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Heinz Krüger and Claudia K.A. Vogel

Fachbereich Physik der Universität, Erwin Schrödinger Straße,
Postfach 3049, 67653 Kaiserslautern, Germany

e-mail: krueger@physik.uni-kl.de

ABSTRACT. A variational principle is proposed for the or-
bits of a lightlike point charge in external electromagnetic
fields. The principle provides equations of motion which are
Lorentz invariant and do not depend on the choice of any par-
ticular orbit parameter. The equations of motion are solved
in general in the case that external fields are absent. Geo-
metrical and physical properties of the solutions sensitively
depend on the spacetime structure of the momentum vector
associated by the variational principle to an orbit. Only time-
like momenta allow to assign a restmass to lightlike trajec-
tories. In that case however, lightlike trajectories completely
may account for the wave-particle duality of matter and dis-
play a spatial spread in accord with the momentum-position
uncertainty principle.

RÉSUMÉ. On propose un principe variationnel pour les tra-
jectoires d’une charge ponctuelle ou point isotrope se mou-
vant dans un champ électro-magnétique extérieur toujours à
la vitesse de la lumière. Le principe impose que le vecteur
tangent à chaque point d’une trajectoire soit sur le cône de
lumière dans l’espace Minkowski. L’existence explicite de
cette condition permet l’invariance des trajectoires par rap-
port au paramètre du mouvement. Les solutions générales
des équations du mouvement sont construites pour le cas
d’absence de champ extérieur. On trouve que le comporte-
ment d’une solution dépend fortement du genre du vecteur
impulsion-énergie adjoint à chaque trajectoire par le principe
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variationnel. Si la quadri-impulsion est un vecteur de temps,
on peut attribuer une masse à cette trajectoire. La projection
de la trajectoire (du point isotrope) dans l’espace Euclidien
est alors une hélice qui offre un modèle mécanique pour le du-
alisme onde-particule de la matière de même que la relation
d’incertitude entre l’impulsion et la position dans l’espace.

1. Introduction

Jan Weyssenhoff [1] investigated a variational principle for timelike
and lightlike free motions. In the case of lightlike motions the Lagrangian
he proposes however is not parameter invariant! Parameter invariance
in his case only holds if the tangent- or velocity vector is restricted to be
lightlike. Because of this defect, he is forced to approach lightlike motions
as a limiting case of more conventional timelike motions. Yet this limit
is undefined, as he admits in his comment in [1] below equation (4.56).
This has the consequence that his spin bivector remains undetermined
in [1] and recourse has to be made on sections 11 and 12 in [2].

In section 2 of this article we propose a variational principle for the
motion of a lightlike point charge in external electromagnetic fields. Our
variational integral involves second derivatives just as in [1]. However,
as distinguished from [1], our principle is supplement by a subsidiary
condition which restricts the velocity to the light cone. This constraint
ensures the independence of the equations of motion from the choice
of parameter. Equations of motion then are displayed in a manifestly
parameter invariant form and are regrouped into a momentum law and
an angular momentum law.

For a free lightlike point, the general solution of the equations of mo-
tion is constructed in section 3. Three different cases are distinguished
according to whether the momentum vector is lightlike, spacelike or time-
like.

Only those lightlike orbits with a timelike momentum allow a defi-
nition of a restmass (with respect to this momentum) and are capable
to account for the wave-particle dualism of known matter. This is the
topic of section 4.

Finally, in section 5, we demonstrate that a lightlike point with a
timelike momentum may move in such a way, that its helicoidal orbit
around its momentum dependent guiding center has a spatial spread in
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accord with the momentum-position uncertainty principle. In that case
the fundamental length, introduced at the beginning of section 2, coin-
cides with the Compton length of the restmass.

