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ABSTRACT. We present an analysis of the electromagnetic fields associated
to charged particles in the framework of the causal interpretation.

RÉSUMÉ. Nous examinons le champ électromagnétique d'une charge dans
le cadre de l'interprétation causale de la mécanique quantique.

� ,QWURGXFWLRQ
We analyze in this article the quantum electromagnetic fields associated in

the causal interpretation to a quantum charged particle. When the polar decom-
position of the wave function is introduced into the Schrödinger equation of the
complete system (quantum electromagnetic fields interacting with quantum
charged particles) we obtain the equations of motion for the particle and field
coordinates.

The study is carried out in the Coulomb gauge. This particular choice of the
gauge, usual in nonrelativistic treatments of radiation, breaks down the manifest
covariance of the theory but simplifies the analysis.

The plan of the paper is as follows. In Sect. 2 we present the Hamilton-
Jacobi equation for the classical field-charge interacting system. Section 3 deals
with the quantization of the system and the causal equations of motion for the
charge and fields. In the Conclusions we discuss the main results obtained in
the paper.

� +DPLOWRQ�-DFREL�HTXDWLRQ�IRU�WKH�HOHFWURPDJQHWLF�ILHOG
We present in this Section the classical theory of the electromagnetic field in

interaction with charges within the framework of the Hamilton-Jacobi theory, in
order to compare it later with the causal formulation of the system. We consider
a classical electromagnetic field interacting with classical charges. As it is well-
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known, the motion equations of the system can be derived from its Lagrange
function [1-3]:
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the Lagrangian density.

In the above equations we have introduced the subscripts and superscripts
"cl" (classical) in order to avoid any confussion with the functions introduced
for the quantized system. Ecl

r
and Bcl
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represent the electric and magnetic

fields, given as a function of the classical potentials by the equations:

A=B;
t

A-=E clcl
cl

cl
rr

r
r

∧∆
∂
∂

(3)

These equations have been written in the Coulomb gauge
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We use the Coulomb gauge because it is the usual election in nonrelativistic
problems, as those we shall consider in the next section.

We have used units with c=1 and the usual relativistic notation 0=P 5 for

the temporal and 1,2,3=P 6 for the spatial components of any four-vector. The

scalar product of two four-vectors is Y.X-YX=YX oo

rrPP 7. jclP 8 represents

the density charge current, given by )v,(
rUU 9, with U 10 the charge density

and v
r

the velocity of the charges. The scalar product in (2) is

A.j-=Aj clclcl
cl rrPP 14 because of the gauge condition.

The Hamiltonian formulation of the problem is introduced via the momenta
conjugate to the potential variables. Their definition is [1-3]:
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where G 16 represents the variational derivative [1].

In the electromagnetic case we have
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Finally, we can introduce the Hamilton-Jacobi equation for the system
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where, by resemblance with the particle theory, the functional Scl (it depends
on the potentials AclP 22) is defined by [4]:
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Then, remembering Eqs. (6) and (7), we have
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From Eq. (9) we can derive the equations of motion for the potentials. We
present this derivation because it is similar to that we shall use to obtain the
Hamilton-Jacobi-type equation valid for the causal formulation of the quantized
problem.
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Equation (9) in the case of the electromagnetic field interacting with charges

becomes explicitly
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We apply the functional derivative A/ clPGG 26 to this equation. We decom-

pose this derivative into two parts. The first one is
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In the above derivation we have used the relation
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and, as usual, we have identified /dtAd cl& P 29 with t/A
cl ∂∂ & P 30, and

A/S=A
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cl PP GG& 31 [4].

Note that in the case of  this equation is purely formal, because both sides
equate zero.

On the other hand, the Acl
o second part of the decomposition is:
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This expression can be evaluated using the well-known relation between the
functional derivative of the Hamiltonian and the usual derivatives of the
Hamiltonian density [1]:
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Using Eqs. (16) and (4) it is simple to see that (15) is for Acl
o 34 identically

zero, and for i=1,2,3
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with z/+y/+x/= 222222 ∂∂∂∂∂∂∆ 36.

