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Can one generalize the concept of

energy-momentum tensor?
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ABSTRACT. The answer to the question is yes! Considering here the
very simple case of a real Klein-Gordon field in Minkowski space-time,
we find a class of rank 4 superenergy tensors generalizing the usual
energy-momentum tensor. Then, we construct explicitely an infinite
tower of rank 2(n+ 1) tensors that we call weak n-superenergy tensors
and we determine the corresponding quantum operators.

1 Introduction

Historically, the need to extend the notion of energy-momentum of a field
appeared for the first time in general relativity. Indeed, the impossibility
of defining in a covariant way the local energy density of a gravitational
field remains a crucial difficulty of the Einstein theory. Forty years ago,
an attempt to overcome this difficulty led Bel [1] to introduce the four
indices tensor TαβγδB defined by

2TαβγδB = RαµγνRβ δµ ν+∗Rαµγν∗Rβ δµ ν+R∗αµγνR∗β δµ ν+∗R∗αµγν∗R∗β δµ ν ,
(1)

where Rµνρσ is the curvature tensor of the metric gµν and ∗ denotes
the duality operator acting on the left or on the right pair of indices
according to its position.1

The Bel tensor has many attractive properties. Its components may
be expressed without using duality since they reduce to [2]

TαβγδB =
1
2
[RαµγνRβ δµ ν +RβµγνRα δµ ν −

1
2
gαβRγλµνRδλµν

1By definition, ∗Rαµγν = 1
2
ηαµρσRρσγν and R∗αµγν = 1

2
ηγνρσRαµρσ , where

ηαµρσ is the canonical volume element 4-form. Note the analogy of the Bel tensor
with the electromagnetic energy-momentum tensor.



460 P. Teyssandier

− 1
2
gγδRαλµνRβλµν +

1
8
gαβgγδRµνρσRµνρσ] . (2)

In any spacetime 2, TαβγδB = T
(αβ)(γδ)
B = T

(γδ)(αβ)
B . When Rµν =

0, TαβγδB is totally symmetric and satisfies the conservation equation
∇αTαβγδB = 0. For any timelike unit vector u, the scalar density

εB(u) = TαβγδB uαuβuγuδ (3)

is positive definite [1] and the vector density

pαB(u) = TαβγδB uβuγuδ (4)

is timelike or null [3].
The above mentioned properties of εB(u) and of pαB(u) allow to re-

gard TαβγδB as having the key properties of an energy-momentum tensor.
This fundamental feature explains why TαβγδB is named a gravitational
superenergy tensor. Then εB(u) and pαB(u) may be regarded as defin-
ing respectively a gravitational superenergy density and a gravitational
supermomentum density vector relative to (an observer moving with) the
unit 4-velocity u.

We do not try here to elucidate the physical meaning of the Bel
tensor, which remains very obscure in spite of a lot of discussions (see,
e.g.,[4] ,[5] and Refs. therein). Our purpose is to present a general
method enabling to construct a class of superenergy tensors for scalar
and electromagnetic fields 3. For the sake of simplicity, we focus our
attention on a real scalar field φ satisfying the Klein-Gordon equation

( +m2)φ = 0 (5)

in Minkowski space-time.
In our reasoning, the requirement that a superenergy tensor must

be divergence-free plays a basic role. So our method is quite different
from the purely algebraic construction of superenergy tensors recently
developed by Senovilla [6, 7] for arbitrary fields. Nevertheless, the two
methods lead to equivalent results for the scalar field.

2We putA(αβ) = 1/2(Aαβ+Aβα). More generally A(α1α2...αr) denotes the totally
symmetric part of a tensor Aα1α2...αr . Rµν is the Ricci tensor: Rµν = Rλµλν .

