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ABSTRACT. The recent results in dynamics of the first-order phase
transitions in non-dissipative nonlinear systems are reviewed. Some
parallels with quantum-mechanical transitions are discussed.

I am especially pleased to make a contribution to the issue of the An-
nales dedicated to the jubilee of my friend and teacher Georges Lochak.
Many years he supports with real interest my bustling activity in non-
linear wave equations giving it a sense and physical content. I have been
still remembering with pleasure that (now distant) time when we had
succeeded in applying some methods of the soliton theory to the nonlin-
ear spinor equation proposed by G. Lochak for the magnetic monopole
[1].

But today I would like to discuss the results of the recent investiga-
tions in the first-order phase transitions pursued in collaboration with
A. Shagalov from the Institute of Metal Physics [2]. Also, I would like to
share some new considerations which came into my mind in this connec-
tion. For the sake of clarity I will try to explain the essence managing
with a few simple formulas.

Let us consider a closed physical system having the potential energy
of the form depicted in Fig. 1. The variable ¢ describes the state of the
system and is usually refered to as an order parameter. It may be, for
example, density in the system gas-liquid or liquid-solid, displacement of
atoms in a nonlinear cristal, distortion in some shape-memory alloys and
others. The transition of the system from a metastable state ¢; to the
true vacuum state ¢o , known as a first-order phase transition, proceeds
through the formation of local inhomogeneities of a sufficiently large
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magnitude (critical nuclei), their growth and the subsequent expansion
of bubbles of a new phase inside the old one [3]. If the dissipation in
the system is significant, the waves cannot propagate, and the energy
transfer occurs via the diffusion mechanism. Such systems are discribed
by the equations of the Ginzburg-Landau-Khalatnikov type [3, 4]. In this
case the system being initially at rest in a metastable state remains in
this state as long as a thermal fluctuation of anough magnitude happens
to overcome the potential barrier and initiate the phase transition. Since
the probability of a fluctuation is exponentially small in its energy, the
system can remain in the metastable state for a fairly long time.

U(@)

Figure 1: The shape of the potential U(¢).

However, the situation is drastically changed when the dissipation is
negligibly small. The evolution of the order parameter field in now gov-
erned by the wave instead of the diffusion equation. The most important
feature of nonlinear wave equations is the resonance interaction of wave
modes. This can lead to instabilities which are often manifest themself
as a fast increasing a field magnitude in small spatial domains. The
further development of this process is known as a wave collapse. Thus,
a new possibility appears to overcome the potential barrier in a non-
thermal way, in those domains where the field exceeds the critical level
due to resonance and collapse-like effects. Obviously, this mechanism,
being pure dynamical, differs also from the quantum tunneling which is
usually invoked when considering the cosmological phase transitions [5].

To illustrate how the resonance mechanism can initiate the first-order
phase transition let us consider a physical system described by the non-
linear Klein-Gordon equation,

b — AP+ U’ (¢) =0, (1)
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with the potential
Lo 1.4 €5
U(6) =U(0)+50° — 10 + <o 2)

Nonlinearities of this kind occur frequently in the condense matter
physics [6,7], quantum field theory [8, 9] and modern cosmology [5].
It is easy to check that for 0 < € < 3/16 the model has the metastable
false vacuum at ¢ = ¢; = 0 and the true vacuum at ¢ = £¢2 (Fig. 1).

Let us consider spatially uniform oscillations ¢ (¢) in the potential
well near the metastable vacuum. For simplicity we assume € to be suf-
ficiently small so that the depth of the well near ¢ is ~ 1/4, its width
is ~ 1, while the true vacuum value ¢ ~ e '/2. Hence, considering
the oscillations in this well we can restrict ourselves to the ¢* theory,
neglecting the term ¢°. However, as we will see later, this term becomes
important when considering the bubble dynamics once the phase tran-
sition has locally occurred. Taking the above into account, from (1), (2)
we find

010) = Gmmesn (=1 6) 3)

1+ ¢

where

%2 = 3nax/(2 - d)fnax) (4)

is the modulus squared of the elliptic sine, 0 < 2% <1, 0 < ¢2,. < 1.

