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1 Introduction

Beginning with G.W. Leibniz in the 17th, L. Euler in the 18th, B.
Reimann, J.B. Listing and A.F. M�bius in the 19th and H. Poincar� in the
20th centuries, Òanalysis situsÓ (Riemann) or ÒtopologyÓ (Listing) has been
used to provide answers to questions concerning what is most fundamental in
physical explanation. That question itself implies the question concerning
what mathematical structures one uses with confidence to adequately ÒpaintÓ
or describe physical models built from empirical facts. For example,
differential equations of motion cannot be fundamental, because they are
dependent on boundary conditions which must be justified - usually by group
theoretical considerations. Perhaps, then, group theory1 is fundamental.
                                                                        

1 Here we address the kind of groups addressed in Yang-Mills theory, which
are continuous groups (as opposed to discrete groups). Unlike discrete groups,
continuous groups contain an infinite number of elements and can be
differentiable or analytic. Cf. Yang, C.N. & Mills, R.L., Conservation of isotopic
spin and isotopic gauge invariance. Phys. Rev., 96, 191-195, 1954.
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Group theory certainly offers an austere shorthand for fundamental
transformation rules. But it appears to the present writer that the final judge of
whether a mathematical group structure can, or cannot, be applied to a
physical situation is the topology of that physical situation. Topology
dictates and justifies the group transformations.

So for the present writer, the answer to the question of what is the most
fundamental physical description is that it is a description of the topology of
the situation. With the topology known, the group theory description is
justified and equations of motion can then be justified and defined in specific
differential equation form. If there is a requirement for an understanding more
basic than the topology of the situation, then all that is left is verbal
description of visual images. So we commence an examination of
electromagnetism under the assumption that topology defines group
transformations and the group transformation rules justify the algebra
underlying the differential equations of motion.

There are a variety of special methods used to solve ordinary differential
equations. It was Sophus Lie (1842-99) in the 19th century who showed that
all the methods are special cases of integration procedures which are based on
the invariance of a differential equation under a continuous group of
symmetries. These groups became known as Lie groups2. A symmetry group
of a system of differential equations is a group which transforms solutions of
the system to other solutions3.

The relationship was made more explicit by NoetherÕs theorems4, which
related symmetry groups of a variational integral to properties of its
associated Euler-Lagrange equations. The most important consequences of
this relationship are that (i) conservation of energy arises from invariance
under a group of time translations; (ii) conservation of linear momentum
arises from invariance under translational groups; and (iii) conservation of
                                                                        

2 Lie Group Algebras
If a topological group is a group and also a topological space in which group

operations are continuous, then Lie groups are topological groups which are also
analytic manifolds on which the group operations are analytic.

In the case of Lie algebras, the parameters of a product are analytic functions of
the parameters of each factor in the product. For example, L L L( ) ( ) ( )γ α β=  where

γ α β= f ( , ). This guarantees that the group is differentiable. The Lie groups used
in Yang-Mills theory are compact groups, i.e., the parameters range over a closed
interval.

3 Cf. Olver, P.J., Applications of Lie Groups to Differential Equations,
Springer Verlag, 1986.

4 Noether, E., Invariante Variations Probleme. Nachr. Ges. Wiss. Goettingen,
Math.-Phys. Kl. 171, 235-257, 1918.
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angular momentum arises from invariance under rotational groups.
Conservation and group symmetry laws have been vastly extended to other
systems of equations, e.g., soliton equations. For example, the Korteweg de
Vries ÒsolitonÓ equation5 yields a symmetry algebra spanned by the four
vector fields of (i) space translation; (ii) time translation; (iii) Galilean
translation; and (iv) scaling.

For some time, the present writer has been engaged in showing that the
spacetime topology defines electromagnetic field equations6 - whether the
fields be of force or of phase. That is to say, the premise of this enterprise is
that a set of field equations are only valid with respect to a set defined
topological description of the physical situation. In particular, the writer has
addressed demonstrating that the Aµ potentials, µ = 0, 1, 2, 3, are not just a
mathematical convenience, but - in certain well-defined situations - are
measurable, i.e., physical. Those situations in which the Aµ potentials are
measurable possess a topology, the transformation rules of which are
describable by the SU(2) group7 or higher-order groups; and those situations
in which the Aµ potentials are not measurable possess a topology, the
transformation rules of which are describable by the U(1) group8.

                                                                        

5 Korteweg, D.J. & de Vries, G. On the change of form of long waves advancing
in a rectangular canal, and on a new type of long stationary wave. Philos. Mag.,
39, 422-443, 1895.

6 Barrett, T.W. MaxwellÕs theory extended. Part I. Empirical reasons for
questioning the completeness of MaxwellÕs theory - effects demonstrating the
physical significance of the A potentials. Annales de la Fondation Louis de
Broglie, 15, 143-183, 1990;

  ______, MaxwellÕs theory extended. Part II. Theoretical and pragmatic
reasons for questioning the completeness of MaxwellÕs theory. Annales de la
Fondation Louis de Broglie, 12, 253-283, 1990;

  ______, The Ehrenhaft-Mikhailov effect described as the behavior of a low
energy density magnetic monopole instanton. Annales de la Fondation Louis de
Broglie, 19, 291-301, 1994;

  ______, Electromagnetic phenomena not explained by MaxwellÕs equations.
pp. 6-86 in Lakhtakia, A. (Ed.) Essays on the Formal Aspects of MaxwellÕs
Theory, World Scientific, Singapore, 1993;

  ______, Sagnac effect. pp. 278-313 in Barrett, T.W. & Grimes, D.M., (Ed.s)
Advanced Electromagnetism: Foundations, Theory, Applications, World
Scientific, Singapore, 1995;

  ______, The toroid antenna as a conditioner of electromagnetic fields into
(low energy) gauge fields. In Speculations in Science and Technology, 21(4),
291-320, 1998.