3For the electromagnetic field, a rank 4 tensor formally analogous to the Bel tensor
was given for the first time in [2].
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It must be noted also that the tensor

Cαβγδ =
1
2

(φφ,αβγδ − φ,αφ,βγδ) , (6)

has been previously considered by Komar [8] as a kind of Bel tensor for
the Klein-Gordon field. Indeed, (6) satisfies the conservation equation
Cαβγδ,α = 0 when Eq. (5) holds. However, it is not obvious that the
Komar tensor is an acceptable superenergy tensor since the positivity of
Cαβγδuαuβuγuδ is not ensured. We avoid this flaw since we find a class
of rank 4, divergence-free tensors with positive definite energy densities.

The plan is as follows. In Sect. 2, we give the general definition of
what we call a n-superenergy tensor for the scalar field φ (the rank of
such a tensor is 2(n + 1)). In Sect. 3, we show that the rank 4 tensors
fulfilling our definition constitute a two-parameter family. Moreover, we
show that this family reduces to a unique tensor W (up to a positive
constant factor) when the complete symmetry on the four indices is
required. This unicity implies that W can henceforth be regarded as
defining the 1-superenergy tensor par excellence. In Sect. 4, we construct
explicitly an infinite set of rank 2(n+1) tensors U(n,n) that we call weak
n-superenergy tensors because they have almost all the good properties
of the superenergy-momentum tensors defined in Sect. 2. We show that
U(1,1) and W yield the same total 1-superenergy-momentum when the
field φ and its first derivative with respect to time are functions of rapid
decrease at spatial infinity. In Sect. 5, we give the superhamiltonian and
the supermomentum operators corresponding to W and to each U(n,n)

within the framework of canonical quantization. In Sect. 6, we give some
concluding remarks.

2 Superenergy tensors for a scalar field

We use coordinates xα = (x0,x) such that the metric components gαβ =
diag(1,−1,−1,−1) and we denote by G the corresponding inertial frame
of reference. Units are chosen so that c = 1 and h̄ = 1. We put F,α =
∂αF .

The energetic content of the field φ is described by the well-known
symmetric, divergence-free energy-momentum tensor

Tαβ [φ] = φ,αφ,β − 1
2
gαβ(φ,λφ,λ −m2φ2) . (7)

We shall call n-superenergy tensor any tensor Tα1β1...αn+1βn+1 of even
rank 2(n+ 1) ≥ 4 possessing the following properties :
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P1. Denoting by µA a block of indices {µi, 1 ≤ i ≤ A},
Tα1β1...αn+1βn+1 may be written in the form

Tα1β1...αn+1βn+1 =
A=n+1∑
A=0

Cα1β1...αn+1βn+1
µAνAφ

,µAφ,νA , (8)

where the coefficients Cα1β1...αn+1βn+1
µAνA are tensorial quantities in-

volving only the components of the metric (for A = 0, we put φ,µA = φ).
P2. Tα1β1...αn+1βn+1 is symmetric in each pair (αi, βi) of indices; it

is also symmetric in the interchange of two blocks (αi, βi) and (αj , βj).
P3. Tα1β1...αn+1βn+1 satisfies a conservation equation :

( +m2)φ = 0 ⇒ Tα1β1...αiβi...αn+1βn+1
,αi = 0 . (9)

P4. The n-superenergy density relative to u defined by

ε(n)(T, u) = Tα1β1...αn+1βn+1uα1uβ1 ...uαn+1uβn+1 , (10)

is positive definite ( ε(n)(T, u) > 0 if Tα1β1...αn+1βn+1 6= 0).
Of course, the arbitrariness on the superenergy tensors will be re-

duced if P2 is replaced by the more restrictive requirement
P’2. Tα1β1...αn+1βn+1 is totally symmetric.

3 Class of rank 4 superenergy tensors

Given a rank 4 tensor T , denote by T the totally symmetric part of T
and define the tensor T̃ by

T̃αβγδ =
1
2
(Tαγβδ + Tαδβγ) . (11)

We have the following lemma. (The proof is immediate.)

