A(â′, b̂, λ)B(â′, b̂, λ)

|1±A(â′, b̂′, λ)B(â′, b̂′, λ)|= 1±A(â′, b̂′, λ)B(â′, b̂′, λ) (6)

We have:

|C(â, b̂)− C(â, b̂′)| ≤
∫
ρ(λ) dλ{ [ 1±A(â′, b̂′, λ)B(â′, b̂′, λ)]

+[ 1±A(â′, b̂, λ)B(â′, b̂, λ)] }
≤ 2± [ C(â′, b̂′) + C(â′, b̂)] (7)

or

|C(â, b̂)− C(â, b̂′)|+ |C(â′, b̂′) + C(â′, b̂)| ≤ 2 (8)
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which is Bell’s original inequality [2]. This shows that one can obtain
Bell’s inequality without appealing to Bell’s locality condition (1). Fur-
thermore, it shows that if there is any non-locality in nature it is not in
the form of the eq. (2).

3 Locality Condition and CH’s Inequality

Here, we first review the locality condition for the CH inequality. The
schematic diagram for the experiment is the same as CH’s experiment
given in ref.[5]: A source produces two correlated particles at the ori-
gin O. Each particle goes through an analyzer and a detector. For the
case of spin 1

2 particles, the analyzers are simply Stern-Gerlach magnetic
apparatuses and for the case of photons the analyzers are simply polar-
ization filters. The detectors discover only the number of particles. We
assume that the probability for the detection of a particle by detector
D1 depends only on the parameter of it’s corresponding analyzer and a
set of uncontrollable variables (the so-called hidden variables), which we
represent collectively by λ. The probability of the detection of particle
1 is represented, by P1(â, λ) and that for the particle 2 by P2(b̂, λ). The
joint probability function for detection of both particles is represented
by P12(â, b̂, λ). The distribution function for the uncontrollable hidden
variable λ is represented by ρ(λ) which satisfies the following relations:∫

ρ(λ) dλ = 1, ρ(λ) ≥ 0

Averaging P1(â, λ), P2(b̂, λ) and P12(â, b̂, λ) over λ, we get:

P1(â) =
∫
P1(â, λ)ρ(λ) dλ

P2(b̂) =
∫
P2(b̂, λ)ρ(λ) dλ

P12(â, b̂) =
∫
P12(â, b̂, λ)ρ(λ) dλ (9)

Clauser and Horne applied Einstein’s locality condition in the following
form:

P12(â, b̂, λ) = P1(â, λ)P2(b̂, λ) (10)
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Now we replace CH’s locality condition by the following conditions.

P1(â, b̂, λ) = f1(â, λ)g1(b̂, λ)

P2(â, b̂, λ) = f2(â, λ)g2(b̂, λ) (11)

then by considering the following inequality, which is always true,

xaxbyayb − xaxb′yayb′ + xa′xb′ya′yb′ + xa′xbya′yb − xa′ − yb ≤ 0

0 ≤ xi, yj ≤ 1 i, j = a, a′, b, b′

xa = f1(â, λ), xb = g1(b̂, λ), yb = g2(b̂, λ), ya = f2(â, λ)

We can drive CH’s inequality. Here, we don’t follow this path; rather,
we use the approach of Arthur Fine in ref.[22], i.e. we begin from Bell’s
inequality and derive CH’s inequality. representing the average values
of measurements on particles (1) and (2) by E1(â, b̂, λ) and E2(â, b̂, λ),
respectively, is:

E1(â, b̂, λ)E2(â, b̂, λ) = P12(â, b̂, λ)− P12(â,−b̂, λ)

−P12(−â, b̂, λ) + P12(−â,−b̂, λ) (12)

Of course, the assumptions of the previous section for A’s and B’s can be
adopted for Ei, i.e. they are in product form, and all results of Sec. (2)
hold for E1 and E2 .But we have neither assumed parameter or outcome
independence, nor have made the assumption of there about the form of
P12. Now, we know that:

P12(â,−b̂) = P1(â)− P12(â, b̂)

P12(−â, b̂) = P2(b̂)− P12(â, b̂) (13)

P12(−â,−b̂) = 1− P12(−â, b̂)− P12(â,−b̂)− P12(â, b̂)

From equations (3), (12) and (13), we get:

C(â, b̂) = 4P12(â, b̂)− 2P1(â)− 2P2(b̂) + 1 (14)
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and from the equation (14) and similar equations for C(â, b̂′), C(â′, b̂′)
and C(â′, b̂),and using Bell’s inequality (8), we get:

−2≤ [ 4P12(â, b̂)− 2P1(â)− 2P2(b̂) + 1− 4P12(â, b̂′) + 2P1(â) + 2P2(b̂′)− 1]

+[ 4P12(â′, b̂)− 2P1(â′)− 2P2(b̂) + 1

+4P12(â′, b̂′)− 2P1(â′)− 2P2(b̂′) + 1] ≤ 2 (15)

or

−1 ≤ P12(â, b̂)− P12(â, b̂′) + P12(â′, b̂′) + P12(â′, b̂)− P1(â′)− P2(b̂) ≤ 0

which is the usual CH inequality [5].

4 Conclusion

In this paper,we have replaced Bell’s locality condition by a more general
condition to obtain the Bell’s and CH’s inequalities. The least conclusion
we can draw is that if there were any non-locality in nature it would not
be of the restricted form of eq.(2), and that for all hidden variable theo-
ries in which non-locality is assumed in the aforementioned form, one can
obtain Bell’s inequality. In other words, one can obtain CH’s inequal-
ity without using the factorizability condition. Thus, we can conclude
that the violation of Bell’s inequalities is not necessarily the violation of
Bell’s locality condition, and that if there is any non-locality in nature,
it is not in the form of the relation (2). Furthermore, all hidden vari-
able theories of this sort are inconsistent with quantum mechanics. In a
paper in progress, we shall study some more general cases of non-locality
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