7  See appendix I on : SU(n) Group Algebra
8 U(n) Group Algebra
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Table 1

U(1)
Symmetry Form

(Traditional Maxwell
Equations)

SU(2)
Symmetry Form

GaussÕ
Law

∇ • E = J0 ∇ • E = J0 − iq( A• E − E • A)

Amp�reÕs
Law
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− ∇ × B− J = 0 [ ]

( ) 0
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=×−×−

+−×∇−

ABBA

EJB
E

iq

Aiq
t∂

∂

∇ • B = 0 ∇ • B + iq A• B −B • A( ) = 0

FaradayÕs
Law ∇ × + =E

B∂
∂t

0 [ ]
( ) 0

,0

=×−×

=++×∇

AEEA

B
B

E

iq

Aiq
t∂

∂

                                                                                                                                                            

Unitary matrices, U, have a determinant equal to ±1. The elements of U(n) are
represented by n n×  unitary matrices.

    U(1) Group Algebra
The one-dimensional unitary group, or U(1), is characterized by one

continuous parameter. U(1) is also differentiable and the derivative is also an
element of U(1). A well-known example of a U(1) group is that of all the possible
phases of a wave function, which are angular coordinates in a 2-dimensional
space. When interpreted in this way - as the internal phase of the U(1) group of

electromagnetism - the U(1) group is merely a circle (0 Ð 2π).



Topological Foundations of Electromagnetism 59

Table 2

U(1)
Symmetry

Form
(Traditional

Maxwell
Theory)

SU(2)
Symmetry Form

ρe = J0 ρe = J0 − iq(A • E − E • A) = J0 + qJz

ρm = 0 ρm = −iq(A • B − B • A) = −iqJy

ge = J
  g iq A iq iq A iqe x= [ ] − × − × + = [ ] − +0 0, ( ) ,E A B B A J E J J

gm = 0
   g iq A iq iq A iqm z= [ ] − × − × = [ ] −0 0, ( ) ,B A E E A B J

σ = J / E

  
σ =

iq A iq iq A iq x0 0, ( ) ,E A B B A J

E

E J J

E

[ ] − × − × +{ } =
[ ] − +{ }

s = 0
  
s

iq A iq iq A iq z=
[ ] − × − ×{ } =

[ ] −{ }0 0, ( ) ,B A E E A

H

B J

H

Historically, electromagnetic theory was developed for situations described
by the U(1) group. The dynamic equations describing the transformations
and interrelationships of the force field are the well known Maxwell
equations, and the group algebra underlying these equations is U(1). There
was a need to extend these equations to describe SU(2) situations and to
derive equations whose underlying algebra is SU(2). These two formulations
are shown in Table 1. Table 2 shows the electric charge density, ρe, the
magnetic charge density, ρm, the electric current density, ge, the magnetic



6 0 T.W. Barrett

current density, gm, the electric conductivity, σ, and the magnetic
conductivity, s.
2  Solitons9

 Soliton solutions to differential equations require complete integrability
and integrable systems conserve geometric features related to symmetry.
Unlike the equations of motion for conventional Maxwell theory, which are
solutions of U(1) symmetry systems, solitons are solutions of SU(2)
symmetry systems. These notions of group symmetry are more fundamental
than differential equation descriptions. Therefore, although a complete
exposition is beyond the scope of the present chapter, we develop some basic
concepts in order to place differential equation descriptions within the context
of group theory.

Within this context, ordinary differential equations are viewed as vector
fields on manifolds or configuration spaces10. For example, NewtonÕs
equations are second-order differential equations describing smooth curves on
Riemannian manifolds. NoetherÕs theorem11 states that a diffeomorphism12,
φ, of a Riemannian manifold, C , indices a diffeomorphism, Dφ, of its
tangent13 bundle14, TC. If φ is a symmetry of NewtonÕs equations, then Dφ
preserves the Lagrangian, i.e.,

                                                                        

9 A soliton is a solitary wave which preserves its shape and speed in a
collision with another solitary wave. Cf. Barrett, T.W., 404-413 in Taylor, J.D.
(ed.) Introduction to Ultra-Wideband Radar Systems, CRC Press, Boca Raton,
1995.

10 Cf. Olver, P.J., Applications of Lie Groups to Differential Equations,
Springer Verlag, 1986.

11 Noether, E., Invariante Variations Probleme. Nachr. Ges. Wiss. Goettingen,
Math.-Phys. Kl. 171, 235-257, 1918.

12 A diffeomorphism is an elementary concept of topology and important to
the understanding of differential equations. It can be defined in the following
way:

If the sets U and V are open sets both defined over the space Rm, i.e., U Rm⊂  i s
open and U Rm⊂  is open, where open means nonoverlapping, then the mapping
ψ :U V→  is an infinitely differentiable map with an infinitely differential inverse,
and objects defined in U will have equivalent counterparts in V. The mapping ψ
is a diffeomorphism. It is a smooth and infinitely differentiable function. The
important point is: conservation rules apply to diffeomorphisms, because of their
infinite differentiability. Therefore diffeomorphisms constitute fundamental
characterizations of differential equations.

13 A vector field on a manifold, M, gives a tangent vector at each point of M.
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LL =φDo .
As opposed to equations of motion in conventional Maxwell theory,

soliton flows are Hamiltonian flows. Such Hamiltonian functions define
symplectic structures15 for which there is an absence of local invariants but an
infinite dimensional group of diffeomorphisms which preserve global
properties. In the case of solitons, the global properties are those permitting
the matching of the nonlinear and dispersive characteristics of the medium
through which the wave moves.