2. Dynamics of a lightlike point charge in an external electro-
magnetic field

Let λz be the position vector of the point charge in R1,3. The scalar λ
is a fundamental length and the vector z = (z0+~z)γ0 is dimensionless.
Now, if α ∈ R is an arbitrary parameter, a curve z = z(α) is called
lightlike if the tangent vector ż = dz

dα satisfies the condition

ż2 = 0. (2.1)

Writing ż = w = (w0 + ~w)γ0, w2 = 0 implies w = ±(|~w|+ ~w)γ0. So

d2z

dα2
= z̈ = ±(

~w

|~w| · ~̇w + ~̇w)γ0,

and hence

z̈2 = −(
~w

|~w| × ~̇w)2 ≤ 0. (2.2)

Thus, except for straight lightlike lines satisfying ~w × ~̇w = ~0, the vector
z̈ always is spacelike, i.e.,

z̈2 < 0. (2.3)

A smooth parameter change in equation (2.2) leads to the conclusion
that equation (2.1) and relation (2.3) characterize all curved orbits of
a lightlike point in a parameter independent, Lorentz invariant manner.

Equations of motion for a lightlike point in external fields have been
derived in [3] employing the Vessiot parameter defined by

z̈2 = −1. (2.4)

Here we will obtain parameter independent equations of motion by vari-
ation of the integral

I =

α2∫
α1

dαL(z, ż, z̈) (2.5)
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between boundaries α1 and α2 subject to the constraint (2.1).
For a lightlike point charge minimally coupled to the external vector

potential a(z) ∈ R1,3 we propose the gauge invariant Lagrangian

L(z, ż, z̈) = 2(−z̈2)1/4 + ż · a(z). (2.6)

The vector potential a(z) is dimensionless and may be related to the
electromagnetic potential vector A(λz) at the spacetime point λz by

a(z) =
q0

m0c2
A(λz), (2.7)

where the constant q0 is some charge unit, the constant m0 defines a
mass scale, c is the speed of light in vacuo and λ is the fundamental
constant which defines the scale of length as indicated at the beginning of
this section. The bivector of the electromagnetic fieldstrength F (λz) =
~E(λz) + i ~B(λz) at the point λz then is the exterior derivative of a(z)
with respect to z, viz.,

∂ ∧ a(z) = F(z) =
q0λ

m0c2
F (λz). (2.8)

We represent a free, i.e., an unrestricted variation of z = z(α) in
the form

z −→ z + εy, ε ∈ R, ε̇ = 0, y(α1,2) = 0, ẏ(α1,2) = 0, (2.9)

implying

L→ L(z + εy, ż + εẏ, z̈ + εÿ) = L+ ε(y · ∂z + ẏ · ∂ż + ÿ · ∂z̈)L(z, ż, z̈) +O(ε2)

and hence

I → I + εI1 +O(ε2), (2.10)

where

I1 =

α2∫
α1

dα (y · ∂zL+ ẏ · ∂żL+ ÿ · ∂z̈L)

=

α2∫
α1

dα [y · ∂zL+ ẏ · (∂żL− (∂z̈L)·)].

(2.11)
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The definition of the auxiliary vector k according to

k̇ = ∂zL (2.12)

permits a further integration by parts in (2.11) such that finally the first
variation of I may be written in the form

I1 =

α2∫
α1

dα ẏ · [−k + ∂żL− (∂z̈L)·]. (2.13)

The constraint (2.1) restricts the vector y in (2.9) according to

ż2 = 0→ (ż + εẏ)2 = ż2 + 2εẏ · ż + ε2ẏ2 = 0 = 2εẏ · ż +O(ε2),

or

ẏ · ż = 0. (2.14)

This condition may be solved for ẏ by putting

ẏ = ηż + Y i, η ∈ R, Y ∈ Λ3 (2.15)

and fixing the trivector Y with the help of (2.14),

ż · ẏ = ż · (Y i) = (ż ∧ Y )i = 0,

in terms of an arbitrary bivector B, viz.,

Y = ż ∧ (Bi) = (ż ·B)i, B ∈ Λ2. (2.16)

So, equations (2.15) and (2.16) provide the general solution of (2.14)

ẏ = ηż +B · ż, η ∈ R, B ∈ Λ2 (2.17)

depending on seven arbitrary, scalar functions η = η(α) and B = B(α) ∈
Λ2 which have to vanish at the boundaries of the integration interval.
Insertion of (2.17) into (2.13) casts the first variation I1 in such a form