Consider now a small perturbation on this background,

o(t,r) = o(t) + x(t,r) (x| <4]). ()
In the linear approximation x satisfies the equation
Xt — Ax + (1= 3¢°(t))x = 0. (6)

Performing the Fourier transform,

x(tn) = [ Al Kk ™
and introducing

7= (t—to)(1 4 »*)"1/2, (8)
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we arrive at the Lamé equation
Arr + [(1 4+ EH) (1 + 5) — 652%sn2(1, %)]a = 0 (9)

(here a means the real or imaginary part of A ).

This equation belongs to the class of the Hill equations describing the
physical systems in which the parametric resonance can occur. Accord-
ing to the Floquet theory [10], the growing resonant solutions have the
generic form ¢(7)e#”, where ¢(7) is a periodic function and p > 0 is the
characteristic exponent, which depend on coefficients of an equation. For
the Lamé equation with arbitrary coefficients a more detailed treatment
of the solutions is a rather complicated problem involving the theory
of the theta functions. Fortunately, in the case of the equation (9) the
resonant solutions can be found in a simple form, in terms of integrals
of algebraic functions, using the so-called Lindemann-Stieltjes procedure
[10]. Referring to the paper [2] for details I present here the result for the
characteristic exponent only. It turned out that there are two domains
on the plane (52, k?) where u is positive, i.e., the parametric resonance
takes place. Namely,

(52, k2) = (k2/3)(1 + ) [ 22

-1 — I (25
o (et o) — o220 (5 )}

21 Z2

in the domain

0<k?< ——,
14 52

and

p(* k%) = (k2/;;)((:)+ ) [ i—;H (25" %) — z—jH (zll,%)}

in the domain

<k2<1+w.

1+ 32 1+ 32

(13)
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Here K (»r) and II (2_17 %) are the complete elliptic integrals of the first
and third kinds respectively, 21 2(5%, k?) are determined as

Z12 = 6%[(1 + %) (3 — k) £ /33 — k2)(1 + k2)(1 + 22)2 — 3622].
(14)

The surface u(s2, k%) over the stability-instability chart is shown in
Fig.2. Well seen are the domains (11), (13): at their boundaries 1 = 0.
Within the domain (11) the values of p are tangibly greater than the
ones within the domain (13). The shells are in contact at the point
»? =1, k* =3/2.

Figure 2: The characteristic exponent surface u(»?,k?) over the
stability-instability chart.

In the small-amplitude limit, when 52 < 1, from (10)-(14) we obtain

1
u( k%) ~ 5 k2(352 — k2?) (0 < k? < 3% < 1),
(15)

Umax =2 %%2 (k? =~ %%2) in the domain (11), and, introducing the
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deviation § = k? — 3 4 322,

u(? k%) ~ é\/(é — 3 (1524 —48) (3x* <6< %%4 < 1),
(16)

[imax ~ 2534 (6 &~ ZLx*) in the domain (13). Notice, that (15) coincides
with the well-known dispersion relation for the Langmuir waves. This
is not a surprise since in the small-amplitude long-wavelength limit the
nonlinear Klein-Gordon equation reduces to the nonlinear Schrodinger
equation (see, e.g., [11]).

To demonstrate the efficiency of the resonant mechanism and inves-
tigate the dynamics of the phase transition itself we have performed the
direct numerical integration of the model (1), (2) in 2 + 1 dimensions
[2]. In so doing we have included the term ¢® in the potential since
it is responsible for the existence of the true vacuum and, hence, must
be taken into account when considering the formation of the bubbles of
the new phase. In agreement with (5) we have taken a spatially uniform
background at a level ¢gpmax (Pmax <K @) and superimposed on it a small
perturbation with an amplitude much less than ¢n.x. Thus, the total
initial amplitude has been much less than the critical one. The charac-
teristic wavelength of the perturbation has been chosen in such a way
as to work into the domain (11) where p is sufficiently large. For calcu-
lation purposes we have confined the perturbation in a two-dimensional
box and imposed periodic boundary conditions.