In order to relate the three major soliton equations to group theory it is
necessary to examine a Lax equation16 or the zero-curvature condition
(ZCC). The ZCC expresses the flatness of a connection by the commutation
relations of the covariant derivative operators17:

[ ] 0, =−− BABA xt .

Reformulated as a Lax equation the ZCC is17:

,0, =−− 
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Palais17 shows that the generic cases of soliton - the Korteweg de Vries
Equation (KDV), the Nonlinear Schr�dinger Equation (NLS), the Sine-
Gordon Equation (SGE) - can be given an SU(2) formulation. In each case,
                                                                                                                                                            

14 A bundle is a structure consisting of a manifold E, and manifold M, and an
onto map: π:E M→ .

15 Symplectic topology is the study of the global phenomena of symplectic
symmetry. Symplectic symmetry structures have no local invariants. This is a
subfield of topology: for example: McDuff, D. & Salamon, D., Introduction to
Symplectic Topology Oxford: Clarendon Press, 1995.

16 Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves.
Comm. Pure Appl. Math., 21, 467-490, 1968;

    Lax, P.D., Periodic solutions of the KdV equations, in Nonlinear Wave
Motion, Lectures in Applied Math., 15, American Mathematical Society, 85-96,
1974.

17 Palais, R.S., The symmetries of solitons. Bull. Am. Math. Soc. 34, 339-403,
1997.
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below, V is a one-dimensional space that is embedded in the space of off-

diagonal complex matrices, 
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is a potential, λ is a complex parameter, and a is the constant, diagonal, trace
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then ZCC is satisfied if and only if q satisfies the KdV in the form

qt qqx qxxx= − +( )1
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then ZCC is satisfied if and only if q(x,t) satisfies the NLS in the form

qt
i

qxx q q= +( )
2

2
2

.

In the third case (the SGE), if u x

qx x

qx x
( )

( )

( )
=

−
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2

2
0

 and

B u
i q x q x

q x q x
( )

cos ( ) sin ( )

sin ( ) cos ( )
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−

[ ] [ ]
[ ] [ ]





4λ

,

then ZCC is satisfied if and only if q  satisfies the SGE in the form
q qt = [ ]sin .

Thus, if  the Maxwell equation of motion with electric and magnetic
conductivity is in soliton (SGE) form, the group symmetry is SU(2).
Solitons define Hamiltonian flows and their energy conservation is due to
their symplectic structure.

In order to clarify the difference between conventional Maxwell theory
which is of U(1) symmetry, and Maxwell theory extended to SU(2)
symmetry, we can describe both in terms of mappings of a field )(xψ .  In
the case of U(1) Maxwell theory, a mapping 'ψψ →  is:

ψ ψ ψ( ) ' ( ) exp ( ) ( )x x ia x x→ = [ ] ,
where )(xa  is the conventional vector potential. However, in the case of
SU(2) extended Maxwell theory, a mapping  'ψψ →  is:

ψ ψ ψ( ) ' ( ) exp ( ) ( )x x iS x x→ = [ ] ,

where )(xS is the action and an element of SU(2) defined:

∫= dxx AS )( ,

and A is the matrix form of the vector potential. Therefore we see the
necessity to adopt a matrix formulation of the vector potential when
addressing SU(2) forms of Maxwell theory.
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3 Instantons

Instantons18 correspond to the minima of the Euclidean action and are
pseudo-particle solutions19 of SU(2) Yang-Mills equations in Euclidean 4
space20. A complete construction for any Yang-Mills group is also
available21. In other words:

ÒIt is reasonable... to ask for the determination of the classical field
configurations in Euclidean space which minimize the action, subject to
appropriate asymptotic conditions in 4-space. These classical solutions are the
instantons of the Yang-Mills theory.Ó22

In the light of the intention of the present writer to introduce topology into
electromagnetic theory, I quote further:

ÒIf one were to search ab initio for a non-linear generalization of MaxwellÕs
equation to explain elementary particles, there are various symmetry group
properties one would require. These are

(i) external symmetries under the Lorentz and Poincar� groups and under the
conformal group if one is taking the rest-mass to be zero,

(ii) internal symmetries under groups like SU(2) or SU(3) to account for the
known features of elementary particles,

(iii) covariance or the ability to be coupled to gravitation by working on
curved space-time.Ó23

The present writer applied the instanton concept in electromagnetism for
the following two reasons: (1) in some sense, the instanton, or pseudo
particle, is a compactification of degrees of freedom due to the particleÕs
boundary conditions; and (2) the instanton, or pseudoparticle, might have the
behavior of a real, high energy particle, but without the presence of high
                                                                        

18 Cf. Jackiw, R, Nohl, C. & Rebbi, C. Classical and semi-classical solutions
to Yang-Mills theory. Proceedings 1977 Banff School, Plenum Press.

19 Belavin, A., Polyakov, A., Schwartz, A. & Tyupkin, Y., Pseudoparticle
solutions of the Yang-Mills equations. Phys. Lett., 59B, 85-87, 1975.

20 Cf. Atiyah, M.F. & Ward, R.S., Instantons and Algebraic Geometry,
Commun. math. Phys., 55, 117-124, 1977.

21 Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G. & Manin, Yu.I., Construction o f
instantons. Phys. Lett., 65A, 23-25, 1978.

22 Atiyah, M., p. 80 in Michael Atiyah: Collected Works, Volume 5, Gauge
Theories, Clarendon Press, Oxford, 1988.

23 Atiyah, M., p. 81 in Michael Atiyah: Collected Works, Volume 5, Gauge
Theories, Clarendon Press, Oxford, 1988.
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energy, i.e., the pseudoparticle would share certain behavioral characteristics
in common with a real, high energy particle.