I1 =

α2∫
α1

dα ηż · [−k + ∂żL− (∂z̈L)·] +

α2∫
α1

dα B · [ż ∧ (−k + ∂żL− (∂z̈L)·)],

(2.18)
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that the principal conclusion of variational calculus may be applied with
respect to η and B: The extremals of (2.5) subjected to the subsidiary
condition (2.1) necessarily have to fulfill equation (2.12), the scalar equa-
tion

ż · [−k + ∂żL− (∂z̈L)·] = 0, (2.19)

and the bivector equation

ż ∧ [−k + ∂żL− (∂z̈L)·] = 0. (2.20)

Forming an inner product (contraction) of (2.20) with the vector ż, one
notes that (2.19) is a consequence of (2.20) and hence may be discarded.
The equations of motion therefore may be summarized in the system

ż2 = 0, ż ∧ [k − ∂żL+ (∂z̈L)·] = 0, k̇ = ∂zL. (2.21)

There is now the question, which functional dependence of the La-
grangian L(z, ż, z̈) = L(z, w, b) on the vectors z, w and b generates
parameter-independent equations (2.21)? A functional equation for
L(z, w, b) may be derived by studying a parameter change α ↔ β in
the constraint (2.1) and the variational integral (2.5). Let β = β(α) and
z(α) = z(α(β)) = z(β), ż = β̇z′, 0 < β̇ = dβ

dα <∞, z̈ = β̈z′+β̇2z′′, where
dots denote derivatives with respect to α and primes derivatives with re-
spect to β. Then ż2 = 0 and hence ż · z̈ = 0 imply z′2 = 0 and z′ ·z′′ = 0.
The integral (2.5) is transformed into I =

∫ β2

β1

dβ

β̇
L(z, β̇z′, β̈z′ + β̇2z′′),

which leads to equation (2.21) with primes instead of dots if and only if
the Lagrangian L(z, w, b) satisfies the functional equation

L(z, β̇w, β̈w + β̇2b) = β̇[L(z, w, b) + (w · ∂z + b · ∂w)γ(z, w)] (2.22)

for all z, w, b ∈ R1,3 with w2 = 0 and b·w = 0. The scalar function γ(z, w)
generates a total differential in the integrand of I when the mapping from
α to β is performed.

The Lagrangian (2.6) obviously fulfills (2.22) with γ = 0, i.e.,

L(z, β̇w, β̈w + β̇2b) = β̇L(z, w, b), 0 < β̇ <∞, (2.23)

because w2 = 0 and w · b = 0 imply (β̈w + β̇2b)2 = β̇4b2.
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The parameter independence of (2.21) in case of the Lagrangian (2.6)
can be made manifest by defining for ż2 = 0 the parameter-independent
bivector [3]

Σ = ż ∧ ∂z̈L =
z̈ ∧ ż

(−z̈2)3/4
, (2.24)

and the momentum vector

p = k − ∂żL = k − a(z), (2.25)

which also does not depend on the choice of the parameter. With (2.24)
and (2.25) the equations of motion (2.21) for the Lagrangian (2.6) be-
come

ż2 = 0, Σ(−z̈2)3/4 = z̈ ∧ ż, Σ̇ = p ∧ ż, ṗ = F · ż, F = ∂ ∧ a, (2.26)

where F is related to the bivector of the electromagnetic fieldstrengthes
by equation (2.8). As in section 8 of ref. [3] one may define a parameter-
independent total angular momentum bivector

J = z ∧ p+ Σ, (2.27)

for which the the momentum law

ṗ = F · ż (2.28)

in (2.26) implies the angular momentum law

J̇ = z ∧ (F · ż). (2.29)

This section ends with a deduction of equation (2.19) in a form which
for ż2 = 0 manifestly does not depend on the choice of parameter, viz.,

p · ż = (−z̈2)1/4. (2.30)

With (2.24) one concludes from Σ · ż = 0 by taking a derivative with
respect to an arbitrary parameter α and making use of Σ̇ = p ∧ ż in
(2.26),

Σ̇ · ż + Σ · z̈ = 0 = Σ · z̈ + (p ∧ ż) · ż.