Lemma 1 Let E(1) be the class of rank 4 tensors possessing properties
P1, P2 and P3. For any T ∈ E(1), the following propositions hold :

1. T ∈ E(1) and T̃ ∈ E(1).
2. T = 1

3T + 2
3 T̃ .

3. T = T̃ ⇔ T = T .
4. Tαβγδuβuγuδ = T̃αβγδuβuγuδ = T (αβγδ)uβuγuδ.
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We are now in a position to determine the class E(1). The most
general tensor Tαβγδ which fulfills conditions P1 and P2 may be written
as 4

Tαβγδ = aφ,αβφ,γδ + bφ,γ(αφ,β)δ

+ c1(gαβφ,γλφδλ + gγδφ,αλφβλ)
+ c2(gγ(αφ,β)λφ,δλ + gδ(αφ,β)λφ,γλ)
+ d1m

2(gαβφ,γφ,δ + gγδφ,αφ,β)
+ d2m

2(gγ(αφ,β)φ,δ + gδ(αφ,β)φ,γ)
+K1g

αβgγδ +K2g
γ(αgβ)δ ,

with

Ks = psφ
,ρσφ,ρσ + qsm

2φ,λφ,λ + rsm
4φ2 ,

a, b, c1, c2, d1, d2, ps, qs and rs being dimensionless constants (s = 1, 2).
A straightforward calculation shows that Tαβγδ,α = 0 holds if and only
if the coefficients cs, ds, ps, qs and rs are given by

c1 =
1
2
(a− b) , c2 = −a , d1 =

1
2
(b− a) , d2 = a ,

and

ps = −1
2
cs , qs =

1
2
(cs − ds) , rs =

1
2
ds ,

the parameters a and b being chosen arbitrarily.
Thus we obtain the first theorem of this paper [9].

Theorem 1 Any tensor T ∈ E(1) may be written as

Tαβγδ = a Tαβγδ1 + b Tαβγδ2 , (12)

where

Tαβγδ1 = φ,αβφ,γδ +
1
2
(gαβτγδ + gγδταβ)

− gα(γτ δ)β − gβ(γτ δ)α , (13)
4We suppose that Eq. (5) is taken into account. Thus we exclude terms like

gαβφ,γδ φ since such a term reduces to −m2φgαβφ,γδ, a form which is not com-
patible with P1 .
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and
Tαβγδ2 = T̃αβγδ1 = φ,α(γφ,δ)β − 1

2
(gαβτγδ + gγδταβ) , (14)

ταβ being defined by

ταβ = φ,αλφ,βλ −m2φ,αφ,β

− 1
4
gαβ(φ,ρσφ,ρσ − 2m2φ,λφ,λ +m4φ2) . (15)

The coefficients a and b are arbitrary constants.

Lemma 1 enables us to complete the above theorem by the following
one.

Theorem 2 Any tensor T ∈ E(1) which is totally symmetric may be
written as

Tαβγδ = kWαβγδ , (16)

where k is a constant and Wαβγδ = T
(αβγδ)
1 , i.e.

Wαβγδ =
1
3
(φ,αβφ,γδ + 2φ,α(γφ,δ)β)

− 1
6
(gαβτγδ + gγδταβ + 2gα(γτ δ)β + 2gβ(γτ δ)α) . (17)

Let us put now
sα(u) = Wαβγδuβuγuδ , (18)

and
w(u) = sα(u)uα . (19)

Some algebra leads to the third theorem.