Therefore, I suggested24 that the Mikhailov effect25, and the Ehrenhaft effect
(1879-1952) which demonstrate magnetic charge-like behavior, are actually
descriptions or manifestations of instanton or pseudoparticle behavior.   

4 Aharonov-Bohm Effect

As an example of the basic nature of topological explanation, we
considered the Aharonov-Bohm effect. Beginning in 1959 Aharonov and
Bohm26 challenged the view that the classical vector potential produces no
observable physical effects by proposing two experiments. The one which is
most discussed is shown in Fig 1. A beam of monoenergetic electrons exists
from a source at X and is diffracted into two beams by the slits in a wall at Y1
and Y2. The two beams produce an interference pattern at III which is
measured. Behind the wall is a solenoid, the B field of which points out of
the paper. The absence of a free local magnetic monopole postulate in
conventional U(1) electromagnetism ( 0=•∇ B ) predicts that the magnetic
field outside the solenoid is zero. Before the current is turned on in the
solenoid, there should be the usual interference patterns observed at III, of
course, due to the differences in the two path lengths.

Aharonov and Bohm made the interesting prediction that if the current is
turned on, then due to the differently directed A fields along paths 1 and 2
indicated by the arrows in Fig. 1, additional phase shifts should be
discernible at III. This prediction was confirmed experimentally27 and the
evidence for the effect has been extensively reviewed28.

                                                                        

24 Barrett, T.W., The Ehrenhaft-Mikhailov effect described as the behavior of a
low energy density magnetic monopole instanton. Annales de la Fondation
Louis de Broglie, 19, 291-301, 1994.

25 A summary of the Mikhailov effect is: pp. 593-619 in Barrett, T.W. & Grimes,
D.M. (Ed.s) Advanced Electromagnetism: Foundations, Theory & Applications,
World Scientific, Singapore, 1995.

26 Aharonov, Y. & Bohm, D., Significance of the electromagnetic potentials in
quantum theory. Phys. Rev., 115, 485-491,1959.

27 Chambers, R.G., Shift of an electron interference pattern by enclosed
magnetic flux. Phys. Rev. Lett., 5, 3-5, 1960;

Boersch, H., Hamisch, H., Wohlleben, D. & Grohmann, K., Antiparallele
Weissche Bereiche als Biprisma f�r Elektroneninterferenzen. Zeitschrift f�r
Physik 159, 397-404, 1960;
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It is the present writerÕs opinion that the topology of this situation is
fundamental and dictates its explanation. Therefore we must clearly note the
topology of the physical layout of the design of the situation which exhibits
the effect. The physical situation is that of an interferometer. That is, there
are two paths around a central location - occupied by the solenoid - and a
measurement is taken at a location, III, in the Fig 1, where there is overlap of
the wave functions of the test waves which have traversed, separately, the two
different paths. (The test waves or test particles are complex wave functions
with phase.) It is important to note that the overlap area, at III, is the only
place where a measurement can take place of the effects of the A field (which
occurred earlier and at other locations (I and II). The effects of the A field
occur along the two different paths and at locations I and II, but they are
inferred, and not measurable there. Of crucial importance in this special
interferometer, is the fact that the solenoid presents a topological obstruction.

                                                                                                                                                            

M�llenstedt, G & Bayh, W., Messung der kontinuierlichen Phasenschiebung
von Elektronenwellen im kraftfeldfreien Raum durch das magnetische
Vektorpotential einer Luftspule. Die Naturwissenschaften 49, 81-82, 1962;

Matteucci, G. & Pozzi, G., New diffraction experiment on the electrostatic
Aharonov-Bohm effect. Phys. Rev. Lett., 54, 2469-2472, 1985;

Tonomura, A., et al, Observation of Aharonov-Bohm effect by electron
microscopy. Phys. Rev. Lett., 48, 1443-1446, 1982;

  _______________, Is magnetic flux quantized in a toroidal ferromagnet?
Phys. Rev. Lett., 51, 331-334, 1983;

  _______________, Evidence for Ahronov-Bohm effect with magnetic field
completely shielded from electron wave. Phys. Rev. Lett., 56, 792-795, 1986;

   _______________ & Callen, E., Phase, electron holography and conclusive
demonstration of the Aharonov-Bohm effect. ONRFE Sci. Bul., 12, No 3, 93-108,
1987.

28 Berry, M.V., Exact Aharonov-Bohm wavefunction obtained by applying
DiracÕs magnetic phase factor. Eur. J. Phys., 1, 240-244, 1980;

Peshkin, M., The Ahronov-Bohm effect: why it cannot be eliminated from
quantum mechanics. Physics Reports, 80, 375-386, 1981;

Olariu, S. & Popescu, I.I., The quantum effects of electromagnetic fluxes. Rev.
Mod. Phys., 157, 349-436, 1985;

Horvathy, P.A., The Wu-Yang factor and the non-Abelian Aharonov-Bohm
experiment. Phys. Rev., D33, 407-414, 1986;

Peshkin, M & Tonomura, A., The Aharonov-Bohm Effect, Springer-Verlag,
New York, 1989.
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path 1

path 2

X

Y1

Y2

I

II III

solenoid-magnet
length 1

length 2

A field lines

Fig 1. Two-slit diffraction experiment of the Aharonov-Bohm effect. Electrons are
produced by a source at X, pass through the slits of a mask at Y1 and Y2,
interact with the A field at locations I and II over lengths l1 and l2,
respectively, and their diffraction pattern is detected at III. The solenoid-
magnet is between the slits and is directed out of the page. The different
orientations of the external A field at the places of interaction I and II of the
two paths 1 and 2 are indicated by arrows following the right-hand rule.