Insertion of the definition (2.24) for Σ on the right hand side and eval-
uation of the inner products with the help of ż2 = 0 and ż · z̈ = 0 then
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proves (2.30).

3. Free motions of a lightlike point

A lightlike point charge moves freely if F = ∂ ∧ a = 0. In that case,
according to equations (2.28) and (2.29), the momentum vector p and
the angular momentum bivector J are constants of the motion,

ṗ = 0, J̇ = 0. (3.1)

From (2.27)

z ∧ p = J − Σ (3.2)

we find (z ∧ p) · p = zp2 − p(p · z) = J · p− Σ · p, or,

zp2 = J · p+ p(p · z)− Σ · p. (3.3)

Because of ṗ = 0, equation (2.30) becomes

p · ż = (−z̈2)1/4 = (p · z)·. (3.4)

This suggests the choice of the Vessiot parameter [3]

(−z̈2)1/4 = 1, (3.5)

whence

p · z̈ = 0, (3.6)

and equation (3.4), up to an unimportant constant, may be integrated
to

p · z = α. (3.7)

The choice (3.5) simplifies the definition of Σ, equation (2.24),

Σ = z̈ ∧ ż, (3.8)

such that according to (3.4) and (3.6)

Σ · p = z̈, (3.9)
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and equation (3.3) may be written

p2z = J · p+ αp− b, (3.10)

where

b = Σ · p = z̈. (3.11)

Taking two derivatives of equation (3.10) with respect to α, one finds for
b the differential equation

b̈+ p2b = 0, (3.12)

displaying the linear dependence of the fourth derivative of z from the
second one. Recalling the definition of curvature classes in [3], we there-
fore conclude that the orbits of a freely moving lightlike point either are
straight lines or at most doubly curved. The solutions of equation (3.12)
are restricted by equations (3.5) and (3.6). In addition, ż2 = 0 together
with (3.10) and (3.2) require further constraints which in the sequel are
considered separately according to the space-time properties of the mo-
mentum vector p. Three cases are to be distinguished:

If the momentum p of a lightlike orbit z is a timelike vector, i.e.,
p2 > 0, we speak of a massive free particle (antiparticle) of momentum p

and restmass
√
p2 > 0. Following G. Feinberg [4], we call such an object

a tardyon.
If lightlike orbits z are such that the momentum vectors p 6= 0 are

lightlike, i.e., p2 = 0, we call these massless objects luxons [4] (like e.g.
a neutrino).

If finally a lightlike orbit z has a spacelike momentum p, i.e., p2 < 0,
we say that this orbit z describes a tachyon [4] of momentum p, total
angular momentum J and eventually additional specifications needed for
a unique characterization.
At any rate, the necessary specifications will be found during the pro-
cess of solving the above equations of motion for the three classes of
momenta. We now start with the luxon.

3.1 Luxons: p2 = 0

For p2 = 0, equation (3.12) falls back on equations (3.10) and (3.11),
viz.,

z̈ = J · p+ αp = b, (3.13)
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and fulfills condition (3.6). So,

ż = q + αJ · p+
α2

2
p, q̇ = 0, (3.14)

and

z = z(0) + αq +
α2

2
J · p+

α3

6
p, q = ż(0). (3.15)

Thus, a lightlike point z with the properties of a luxon moves on a cubic!
The restriction (3.5) or z̈2 = −1 implies the condition

(J · p)2 = −1, (3.16)

and ż2 = 0 is satisfied if

p2 = 0 = q2, p · q = 1, p · J · q = 0. (3.17)

With (3.13) and (3.14), the bivector Σ = z̈ ∧ ż becomes Σ = (J · p)∧ q+
αp∧ q+ α2