As a result we have observed the significant amplification (up to the
level close to ¢,;.) of the field oscillations in the box where the initial per-
turbation had been placed. The estimation has shown that the growth
rate of the oscillations is in agrement with the value of u calculated from
(10). This suggests that the amplification is of resonance origin. Thus,
the localized oscillating inhomogeneity appears on the spatially uniform
oscillating background. Simultaneously with the growth of the inhomo-
geneity we have observed a decrease of the background oscillations. This
means that the energy of the spatially uniform oscillations concentrates
progressively on the inhomogeneity resulting in the exponential growth
of the field via the resonance mechanism.

In Fig. 3 are shown the consecutive stages of evolution of the inho-
mogeneity in terms of time dependence of the field at its center. The
parametric amplification of the oscillations is well seen. After the am-
plitude of the oscillations exceeds a critical value the phase transition
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begins. On a short interval we have observed the explosive growth of the
field within the nucleus up to the true vacuum value ¢5. Simultaneously
with this, the nucleus shows evidence of significant contraction. For suf-
ficiently small e the field dynamics at this stage is mainly determined
by the term ¢* in the potential. In this case the nucleus growth rate
can be judged from the integral estimate [ ¢*(¢,r)dr >const x (t.—t)~2
derived in [12, 13] for the collapse in the ¢* theory.
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Figure 3: The dynamics of the phase transition in terms of the field
¢o (t)at the center of the nucleus.

After several fast oscillations the field at the center of the nucleus
has been established equal to the true vacuum value ¢o due to the ef-
fect of the term ¢% and the bubble of the new phase has formed. Im-
mediately afterwards the bubble has began to expand fulling the box.
When the bubble wall has reached the boundaries of the box the bub-
ble has began to interact intensively with other bubbles which had been
formed in neighbouring boxes owing to the periodic boundary conditions.
This interaction leads to establishment of a highly inhomogeneous quasi-
turbulent state. Nevertheless, it is seen that the mean level of the field
coincides with the true vacuum value.

Thus we have got the serious evidence for our conjecture that the
parametric resonance can be the cause of the first-order phase transitions
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in non-dissipative nonlinear systems.

In conclusion, I would like to draw some parallels between the tran-
sitions we have considered and transitions in quantum mechanics. Al-
though these phenomena are commonly recognized as fundamentally dif-
ferent, they also exhibit a number of similarities.

Let us first consider a point particle placed, for example, in the po-
tential shown in Fig. 1. The coordinate of the particle, say ¢, plays now
the role of the variable ¢. Obviously, the states of the particle ¢; and
+¢- are classically stable: small oscillations around them do not increase
with time. This means that in the framework of classical mechanics the
transitions q¢; & =4qo are forbidden. Such transitions are possible only
through the quantum-mechanical tunnelling.

In contrast, when evolving extended classical objects the potential
barrier separating the false and the true vacua can be overcome locally,
in small spatial domains. As it was demonstrated above, this occurs
dynamically, due to a re-distribution of the energy. The total energy is
conserved in the process, i.e., the transitions ¢; — +¢o are classically
allowed. Eventually the difference of the vacuum energies turns mainly
into the kinetic energy of the expanding true-vacuum babbles. However,
from the viewpoint of a fized localized observer intersected by a moving
thin bubble wall all happens as if there were a jump from the level
U(¢1) to the level U(¢2), as with the quantum-mechanical transition of
a particle.

Note that, as in the quantum case, the upward transitions +¢s — ¢1
are also possible. It can be proved that in our model the oscillations
around the true vacuum are also parametrically unstable with respect to
the formation of spatial inhomogeneities. Hence a spontaneous forma-
tion of the false-vacuum bubbles is conceptually possible, however the
probability of these events is likely to be small. A more effective mech-
anism of formation of such bubbles is the collisions of the true-vacuum
bubbles [14, 15]. In these processes the kinetic energy of the colliding
bubble walls turns back into the false vacuum energy. The equilibrium
@1 = +¢o gives rise to a stationary foam-like spatial structure. Being
evolved, e.g., from the cosmological scalar fields it could manifest itself
as the cellular structure of the Universe observed at the superscales.
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