That is, if one were to consider the two joined paths of the interferometer as a
raceway or a loop and one squeezed the loop tighter and tighter, then
nevertheless one cannot in this situation - unlike as in most situations -
reduce the interferometerÕs raceway of paths to a single point. (Another way of
saying this is: not all closed curves in a region need have a vanishing line
integral, because one exception is a loop with an obstruction.) The reason
one cannot reduce the interferometer to a single point is because of the
existence in its middle of the solenoid, which is a positive quantity, and acts
as an obstruction.

It is the present writerÕs opinion that the existence of the obstruction
changes the situation entirely. Without the existence of the solenoid in the



6 8 T.W. Barrett

interferometer, the loop of the two paths can be reduced to a single point and
the region occupied by the interferometer is then simply-connected. But with
the existence of the solenoid, the loop of the two paths cannot be reduced to a
single point and the region occupied by this special interferometer is
multiply-connected. The Aharonov-Bohm effect only exists in the multiply-
connected scenario. But we should note that the Aharonov-Bohm effect is a
physical effect and simple and multiple connectedness are mathematical
descriptions of physical situations.

The topology of the physical interferometric situation addressed by
Aharonov and Bohm defines the physics of that situation and also the
mathematical description of that physics. If that situation were not multiply-
connected, but simply-connected, then there would be no interesting physical
effects to describe. The situation would be described by U(1)
electromagnetics and the mapping from one region to another is
conventionally one-to-one. However, as the Aharonov-Bohm situation is
multiply-connected, there is a two-to-one mapping (SU(2)/Z2) of the two
different regions of the two paths to the single region at III where a
measurement is made. Essentially, at III a measurement is made of the
differential histories of the two test waves which traversed the two different
paths and experienced two different forces resulting in two different phase
effects.

In conventional, i.e., normal U(1) or simply-connected situations, the fact
that a vector field, viewed axially, is pointing in one direction, if penetrated
from one direction on one side, and is pointing in the opposite direction, if
penetrated from the same direction, but on the other side, is of no
consequence at all - because that field is of U(1) symmetry and can be reduced
to a single point. Therefore in most cases which are of U(1) symmetry, we do
not need to distinguish between the direction of the vectors of a field from one
region to another of that field. However, the Aharonov-Bohm situation is not
conventional or simply-connected, but special. (In other words, the physical
situation associated with the Aharonov-Bohm effect has a non-trivial
topology). It is a multiply-connected situation and of SU(2)/Z2 symmetry.
Therefore the direction of the A field on the separate paths is of crucial
importance, because a test wave traveling along one path will experience an A
vectorial component directed against its trajectory and thus be retarded, and
another test wave traveling along another path will experience an A vectorial
component directed with its trajectory and thus its speed is boosted. These
ÒretardationsÓ and ÒboostingsÓ can be measured as phase changes, but not at
the time nor at the locations of, I and II, where their occurrence is separated
along the two different paths, but later, and at the overlap location of III. It
is important to note that if measurements are attempted at locations I and II
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in the Fig 1, these effects will not be seen because there is no two-to-one
mapping at either I and II and therefore no referents. The locations I and II are
both simply-connected with the source and therefore only the conventional
U(1) electromagnetics applies at these locations (with respect to the source).
It is only region III which is multiply-connected with the source and at which
the histories of what happened to the test particles at I and II can be
measured. In order to distinguish the ÒboostedÓ A field (because the test
wave is traveling ÒwithÓ its direction) from the ÒretardedÓ A field (because
the test wave is traveling ÒagainstÓ its direction), we introduce the notation:
A+ and A-.
Because of the distinction between the A oriented potential fields at positions
I and II - which are not measurable and are vectors or numbers of U(1)
symmetry - and the A potential fields at III - which are measurable and are
tensors or matrix-valued functions of (in the present instance) SU(2)/Z2 =
SO(3) symmetry (or higher symmetry) - for reasons of clarity we might
introduce a distinguishing notation. In the case of the potentials of U(1)
symmetry at I and II we might use the lower case, aµ, µ = 0,1,2,3 and for the
potentials of SU(2)/Z2 = SO(3) at III we might use the upper case Aµ, µ =
0,1,2,3. Similarly, for the electromagnetic field tensor at I and II, we might
use the lower case, fµν, and for the electromagnetic field tensor at III, we
might use the upper case, Fµν. Then the following definitions for the
electromagnetic field tensor are:

At locations I and II the Abelian relationship is: 

f x a x a xµν ∂ν µ ∂µ ν( ) ( ) ( )= − , (1)

where, as is well known, µνf   is Abelian and gauge invariant; But at

location III the non-Abelian relationship is:

F A x A x igm A x A xµν ∂ν µ ∂µ ν µ ν= − − [ ]( ) ( ) ( ), ( ) , (2)

where Fµν  is gauge covariant, gm is the magnetic charge density and the

brackets are commutation brackets. We remark that in the case of non-Abelian
groups, such as SU(2), the potential field can carry charge. It is important to
note that if the physical situation changes from SU(2) symmetry back to
U(1), then F fµν µν→

Despite the clarification offered by this notation, the notation can also
cause confusion, because in the present literature, the electromagnetic field
tensor is always referred to as F, whether F is defined with respect to U(1) or
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SU(2) or other symmetry situations. Therefore, although we prefer this
notation, we shall not proceed with it. However, it is important to note that
the A field in the U(1) situation is a vector or a number, but in the SU(2) or
nonAbelian situation, it is a tensor or a matrix-valued function.