Combining with Eq. (13) we have finally that for Acl
o 37 we obtain an equa-

tion identically zero, and for i=1,2,3
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with ∆∂∂ -t/= 22, 39.
In conclusion, the variational method applied to the Hamilton-Jacobi equa-

tion of the system gives an equation identically zero for Acl
o 40, as it corre-

sponds to the gauge choice 0=Acl
o 41, and the usual Eq. (18) for the spatial

components.

� 4XDQWL]DWLRQ
We shall derive the complete set of equations ruling the motion of particles

and fields in the causal interpretation for the interacting field-charge system. In
order to simplify the analysis we shall assume that the particles are nonrelativ-
istic. In this approximation the field is usually treated in the Coulomb gauge [5].
This choice simplifies the mathematical treatment, but breaks the manifest
Lorentz covariance of the system. The quantization in a manifest covariant way
introduces into the problem a number of technical difficulties [6], which would
obscure its physical interpretation.

In the causal interpretation of quantum theory [4,7,8] the system is described
by the Schrödinger equation of the complete system, given by
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t
i IFp∂
∂

(19)



�� 3��6DQFKR
where I 43 is the wave function of the complete system and the Hamiltonian

operator is the sum of the particle "p", field "F" and interaction "I" Hamiltonian
operators. The field operator is given by the following equation:
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We use natural units, 1=c=h 45.
To quantize the field system we treat the field coordinate AP 46 and its

momentum conjugate as time-independent Schrödinger operators. We work in

a representation in which the Hermitian operator AP 47 representing the field

coordinate is diagonal (in this representation we do not need to use the operator
notation for these diagonal operators). Then, following the usual rule for any
quantum field [4,6], the momentum conjugate of the variable Acl

k 48 (k=1,2,3),S cl
k 49, is replaced in Hcl by the operator A/i kGG 50. Note that in the Coulomb

gauge 0=cl
oS 51 is not present in Hcl and we cannot introduce the operator

A/i oGG 52 that should be present in a manifest covariant quantization.

On the other hand, the interaction Hamiltonian is
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where the operator ĵP 54 represents the charge current operator associated to

the particle.
We assume that the particle is nonrelativistic; the expression for the nonrela-

tivistic particle Hamiltonian is
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The variable y
r

56 refers to the particle subsystem and  is an external poten-

tial acting on the particle.
Now, for the interaction Hamiltonian we must use its )yV(

r
nonrelativistic

expression, which is given by the well-known equation:
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We have neglected the term depending on Ao because we assume, as in Sect.
2, the Coulomb gauge.

This expression is the usual one in the study of the behaviour of a particle in
a classical external field. As usual [5], we suppose that this equation is also
valid when the field is quantized.

In the case of a particle with spin we must add to the above expression a
spin-dependent term. However, in order to simplify the analysis we shall only
consider spinless particles.

As usual in the causal theory we introduce the polar decomposition of the
wave function Re= iSI 58 [4,8]. Note that R and S, as well as the wave func-

tion, are simultaneously functionals and functions (they depend simultaneously

on y
r

59 and AP 60). Introducing the polar form we obtain the following equa-

tions:
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Equation (25) is a conservation law, which justifies the assumption that
t),A,y(R2 Pr

64 represents at time t the probability for the particle and field to

lie, respectively, in an element of volume of the space around y
r

65 and a vol-
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ume of the wave functions space around the configuration )x(A

rP 66 for all

x
r

67.
Now, we can derive the motion equations for the particle and the field coor-

dinate. We assume that at each instant the particle has a well-defined position

and the field has a well-defined value for all x
r

68, as in the classical particle
and field theories. In particular, this statement must also be assumed in the case
of the fields associated to charges. The time evolution may be obtained from
the solution of the coupled guidance equations [4]:
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As the phase of the wave function is in general a nonfactorizable function of
all the variables the two last equations are coupled ones.