Theorem 3 For any timelike unit vector u, w(u) is positive and sα(u)
is timelike or null :

w(u) ≥ 0 , (20)

sα(u)sα(u) ≥ 0 . (21)

When m 6= 0,the equality w(u) = 0 is possible iff φ = 0. When m = 0,
w(u) = 0 iff φ,αβ = 0.
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Proof. In any Cartesian coordinate system xα, we have

W 0000 =
1
4
(φ,00)2 +

1
2

∑
i

(φ,0i)2 +
1
4

∑
i,j

(φ,ij)2

+
1
2
m2

[
(φ,0)2 +

∑
i

(φ,i)2 +
1
2
m2φ2

]
(22)

and

W i000 = −1
2

φ,00φ,0i +
∑
j

φ,0jφ,ij +m2φ,0φ,i

 . (23)

The timelike unit vector u being given, choose for this proof coordi-
nates xα such that ∂0 = u. Then we have

sα(u) = Wα000 . (24)

With this choice, w(u) = s0(u) = W 0000. Taking into account (22),
we immediately obtain (20).

Now put ~s(u) = s i(u)∂i and s2(u) = sα(u)sα(u). If ~s(u) = 0, s2(u) ≥
0. If ~s(u) 6= 0, choose ∂1 so that ∂1 = ~s(u)/ ‖ ~s(u) ‖. Then, s2(u) =
[s0(u)]2 − [s1(u)]2. From (24), (22) and (23), it results that

s0(u)± s1(u) =
1
4

∑
λ

(φ,0λ ∓ φ,1λ)2 +
1
4

∑
λ

∑
j 6=1

(φ,λj)2

+
1
4
m2

(φ,0 ∓ φ,1)2 +
∑
j 6=1

(φ,j)2 +
∑
λ

(φ,λ)2 +m2φ2

 ,

which implies that [s0(u)]2 − [s1(u)]2 ≥ 0. Therefore s2(u) ≥ 0. Q. E.
D.

We can now state the central theorem of this paper.

Theorem 4 The tensor Wαβγδ given by (17) is the unique (up to an
arbitrary constant positive factor) totally symmetric 1-superenergy tensor
of φ.

Moreover, it follows from Lemma 1 and Eq. (17) that for any Tαβγδ

given by (12)

Tαβγδuβuγuδ = (a+ b)Wαβγδuβuγuδ . (25)
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As a consequence, w(u) and sα(u) may be henceforth considered
without loss of generality as defining respectively the 1-superenergy den-
sity and the 1-supermomentum density of φ relative to u.

Since Wαβγδ is divergence-free, the integrals

W(1)[φ] =
∫
W 0000(x0,x′)d3x′ , Si(1)[φ] =

∫
W i000(x0,x′)d3x′

(26)
are constants of the motion : W(1)[φ] and Si(1)[φ] will be respectively
called the total 1-superenergy and the total spatial 1-supermomentum of
the field φ in the inertial frame G. Comparing (22) and (23) with (7),
we find that∫

Wα000(x0,x′)d3x′ =
1
2

∑
λ

Pα[φ,λ] +
1
2
m2Pα[φ] , (27)

where Pα[F ] is defined by

Pα[F ] =
∫
Tα0[F ](x0,x′)d3x′ (28)

for any scalar function F (x0,x).

4 Weak n-superenergy tensors

It would be of course possible to determine the n-superenergy tensors
for n > 1 by the method of Sect. 3. However, this procedure becomes
heavier and heavier as n is increasing. So we introduce the tensors U(n,n)

defined by [10]

Uαβµ1...µnν1...νn = φ(,α
µ1...µnφ

,β)
ν1...νn −

1
2
gαβ(φ,λµ1...µnφ,λν1...νn

−m2φ,µ1...µnφ,ν1...νn) . (29)

It is easily seen that each U(n,n) possesses property P1, is symmet-
ric in (α, β), is completely symmetric in (µ1, ..., µn) and in (ν1, ..., νn),
satisfies the conservation law

Uαβµ1...µnν1...νn,α = 0 (30)

and satisfies the following inequality for any timelike unit vector u :

Uαβµ1...µnν1...νnuαuβu
µ1 ...uµnuν1 ...uνn ≥ 0 . (31)
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Therefore the tensor U(n,n) has almost all the properties of a n-
superenergy tensor. So, we call U(n,n) the weak n-superenergy tensor
.