We referred to the physical situation of the Aharonov-Bohm effect as an
interferometer around an obstruction and it is 2-dimensional. It is important
to note that the situation is not provided by a toroid, although a toroid is
also a physical situation with an obstruction and the fields existing on a
toroid are also of SU(2) symmetry. However, the toroid provides a two-to-
one mapping of fields in not only the x and y dimensions but also in the  z
dimension, and without the need of an electromagnetic field pointing in two
directions + and -. The physical situation of the Aharonov-Bohm effect is
defined only in the x and y dimensions (there is no z dimension) and in order
to be of SU(2)/Z2 symmetry requires a field to be oriented differentially on
the separate paths. If the differential field is removed from the Aharonov-
Bohm situation, then that situation reverts to a simple interferometric
raceway which can be reduced to a single point and with no interesting
physics.

How does the topology of the situation affect the explanation of an effect?
A typical previous explanation29 of the Aharonov-Bohm effect commences
with the Lorentz force law:

BvE ×+= eeF (3)

The electric field, E , and the magnetic flux density, B , are essentially
confined to the inside of the solenoid and therefore cannot interact with the
test electrons. An argument is developed by defining the E and B fields in
terms of the A and φ potentials:

AB
A

E ×∇=∇−−= ,φ
∂

∂

t
. (4)

Now we can note that these conventional U(1) definitions of E and B can
be expanded to SU(2) forms:

( ) ( ) φ
∂

∂
φ

∂

∂
∇−−×∇=∇−−×∇−=

tt

A
AB

A
AE , . (5)

                                                                        

29 Ryder, L.H., Quantum Field Theory, 2nd edition, Cambridge U. Press, 1996.
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Furthermore, the U(1) Lorentz force law, Eq 3, can hardly apply in this
situation because the solenoid is electrically neutral to the test electrons and
therefore E = 0 along the two paths. Using the definition of B in Eq 5, the
force law in this SU(2) situation is:

( ) ( ) 













 ∇−−×∇×+∇−

∂

∂
−×∇−=×+= φ

∂

∂
φ

t
e

t
eee

A
Av

A
ABvEF , (6)

but we should note that Eqs 3 and 4 are still valid for the conventional
theory of electromagnetism based on the U(1) symmetry MaxwellÕs
equations provided in Table 1 and associated with the group U(1) algebra.
They are invalid for the theory based on the modified SU(2) symmetry
equations also provided in Table 1 and associated with the group SU(2)
algebra.

The typical explanation of the Aharonov-Bohm effect continues with the
observation that a phase difference, δ, between the two test electrons is caused
by the presence of the solenoid:

∫ =•∫
−

=•×∇

=∫ ∫ •−•=∆−∆=∆ 










M
e

d
ll

e
d

e

l l
dlAdlA

e

ϕ

ααδ

hhh

h

SBSA

12

2 1
1221

(7)

where 1α∆  and 2α∆  are the changes in the wave function for the electrons

over  paths 1 and 2, S is the surface area and ϕ M  is the magnetic flux
defined:

µνσµν
µ

µϕ ddxxM ∫∫=∫∫= FA )( . (8)

Now, we can extend this explanation further, by observing that the local
phase change at III of the wavefunction of a test wave or particle is given by:

 Φ = ∫∫ =



 [ ]exp ( ) expig

m
A x dx ig

m Mµ
µ ϕ . (9)
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Φ, which is proportional to the magnetic flux, ϕ M , is known as the
phase factor and is gauge covariant. Furthermore, Φ, this phase factor
measured at position III is the holonomy of the connection, Aµ; and gm is the
SU(2) magnetic charge density.

We next observe that Mϕ  is in units of volt-seconds (V.s) or kg.m2/(A.s2)
= J/A. From Eq 7 it can be seen that δ∆  and the phase factor, Φ, are
dimensionless. Therefore we can make the prediction that if the magnetic
flux, ϕ M , is known and the phase factor, Φ, is measured (as in the
Aharonov-Bohm situation), the magnetic charge density, gm, can be found by
the relation

( ) ( )Mimg ϕ/ln Φ= . (10)

Continuing the explanation: as was noted above, 0=×∇ A  outside the
solenoid and the situation must be redefined in the following way. An
electron on path 1 will interact with the A field oriented in the positive
direction. Conversely, an electron on path 2 will interact with the A field
oriented in the negative direction. Furthermore, the B field can be defined
with respect to a local stationary component B1 which is confined to the
solenoid and a component B2 which is either a standing wave or propagates:

  

B B B

B A

B
A

= +

= ∇ ×

= − − ∇

1 2

1

2

,

,

.
∂

∂
φ

t

 (11)

The magnetic flux density, B1, is the confined component associated with
)2()1( SUU × symmetry and B2 is the propagating or standing wave

component associated only with SU(2) symmetry. In a U(1) symmetry
situation, B1 = components of the field associated with U(1) symmetry, and
B2= 0.

The electrons traveling on paths 1 and 2 require different times to reach III
from X, due to the different distances and the opposing directions of the
potential A along the paths l1 and l2. Here we only address the effect of the
opposing directions of the potential A , i.e., the distances traveled are
identical over the two paths. The change in the phase difference due to the
presence of the A potential is then:
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.

2 1
12.

21

∫ =•

=•∫ ∫ −∇−−−−+∇−+−

=∆−∆=∆




























M
e

d
e

d
l l

dl
t

dl
t

e

ϕ

φ
∂

∂
φ

∂

∂

ααδ

hh

h

S2B

S
AA

(12)

There is no flux density B1 in this equation since this equation describes
events outside the solenoid, but only the flux density B2 associated with
group SU(2) symmetry; and the Ò+Ó and Ò-Ó indicate the direction of the A
field encountered by the test electrons - as discussed above.