Next, we derive the equations in the Newtonian form. We begin with the
particle equation. We apply the operator ∆y

r 71 to Eq. (24). Using standard

techniques and Eq. (27) we obtain:
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73 the Lorentz force and v
r

74 the velocity of the parti-

cle in the causal theory.
Now we want to derive the equation of motion of the field coordinate. It is

simple to obtain using Eq. (27) the following expression, which we shall use in
the derivation
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where )ve(e,=J c

c rP 76 ( A.J-=AJ
cc
rrPP 77 in the Coulomb gauge and with

vc
r

78 the velocity of the causal trajectory) is the causal charge current, that is,

the charge current associated to the motion of the particle in the causal theory.
The introduction of the charge current in the causal interpretation is possible
because this theory assumes the existence of trajectories for the particle
(charge), being possible to define a particle velocity and a charge current simi-
lar to the classical ones. In the usual formulation of quantum theory the trajec-
tory of the charge is a meaningless concept and it is impossible to introduce a
charge current (or a velocity) for the particle in the classical sense; the charge
current in this formulation is only an operator whose expectation values are
calculated according to the usual rules.

Note that the charge current Jc refers to a point particle, instead jc, the density
charge current, does to a density of charge (see Eq. (31) below).

In many applications of the quantum theory of radiation for nonrelativistic

particles is usual to neglect the effects of the term proportional to e2 79 in
comparison to the term of the charge current (that only depends on e).

In order to find the equation of motion of the field coordinate we express
(30) in the form
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with )v,(=j c
c rUUP 81 the causal density charge current.

Finally, we apply the functional derivative A/ PGG 82 to Eq. (24). Following

the same steps of Sect. 2 we obtain
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for i=1,2,3, and an equation identically zero for Ao (since we have assumed
the Coulomb gauge Ao=0, Eqs. (19) and (24) do not depend on Ao and all the
derivatives are zero).
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Note that we also obtain a term of the form A/2m]/)S[( 2

y PGG ∆r 84, but this

term is zero. Effectively, operating we would have AS)/(S).( yy PGG ∆∆ rr 85,

which changing the order of the normal and functional derivatives and using
Eq. (28) gives 0=t)/A(y ∂∂∆ Pr 86.

When we neglect the term in U2 87 we obtain the following simplified co-

variant equation (note that this equation is covariant, but the density charge
current is nonrelativistic) for i=1,2,3.
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Q
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We shall consider the interpretation of the causal equations in the Conclu-
sions.

� &RQFOXVLRQV
We have studied in this article the behaviour of the quantum electromagnetic

fields associated to a quantum charge in the framework of the causal interpreta-
tion of Quantum Mechanics.

The analysis has been carried out in the Coulomb gauge. This particular
choice breaks down the manifest covariance of the theory but allows for a sim-
pler treatment of the problem. As it is well-known a completely covariant
quantization of the electromagnetic field in the framework of the Hamiltonian
formalism presents serious problems. Several solutions have been proposed for
this difficulty, for instance, the introduction of new equations of motion restor-
ing Maxwell's theory by appropiate constraints on the physical states [6]. In this
paper, in order to do not obscure the physical implications of the causal inter-
pretation, we have avoided such technicalities and we have worked in a par-
ticular gauge. The price to be paid by this simplification is that we cannot ob-

tain the equation for Ao. However, we have derived the equations for A
r

89, and
we can compare the classical and causal equations of motion.

The causal equation, Eq. (32), shows important similarities and differences
when compared to the classical one, Eq. (18). The causal equation for the field
not only depends on the density charge current, but also on the functional de-

rivative of the quantum potential and on the term proportional to U 2 90 (in the

case of point particles to e2 91). The presence of the causal charge current in
the equation implies the dependence of the fields on the causal trajectory. The
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classical fields are also a function of the classical trajectories of the charges, but
different from the causal one because of the two new terms present in (32).

Equation (32) becomes nonlinear due to the term AQ/ iGG 92. This non-

linearity is the main distinctive characteristic of the causal equation when
compared to the linear classical one.

We must also consider the classical limit of (32). In the causal theory the

classical limit is obtained taking 0Q→ . This limit also implies jj clc PP → 96

with jclP 97 the classical density charge current, because the causal velocities

tend to the classical ones [4]. In this limit we obtain the classical equation plus

the term proportional to U2 98. This term has no classical counterpart, reflect-

ing its purely quantum origin.
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