2 p∧ (J · p) and z ∧ p = z(0)∧ p+αq∧ p+ α2

2 (J · p)∧ p. Hence,
we obtain

z ∧ p+ Σ = z(0) ∧ p+ (J · p) ∧ q = J, (3.18)

if (3.2) is to be warranted. Inner multiplication of (3.18) with q and
making use of p · q = 1 leads to z(0) = µp + J · q where µ = q · z(0),
whence J has to be restricted in such a way, that J = (J ·q)∧p+(J ·p)∧q
holds. With the help of p · q = 1, this condition may be rearranged into
the multivector equation

pJq + qJp = 0, (3.19)

and (3.15) may be written

z = µp
√

2 + J · q + αq +
α2

2
J · p+

α3

6
p, µ ∈ R. (3.20)

The task now is, to decouple equations (3.16), (3.17) and (3.19) in terms
of more appropriate new variables. To that end we put

p
√

2 = v + s, q
√

2 = v − s, (3.21)
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where

v2 = 1 = −s2, v · s = 0. (3.22)

This linear mapping from the vectors p, q to the vectors v, s solves the
conditions p2 = 0 = q2, p · q = 1 and transforms (3.19) into

vJv = sJs. (3.23)

Making use of (3.22) one notes that (3.23) as well may be written in the
form vJs = sJv, whose scalar part leads to v ·J ·s = 0 and (3.21) implies
p · J · q = 0. So, equations (3.21)-(3.23) comprise (3.17) and (3.19).

The general solution of (3.23) and (3.16) is obtained in a most suc-
cinct form when the two vectors v and s orthonormally are supplemented
by a spacelike third vector t,

v · t = 0 = s · t, t2 = −1 (3.24)

to a triad which spans a R1,2. In terms of this triad we obtain the result

J =
√

2
|η + ζ| (ηv − ζs)t, (3.25)

where

η = η0 + iη4, η0,4 ∈ R, ζ = ζ0 + iζ4, ζ0,4 ∈ R, (3.26)

and

|η + ζ| =
√

(η + ζ)(η + ζ)∗ ≥ 0,
(η + ζ)∗ = γ0(η + ζ)γ0 = η0 + ζ0 − i(η4 + ζ4).

(3.27)

The general solution (3.25) implies

J · p|η + ζ| = −(η0 + ζ0)t+ (η4 + ζ4)Ti, (3.28)

J · q|η + ζ| = (ζ0 − η0)t+ (ζ4 − η4)Ti, (3.29)

where the trivector T is defined by

T = vst, (3.30)
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and

J2 =
2(η − ζ)
(η + ζ)∗

. (3.31)

Inserting (3.29), (3.28) and (3.21) in (3.20), the general orbit z = z(α),
α ∈ R, of a luxon becomes

z = µ(v + s) +
η0 + ζ0
|η + ζ| t+

ζ4 − η4

|η + ζ| Ti+

+
α√
2

(v − s) +
α2

2
[−η0 + ζ0
|η + ζ| t+

η4 + ζ4
|η + ζ| Ti] +

α3

6
√

2
(v + s).

(3.32)

3.2 Tachyons: p2 < 0 and Tardyons: p2 > 0

For p2 6= 0 the trajectory z = z(α) of the lightlike point z is deter-
mined by (3.10) and (3.11) provided that b = b(α) is known. Equation
(3.12) only is a necessary condition to determine b since it follows from
(3.10) or (3.3) by inner multiplication of (3.2) with the vector p. In or-
der to exploit the angular momentum law completely we now study the
additional implications of

J ∧ p = Σ ∧ p = z̈ ∧ ż ∧ p (3.33)

concerning b and J . With the help of a derivative of (3.10) with respect
to α and making use of (3.11), the vector z may be eliminated from
(3.33) in favour of the vector, viz.,

p2(J ∧ p) = −b ∧ ḃ ∧ p = −p ∧ b ∧ ḃ. (3.34)

Equation (3.11) implies b ·p = 0 and hence ḃ ·p = 0, so that p ·(b∧ ḃ) = 0,
which means, that (3.34) can be written in the form

b ∧ ḃ = −p(J ∧ p). (3.35)

The Vessiot choice (3.5) leads to b2 = −1, and consequently, b · ḃ = 0,
whence (3.35) becomes bḃ = −p(J ∧ p) or after Clifford multiplication
with b from the left,

ḃ = bΩ, (3.36)
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where

Ω = p(J ∧ p) = (J ∧ p)p = p · (J ∧ p). (3.37)