We note that the phase effect is dependent on B2 and B1, but not on B1

alone. Previous treatments found no convincing argument around the fact that
whereas the Aharonov-Bohm effect depends on an interaction with the A field
outside the solenoid, B, defined in U(1) electromagnetism as AB ×∇= , is
zero at that point of interaction. However, when A is defined in terms
associated with an SU(2) situation, that is not the case as we have seen.

We depart from former treatments in other ways. Commencing with a
correct observation that the Aharonov-Bohm effect depends on the topology
of the experimental situation and that the situation is not simply-connected, a
former treatment then erroneously seeks an explanation of the effect in the
connectedness of the U(1) gauge symmetry of conventional electromagnetism,
but for which (1) the potentials are ambiguously defined, (the U(1) A field is
gauge invariant) and (2) in U(1) symmetry 0=A×∇  outside the solenoid.

Furthermore, whereas a former treatment again makes a correct observation
that the non-Abelian group, SU(2), is simply-connected and that the situation
is governed by a multiply-connected topology, the author fails to observe that
the non-Abelian group SU(2) defined over the integers modulo 2, SU(2)/Z2,
is, in fact, multiply-connected. Because of the two paths around the solenoid
it is this group which describes the topology underlying the Aharonov-Bohm
effect30. SU(2)/Z2 ≅ SO(3) is obtained from the group SU(2) by identifying

                                                                        

30 Barrett, T.W., Electromagnetic phenomena not explained by MaxwellÕs
equations. pp. 6-86 in Lakhtakia, A. (Ed.) Essays on the Formal Aspects o f
MaxwellÕs Theory, World Scientific, Singapore, 1993;

  ______, Sagnac effect. pp. 278-313 in Barrett, T.W. & Grimes, D.M., (Ed.s)
Advanced Electromagnetism: Foundations, Theory, Applications, World
Scientific, Singapore, 1995;
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pairs of elements with opposite signs. The δ∆  measured at location III in
Fig. 1 is derived from a single path in SO(3)31 because the two paths through
locations I and II in SU(2) are regarded as a single path in SO(3). This path
in SU(2)/Z2 ≅ SO(3) cannot be shrunk to a single point by any continuous
deformation and therefore adequately describes the multiple-connectedness of
the Aharonov-Bohm situation. Because the former treatment failed to note the
multiple connectedness of the SU(2)/Z2 description of the Aharonov-Bohm
situation, it incorrectly fell back on a U(1) symmetry description.

Now back to the main point of this excursion to the Aharonov-Bohm
effect: the reader will note that the author appealed to topological arguments
to support the main points of his argument. Underpinning the U(1) Maxwell
theory is an Abelian algebra; underpinning the SU(2) theory is a non-Abelian
algebra. The algebras specify the form of the equations of motion. However,
whether one or the other algebra can be (validly) used can only be determined
by topological considerations.

5 Summary

We have attempted to show the fundamental explanatory nature of the
topological description of solitons, instantons and the Aharonov-Bohm effect
Ð and hence electromagnetism. In the case of electromagnetism we have
shown elsewhere that, given a Yang-Mills description, electromagnetism can,
and should be extended, in accordance with the topology with which the
electromagnetic fields are associated.  

This approach has further implications. If the conventional theory of
electromagnetism, i.e., ÒMaxwellÕs theoryÓ, which is of U(1) symmetry
form, is but the simplest local theory of electromagnetism, then those
pursuing a unified field theory may wish to consider as a candidate for that
unification, not only the simple local theory, but other electromagnetic fields
of group symmetry higher than U(1). Other such forms include symplectic
gauge fields of higher group symmetry, e.g., SU(2) and above.

                                                                                                                                                            

  ______, The toroid antenna as a conditioner of electromagnetic fields into
(low energy) gauge fields. Speculations in Science and Technology, 21(4), 291-
320, 1998.

31 See appendix II on : O(n) Group Algebra
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Appendix I

SU(n) Group Algebra
Unitary transformations, U(n), leave the modulus squared of a complex

wavefunction invariant. The elements of a U(n) group are represented by n x n
unitary matrices with a determinant equal to 1± . Special unitary matrices are
elements of unitary matrices which leave the determinant equal to +1. There are n2 -
1 independent parameters. SU(n) is a subgroup of U(n) for which the determinant
equals +1.

SL(2,C) Group Algebra
The special linear group of 22 ×  matrices of determinant 1 with complex

entries is SL(2,C).
SU(2) Group Algebra
SU(2) is a subgroup of SL(2,C). The are 22 - 1 = 3 independent parameters for

the special unitary group SU(2) of 2 × 2  matrices. SU(2) is a Lie algebra such that
for the angular momentum generators, Ji, the commutation relations are
Ji, Jj[ ]= iε ijkJk ,i, j,k = 1,2,3.  The SU(2) group describes rotation in 3-

dimensional space with 2 parameters (see below). There is a well-known SU(2)
matrix relating the Euler angles of O(3) and the complex parameters of SU(2) are:

cos exp
( )

sin exp
( )

sin exp
( )

cos exp
( )

β α γ β α γ

β α γ β α γ
2 2 2 2

2 2 2 2







+











− −





− 





−











− +





i

i i

where α,β ,γ  are the Euler angles. It is also well known that a homomorphism
exists between O(3) and SU(2), and the elements of SU(2) can be associated with
rotations in O(3); and SU(2) is the covering group of O(3). Therefore, it is easy
to show that SU(2) can be obtained from O(3). These SU(2) transformations
define the relations between the Euler angles of group O(3) with the parameters of

SU(2). For comparison with the above, if the rotation matrix R(α ,β,γ)  in O(3) i s
represented as:
