Let us put

U(n)[φ] =
∫
U00

0n0n(x0,x′)d3x′ , Ri(n)[φ] =
∫
U i00n0n(x0,x′)d3x′ ,

(32)
where 0n denotes a block of n timelike indices. It follows from (30) that
these quantities are constants of the motion, that we shall call respec-
tively the weak n-superenergy and the weak spatial n-supermomentum of
φ in the frame G.

For n = 1, a straightforward calculation yields the relation

T̃αβµν1 = Uαβµν − 1
2
(Uαβλλ −m2Tαβ)gµν . (33)

This relation leads to the following theorem.

Theorem 5 For any Klein-Gordon field, the following equalities hold:

W(1)[φ] = U(1)[φ] + [Surf ] (34)

and
Si(1)[φ] = Ri(1)[φ] + [Surf ] , (35)

where [Surf ] denotes surface terms which cancel if φ and its derivative
φ,0 are functions of sufficiently rapid decrease at spatial infinity.

Proof. Using Lemma 1 and (17) yield Wα000 = T̃α000
1 . So we deduce

from (33) that

Wα000 = Uα000 − 1
2
(Uα0λ

λ −m2Tα0) . (36)

Each term Uα0λ
λ −m2Tα0 is a 3-divergence. Indeed, we find

U00λ
λ −m2T 00 = −{1

2
φ,i[φ,ij − δij(4φ− 2m2φ)]},j , (37)

U i0λλ −m2T i0 = {φ,0[φ,ij − δij(4φ−m2φ)]},j , (38)

where 4φ = δklφ,kl. Thus the theorem is established. Q. E. D.
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5 Quantum superhamiltonian and supermomentum operators

Within the canonical quantization procedure, φ becomes a Hermitian
operator which can be expanded on the basis of the plane wave solutions
:

φ(x, t) =
1

(2π)3/2

∫
d3k

1√
2ωk

[
a(k)e−ikx + a†(k)eikx

]
k0=ωk

, (39)

with
ωk =

√
k2 +m2 , (40)

the operators a(k) and their Hermitian conjugates a†(k) satisfying the
usual commutation relations. Substituting for φ from (39) into (26)
yields the 1-superhamiltonian and the spatial 1-supermomentum opera-
tors

Ŵ(1) =
1
2

∫
d3kω3

k[a
†(k)a(k) + a(k)a†(k)] , (41)

Ŝi(1) =
∫
d3k kiω2

k a
†(k)a(k) . (42)

More generally, we deduce from (32) the following operators

Û(n) =
1
2

∫
d3kω2n+1

k [a†(k)a(k) + a(k)a†(k)] , (43)

R̂i(n) =
∫
d3k kiω2n

k a†(k)a(k) . (44)

Putting n = 0 in these equations, we recover the usual Hamiltonian
and momentum operators Ĥ and P̂ i. When n = 1, a comparison of
Eqs. (43) and (44) with Eqs. (41) and (42) shows that Ŵ(1) = Û(1) and
Ŝi(1) = R̂i(1), equations which can also be immediately deduced from (34)
and (35).

6 Concluding remarks

We have established the existence of rank 4 superenergy tensors for the
Klein-Gordon field. These tensors form a two-parameter family. This
last feature is not embarrassing, however, because the unicity (up to an
arbitrary factor) is obtained by requiring the total symmetry in the four
indices. Thus it is possible to speak about ”the” 1-superenergy tensor
of the field.
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We have built divergence-free tensors U(n,n) of rank 2(n + 1) which
have almost all the good properties of the superenergy tensors. We have
shown that U(1,1) andW yield the same total 1-superenergy and the same
total spatial 1-supermomentum. This theorem leads to conjecture that
for n > 1 U(n,n) can replace advantageously the n-superenergy tensors to
evaluate the total n-superenergy and the total spatial n-supermomentum
of the field.
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