Since the bivector Ω is constant, the general solution of (3.36) is

b = b(0)eαΩ = e−
α
2 Ωb(0)e

α
2 Ω. (3.38)

The vector b(0) has to satisfy

b(0)Ω + Ωb(0) = 0 = 2[b(0) ∧ Ω] (3.39)

in order that b(0)eαΩ has no trivector part. Equation (3.6) restricts the
solution (3.38) according to b · p = 0, which because of pΩ = Ωp (see
(3.37)) is guaranteed if

b(0) · p = 0. (3.40)

Similarly, b2 = −1 is fulfilled, when

(b(0))2 = −1 (3.41)

holds. In the same manner as (2.17) has been derived, one may conclude
from (3.40) that

b(0) = K · p, (3.42)

where K is a constant bivector. The most general constant bivector
we may construct from J and Ω is K = ρ1e

iϕ1J + ρ2e
iϕ2Ω, ρ1,2 > 0,

ϕ1,2 ∈ R. This leads to

b(0) = K · p = ρJ · p+ iσ(J ∧ p), ρ, σ ∈ R, (3.43)

which must satisfy condition (3.39). The result is

b(0) = ρJ · p, ρ ∈ R\{0}, (3.44)

and the condition (J · p)(J ∧ p) = (J ∧ p)(J · p), i.e., J2p = pJ2 implying
that J2 must be a scalar,

J2 = γ0J
2γ0 = (J2)∗ ∈ R. (3.45)
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This holds for J 6= 0 in C`1,3 if and only if J is an outer product of two
vectors. There is a further restriction imposed on J by equation (3.12).
From (3.38) one notes Ω2 = −p2 = p2(J ∧ p)2 and hence

(J ∧ p)2 = −1. (3.46)

Condition (3.41) in conjunction with (3.44) leads to

(J · p)2 < 0 (3.47)

and

ρ
√
|(J · p)2| = ±1. (3.48)

Defining the spin bivector S according to

S
√
|p2| = Ω = p(J ∧ p) = p(Σ ∧ p), (3.49)

equation (3.46) implies

S2 = − p2

|p2| = −sign(p2) (3.50)

and the expression (3.10) for every trajectory of tachyons and tardyons
finally may be summarized in the form

p2z = J · p+ αp∓ (J · p)√
|(J · p)2|

eαS
√
|p2|, α ∈ R. (3.51)

For a tardyon, p2 > 0, the spin bivector is spacelike, i.e. S2 = −1 as
is seen from (3.50). So, only for tardyons the orbits (3.51) are helices,
elliptically wound along the straight line 1

p2 (J · p + αp), −∞ < α < ∞
with the timelike tangent vector 1

p . This (elliptic) rotation around the
timelike guiding center conventionally is called the ”Zitterbewegung”.
In the following sections it will be shown that this rotation spatially is
confined to a cylinder enclosing the guiding straight line and having a
small cross section of the order of a Compton length.

As distinguished from the tardyon, there is no such spatial confine-
ment transverse to the guiding straight line for the tachyon, since the spin
bivector is timelike and hence periodicity in space can not emerge. The
following sections may therefore lead to the conclusion, that quantum
phenomena like the wave-particle dualism and spatial uncer-
tainty only occur for tardyons, i.e., for massive particles and
antiparticles!
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4. Wave-Particle Duality of Tardyons

For a tardyon, p2 > 0, still, the bivector of total angular momentum
J has to be restricted in such a way that conditions (3.45)–(3.47) hold,
before formula (3.51) may be applied. A simple tool for solving these
conditions is to transform the timelike momentum p = (p0 + ~p)γ0, with
energy component p0 and space part ~p, to its restframe in which p is
proportional to γ0. Inversely, every timelike vector may be obtained by
applying a suitable Lorentz transformation on a real multiple of the vec-
tor γ0. Let us call such a representation of a vector p a polar form. This
form extends the more familiar construction of spherical polar coordi-
nates for a vector ~r ∈ R3 to a subset of timelike vectors in the Lorentz
space R1,3. The subset of all timelike vectors p with 0 < p2 <∞ however
consists of two disconnected manifolds distinguished by p0 = p · γ0 > 0
and p0 = p ·γ0 < 0. The two parts cannot be mapped onto each other by
means of a proper Lorentz transformation (determinant = +1). Con-
sequently one needs two different polar forms (charts) in order to cover
both of the disconnected parts, viz.,

p = ε|p|ν, ε = ±1, |p| =
√
p2 > 0, (4.1)