+−−−

−+−

]cos[]sin[]sin[]sin[]cos[

]sin[]sin[]cos[]cos[]sin[]cos[]sin[]cos[]sin[]sin[]cos[]cos[

]cos[]sin[]sin[]cos[]cos[]cos[]sin[]sin[]sin[]cos[]cos[]cos[

ββαβα
γβγαγβαγαγβα
γβγαγβαγαγβα

then the orthogonal rotations about the coordinate axes are:
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An isotropic parameter, ϖ , can be defined:

ϖ = −x iy

z
,

where x y z, ,  are the spatial coordinates. If ϖ  is written as the quotient
of µ1  and µ2 , or the homogeneous coordinates of the bilinear transformation,
then:

µ µ

β α γ β α γ

β α γ β α γ µ µ1 2 1
2 2 2 2
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which is the relation between the Euler angles of O(3) and the complex
parameters of SU(2). However, there is not a unique one-to-one relation, for 2
rotations in O(3) correspond to 1 direction in SU(2). There is thus a many-to-one
or homomorhpism between O(3) and SU(2).

In the case of a complex 2-dimensional vector (u,v):
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where
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− ∗∗ ab

ba

are the well-known SU(2) transformation rules. Defining:c = −b
∗  and d = a∗ ,

we have the determinant:

ad bc− =1  or   1)( =−− ∗∗ bbaa .

Defining the (x,y,z) coordinates with respect to a complex 2-dimensioanl vector
(u,v) as:

x u v y
i

u v z uv= −( ) = +( ) =1
2

1
2

2 2 2 2, ,

then SU(2) transformations leave the squared distance x2 + y2 + z2  invariant.
Every element of SU(2) can be written as:






− ∗∗ ab

ba ,   a b2 2
1+ = .

Defining:
,, 4321 iyybiyya −=−=

the parameters y y y y
1 2 3 4
, , ,  indicate positions in SU(2) with the constraint:

y1
2 + y2

2 + y3
2 + y4

2 = 1 ,

which indicates that the group SU(2) is a 3-dimensional unit sphere in the 4-
dimensional y-space. This means that any closed curve on that sphere can be
shrunk to a point. In other words, SU(2) is simply-connected.

It is important to note that SU(2) is the quantum mechanical Òrotation groupÓ.

Homomorphism of O(3) and SU(2)
There is an important relationship between O(3) and SU(2). The

elements of SU(2) are associated with rotations in 3-dimensional space. To make
this relationship explicit, new coordinates are defined:

x u v y
i

u v z uv= −( ) = +( ) =1
2

1
2

2 2 2 2; ; .

Explicitly, the SU(2) transformations leave the squared 3-dimensional
distance 

222 zyx ++  invariant, and invariance which relates 3-dimensional

rotations to elements of SU(2). If  a,b of the elements of SU(2) are defined:  

a
i

b
i

=
+( ) =

− −( )
cos exp , sin exp

β α γ β α γ
2 2 2 2

,

then the general rotation matrix ),,( γβαR can be associated with the SU(2)

matrix:

cos exp sin exp

sin exp cos exp

β α γ β α γ

β α γ β α γ
2 2 2 2

2 2 2 2

i i

i i

+( ) − −( )

−
−( ) − +( )
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by means of the Euler angles.
It is important to indicate that this matrix does not give a unique one-to-

one relationship between the general rotation matrix ),,( γβαR and the SU(2)

group. This can be seen if (i) we let 0,0,0 === γβα , which gives the matrix:







10

01 ,

and (ii) 0,2,0 === γπβα , which gives the matrix:









−

−
10

01 .

Both matrices define zero rotation in 3-dimensional space, so we see that this
zero rotation in 3-dimensional space corresponds to 2 different SU(2) elements

depending on the value of β . There is thus a homomorphism, or many-to-one

mapping relationship between O(3) and SU(2) Ð where ÒmanyÓ is 2 in this case -
but not a one-to-one mapping.

SO(2) Group Algebra
The collection of matrices in Euclidean 2-dimensional space (the plane)

which are orthogonal and moreover for which the determinant is +1 is a subgroup
of O(2). SO(2) is the special orthogonal group in two variables.

The rotations in the plane is represented by the SO(2) group:

ℜ∈




 −
= θ

θθ
θθ

θ
]cos[]sin[

]sin[]cos[
)(R

where R R R( ) ( ) ( )θ γ θ γ= + . S1, or the unit circle in the complex plane with
multiplication as the group operation is an SO(2) group.

Appendix II

O(n) Group Algebra
The orthogonal group, O(n), is the group of transformation (including

inversion) in an n-dimensional Euclidean space. The elements of O(n) are
represented by nn ×  real orthogonal matrices with 2/)1( −nn  real parameters

satisfying AAt = 1.
O(3) Group Algebra
The orthogonal group, O(3), is the well-known and familiar group of

transformations (including inversions) in 3-dimensional space with 3 parameters,
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those parameters being the rotation or Euler angles ( γβα ,, ). O(3) leaves the

distance squared, x 2 + y 2 + z2 , invariant.
SO(3) Group Algebra
The collection of matrices in Euclidean 3-dimensional space which are

orthogonal and moreover for which the determinant is +1 is a subgroup of O(3).
SO(3) is the special orthogonal group in three variables and defines rotations in
3-dimensional space.

Rotation of the Riemann sphere is a rotation in 
3ℜ  or ζηξ −−  space, for

which
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which are mappings from SL(2,C) to SO(3). However, as the SL(2,C) are all
unitary with determinant equal to +1, they are of the SU(2) group. Therefore
SU(2) is the covering group of SO(3). Furthermore, SU(2) is simply connected
and SO(3) is multiply connected.

A simplification of the above is:

U e U e U e
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where

321 ,, σσσ  are the Pauli matrices.

(Manuscrit re�u le 15 septembre 2000)