ν = (ν0 + ~ν)γ0, ν0 =
√

1 + ~ν2 ≥ 1, ~ν ∈ R3, (4.2)

implying

ν2 = ν2
0 − ~ν2 = 1. (4.3)

We call a tardyon a particle if ε = +1 and an antiparticle if
ε = −1. The time component of the vector ν ∈ R1,3 is positive as is seen
from (4.2). So, there is (at least) one unimodular spinor L such that for
all ~ν ∈ R3, the vector ν has the polar form

ν = Lγ0L̃, (4.4)

and in particular one may choose

L =
1 + ν0 + ~ν√

2(1 + ν0)
. (4.5)

Equation (4.4) finally yields the following two polar forms of the mo-
mentum p of a tardyon,

p = ε|p|Lγ0L̃, ε = ±1. (4.6)
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In conditions (3.45)–(3.47) the vector J · p and the trivector J ∧ p is
needed. These quantities are obtained from the Clifford product Jp by
a split into the grades one and three. Hence, we evaluate with the help
of (4.6) and

LL̃ = 1 = L̃L (4.7)

the product Jp = ε|p|JLγ0L̃ = ε|p|L(L̃JLγ0)L̃. From (L̃JL)2 =
L̃J2L = J2 one concludes, that J2 is a scalar if and only if (L̃JL)2

is a scalar. On the algebra C`1,3 of spacetime R1,3 every bivector L̃JL
may be decomposed according to

L̃JL = ~f + i~g, ~f,~g ∈ R3 (4.8)

into ~f and ~g, which are vectors of grade one with respect to the
even subalgebra C`3 of Cl1,3. This implies

Jp = ε|p|L[(~f + i~g)γ0]L̃ = ε|p|L~fγ0L̃+ ε|p|Li~gγ0L̃ = J · p+ J ∧ p,
(4.9)

and hence

(J · p)2 = −~f 2p2 < 0, (4.10)

(J ∧ p)2 = −~g 2p2 = −1, (4.11)

in order to fulfill (3.47) and (3.46). Condition (3.45) is satisfied by

~f · ~g = 0, (4.12)

as is noted after squaring equation (4.8).
Let us now study the consequences of (4.9)–(4.12) in equations (3.49)

and (3.51). From (4.9) and (4.6) one infers that the spin bivector (3.49)
is the Lorentz boost

S = Li~sL̃, (4.13)

where ~s = ~g|p|, as a consequence of (4.11), is a unit vector in R3,

~s 2 = 1. (4.14)
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According to (4.12), ~f must be perpendicular to ~s. We write

~f = ∓ε|~f |~n× ~s, |~f | =
√
~f 2 > 0, (4.15)

where

~n · ~s = 0, (4.16)

and

~n2 = 1. (4.17)

With (4.9), (4.13)–(4.17), the most general trajectory of a tardyon (3.51)
may be displayed in the final form

z = z(β) = z(0) +
β

|p|ν +
1
p2
L(~n× ~s)eiε~sβ|p|Lγ0, −∞ < β <∞,

(4.18)

where |p|z(0) = ε|~f |L(~n× ~s)Lγ0 and use has been made of γ0L̃ = Lγ0.

Note, that in passing from (3.51) to (4.18), a parameter change has
been performed from α to β = αε. This change normalizes the direction
of motion of the guiding center on the straight line

x = x(β) = z(0) +
β

|p|ν, (4.19)

as β runs from −∞ to +∞. As a consequence of this normalization
the factor ε = +1 (particle) and ε = −1 (antiparticle) appears in the
exponential of the periodic part of (4.18),

y = y(β) =
1
p2
L(~n× ~s)eiε~sβ|p|Lγ0, (4.20)

modeling what we call the ”Zitterbewegung” of the lightlike point

z = x+ y. (4.21)

The lightlike point z is dual in the sense that its motion is com-
posed of two parts: the motion along a straight line with a timelike
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tangent vector, usually attributed to a massive particle; and a space-
like periodic motion circumscribing in R3 an ellipse, conventionally at-
tributed to a wave. During one revolution period of (4.20)

β0 =
2π
|p| , (4.22)

the guiding center is displaced along the straight line (4.19) by the vector

λ = ελ[x(β + β0)− x(β)] = ελ
β0

|p|ν = ε2πλ
ν

p2
, (4.23)

where the constant λ is the fundamental length introduced at
the beginning of section 2. In the sense of Louis de Broglie [5] we
equate the (inner) product of this displacement vector with the momen-
tum vector (4.1) with Planck’s constant h, viz.,

λpm0c = h =
2πλ
|p| m0c, (4.24)

thus fixing the fundamental length λ on a value proportional to the
Compton length of the mass m0,

λ =
~
m0c
|p|. (4.25)

5. Uncertainty in Space

In order to relate the spatial spread of the orbit (4.21) due to the high-
frequency ”Zitterbewegung” (4.20) to a quantity ∆ with the dimension
of an angular momentum, we first have to establish the notions restmass
m and proper time τ . Our conjecture is, that both of these two macro-
quantities characterize properties of the guiding center motion (4.19).

The momentum vector (4.6) is dimensionless. We only need to rescale
it with the factor m0c (see below equation (2.7)) in order to obtain
the physical momentum vector m0cp. So, the restmass m is given by
(m0cp)2 = m2c2, i.e.,

m = m0|p| > 0 (5.1)
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according to (4.6). As is customary, we define the differential dτ of the
proper time by

cdτ = λ
√

(dx)2, (5.2)

whereupon (4.19) and (4.25) lead to

τ =
βλ

c|p| =
β~
m0c2

. (5.3)

Insertion of (4.22) into (5.3) yields the timeperiod of Broglie’s clock

τ0 =
2π~

m0|p|c2
=

h

mc2
. (5.4)

The ”Zitterbewegung” is defined by the vector y ∈ R1,3 which moves
as β varies according to (4.20),

yγ0 = y0 + ~y = L~eL, ~ep2 = (~n× ~s)eiε~sϕ, ϕ = β|p| = cτp2

λ
. (5.5)

We claim that the spatial part ~y of the vector y is responsible for the mi-
croscopic spread of the orbit (4.21). A calculation of ~y is straightforward
if

~ep2 = (~n× ~s)eiε~sϕ = ~n× ~s cosϕ+ ε~n sinϕ (5.6)

is decomposed into components parallel to ~ν (defining L in (4.5)) and
perpendicular to ~ν. The result is

~y = ~e+
~ν(~ν · ~e)
1 + ν0

, ν0 =
√

1 + ~ν2. (5.7)

As the parameter ϕ in (5.6) varies from ϕ = 0 to ϕ = 2π, the vector ~y in
(5.7) surrounds an ellipse, whose area we consider as a measure for the
spatial uncertainty, viz.,

∆ =
mλ2

τ0
|1
2

∮
~y × d~y| = ~p4

4π
|
∮
~y × d~y|. (5.8)

Making use of (4.14), (4.16)–(4.17), we derive

εp4

2π

2π∫
0

dϕ ~y × d~y

dϕ
= ~s+

~ν × (~s× ~ν)
1 + ν0

(5.9)
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and find for ∆ the lower bound

∆ ≥ ~
2
|~s| = ~

2
. (5.10)

From this result we draw the conclusion that the properties of a
free tardyon are compatible with the uncertainty principle for
momentum and position in R3 . For p2 = 1, the restmass (5.1) equals
m0 and the fundamental length (4.25) λ coincides with the Compton
length.

Now it is obvious, that the orbits of a freely moving lightlike point
with a momentum vector which either is spacelike or lightlike, do not
exhibit the conventional wave-particle dualism.
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